[X] Close
You are about to erase all the values you have customized, search history, page format, etc.
Click here to RESET all values       Click here to GO BACK without resetting any value
Items 1 to 100 of about 5596
1. Penberthy WT, Tsunoda I: The importance of NAD in multiple sclerosis. Curr Pharm Des; 2009;15(1):64-99
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The importance of NAD in multiple sclerosis.
  • During chronic CNS inflammation, nicotinamide adenine dinucleotide (NAD) concentrations are altered by (T helper) Th1-derived cytokines through the coordinated induction of both indoleamine 2,3-dioxygenase (IDO) and the ADP cyclase CD38 in pathogenic microglia and lymphocytes.
  • While IDO activation may keep auto-reactive T cells in check, hyper-activation of IDO can leave neuronal CNS cells starving for extracellular sources of NAD.
  • Existing data indicate that glia may serve critical functions as an essential supplier of NAD to neurons during times of stress.
  • Administration of pharmacological doses of non-tryptophan NAD precursors ameliorates pathogenesis in animal models of MS.
  • This resistance is due to increased efficiency of NAD biosynthesis that delays stress-induced depletion of axonal NAD and ATP.
  • In this review, we contrast the role of NAD in EAE versus TMEV demyelinating pathogenesis to increase our understanding of the pharmacotherapeutic potential of NAD signal transduction pathways.
  • A comprehensive review of immunomodulatory control of NAD biosynthesis and degradation in MS pathogenesis is presented.
  • Distinctive pharmacological approaches designed for NAD-complementation or targeting NAD-centric proteins (SIRT1, SIRT2, PARP-1, GPR109a, and CD38) are outlined towards determining which approach may work best in the context of clinical application.

  • Genetic Alliance. consumer health - Multiple Sclerosis.
  • MedlinePlus Health Information. consumer health - Multiple Sclerosis.
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Lancet. 2007 Aug 4;370(9585):389-97 [17679016.001]
  • [Cites] Oncogene. 2007 Aug 13;26(37):5505-20 [17694090.001]
  • [Cites] Br J Dermatol. 2007 Sep;157(3):540-6 [17596147.001]
  • [Cites] J Biol Chem. 2007 Aug 24;282(34):24574-82 [17604275.001]
  • [Cites] N Engl J Med. 2007 Aug 30;357(9):927-9 [17660531.001]
  • [Cites] J Clin Invest. 2007 Sep;117(9):2570-82 [17710230.001]
  • [Cites] Biochem Biophys Res Commun. 2007 Nov 3;362(4):946-50 [17803959.001]
  • [Cites] Nat Rev Immunol. 2007 Oct;7(10):817-23 [17767193.001]
  • [Cites] Regen Med. 2007 Sep;2(5):817-29 [17907933.001]
  • [Cites] Cardiovasc Drug Rev. 2007 Fall;25(3):235-60 [17919258.001]
  • [Cites] Med Sci (Paris). 2007 Oct;23(10):840-4 [17937892.001]
  • [Cites] Mol Cell Biol. 2007 Nov;27(21):7475-85 [17785446.001]
  • [Cites] Cell Mol Life Sci. 2007 Oct;64(19-20):2542-63 [17611712.001]
  • [Cites] FASEB J. 2007 Nov;21(13):3629-39 [17585054.001]
  • [Cites] PLoS Biol. 2007 Oct 2;5(10):e263 [17914902.001]
  • [Cites] PLoS Biol. 2007 Oct;5(10):e257 [17896864.001]
  • [Cites] Am J Pathol. 2007 Nov;171(5):1563-75 [17823280.001]
  • [Cites] Cell Metab. 2007 Nov;6(5):363-75 [17983582.001]
  • [Cites] J Immunol. 2007 Dec 1;179(11):7827-39 [18025229.001]
  • [Cites] Mol Pharmacol. 2007 Dec;72(6):1508-21 [17872969.001]
  • [Cites] J Neurosci. 2007 Nov 21;27(47):12884-92 [18032661.001]
  • [Cites] J Neuroimmune Pharmacol. 2007 Sep;2(3):270-5 [18040861.001]
  • [Cites] Mol Cell Biol. 2007 Dec;27(24):8807-14 [17923681.001]
  • [Cites] Mol Cell Biol. 2008 Jan;28(1):30-9 [17954562.001]
  • [Cites] Biochem Biophys Res Commun. 2008 Feb 1;366(1):174-9 [18054327.001]
  • [Cites] PLoS One. 2007;2(12):e1331 [18159229.001]
  • [Cites] J Biol Chem. 2008 Jan 4;283(1):202-12 [17981805.001]
  • [Cites] Life Sci. 2008 Jan 16;82(3-4):205-9 [18078960.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 2008;48:79-106 [17705685.001]
  • [Cites] Immunol Lett. 2008 Jan 29;115(2):153-9 [18082271.001]
  • [Cites] J Neuroimmunol. 2008 Jan;193(1-2):12-23 [18077006.001]
  • [Cites] J Biomol Screen. 2008 Jan;13(1):54-61 [18057180.001]
  • [Cites] Nat Rev Drug Discov. 2008 Feb;7(2):143-55 [18239670.001]
  • [Cites] Neurochem Int. 2008 Mar-Apr;52(4-5):751-60 [18029056.001]
  • [Cites] Free Radic Biol Med. 2008 Feb 15;44(4):527-37 [17997992.001]
  • [Cites] Int J Cardiol. 2008 Feb 29;124(2):172-8 [17395297.001]
  • [Cites] Cell Metab. 2008 Feb;7(2):104-12 [18249170.001]
  • [Cites] Cell Motil Cytoskeleton. 2008 Mar;65(3):179-82 [18044719.001]
  • [Cites] Brain. 2008 Mar;131(Pt 3):785-99 [18156156.001]
  • [Cites] Nat Clin Pract Rheumatol. 2008 Mar;4(3):136-44 [18200008.001]
  • [Cites] Autophagy. 2008 Apr;4(3):286-9 [18094610.001]
  • [Cites] Biochem J. 2008 Apr 1;411(1):63-70 [18215126.001]
  • [Cites] Biochem J. 2008 Apr 1;411(1):e1-3 [18333834.001]
  • [Cites] PLoS One. 2008;3(3):e1759 [18335035.001]
  • [Cites] Biochem J. 2008 Apr 15;411(2):279-85 [18215119.001]
  • [Cites] J Leukoc Biol. 2008 Apr;83(4):804-16 [18252866.001]
  • [Cites] Cell Stem Cell. 2007 Aug 16;1(2):135-6 [18371345.001]
  • [Cites] Cell Stem Cell. 2008 Mar 6;2(3):241-51 [18371449.001]
  • [Cites] Am J Cardiol. 2008 Apr 17;101(8A):20B-26B [18375237.001]
  • [Cites] Neurochem Int. 2008 May;52(6):1297-303 [18328600.001]
  • [Cites] Nat Cell Biol. 2008 Apr;10(4):385-94 [18344989.001]
  • [Cites] Nat Cell Biol. 2008 Apr;10(4):373-4 [18379594.001]
  • [Cites] Neuron. 2008 Apr 10;58(1):10-4 [18400158.001]
  • [Cites] Mol Cell Biol. 2008 May;28(9):2860-71 [18299389.001]
  • [Cites] Arch Neurol. 2008 Apr;65(4):452-6 [18413466.001]
  • [Cites] Cancer Biol Ther. 2007 Dec;6(12):1833-6 [18087218.001]
  • [Cites] Curr Opin Neurol. 2008 Jun;21(3):242-7 [18451705.001]
  • [Cites] Exp Neurol. 2008 May;211(1):214-26 [18346732.001]
  • [Cites] Nutr Rev. 2008 May;66(5):250-5 [18454811.001]
  • [Cites] Pharmacol Res. 2008 Apr;57(4):318-23 [18434188.001]
  • [Cites] Br J Pharmacol. 2002 Nov;137(6):761-70 [12411406.001]
  • [Cites] Springer Semin Immunopathol. 2002;24(2):105-25 [12503060.001]
  • [Cites] Toxicology. 2002 Dec 27;181-182:65-70 [12505286.001]
  • [Cites] Brain Pathol. 2003 Jan;13(1):23-33 [12580542.001]
  • [Cites] Nat Genet. 2003 Mar;33(3):366-74 [12590258.001]
  • [Cites] Nat Genet. 2003 Mar;33(3):327-8 [12610543.001]
  • [Cites] Nat Med. 2003 Mar;9(3):352-5 [12563315.001]
  • [Cites] Nature. 2003 Apr 17;422(6933):688-94 [12700753.001]
  • [Cites] Trends Pharmacol Sci. 2003 May;24(5):228-32 [12767721.001]
  • [Cites] J Immunol. 2003 Sep 15;171(6):2863-72 [12960308.001]
  • [Cites] Biochem Pharmacol. 2003 Sep 15;66(6):1033-6 [12963490.001]
  • [Cites] Nature. 2003 Sep 11;425(6954):191-6 [12939617.001]
  • [Cites] Nat Med. 2003 Oct;9(10):1269-74 [14502282.001]
  • [Cites] Cell Mol Life Sci. 2003 Sep;60(9):1990-7 [14523559.001]
  • [Cites] J Virol. 2003 Nov;77(22):12252-65 [14581562.001]
  • [Cites] J Immunol. 2004 Feb 1;172(3):1896-906 [14734775.001]
  • [Cites] Mult Scler. 2004 Feb;10(1):26-34 [14760949.001]
  • [Cites] J Virol. 2004 Mar;78(5):2632-6 [14963171.001]
  • [Cites] J Neuroimmunol. 2004 Mar;148(1-2):116-26 [14975592.001]
  • [Cites] J Immunol. 2004 Apr 1;172(7):4100-10 [15034022.001]
  • [Cites] Biochem Pharmacol. 2004 Feb 1;67(3):411-9 [15037193.001]
  • [Cites] Neurobiol Dis. 2004 Apr;15(3):618-29 [15056470.001]
  • [Cites] J Biol Chem. 2004 Apr 30;279(18):18895-902 [14960594.001]
  • [Cites] Cell. 2004 May 14;117(4):495-502 [15137942.001]
  • [Cites] Adv Exp Med Biol. 2003;527:113-8 [15206723.001]
  • [Cites] J Cereb Blood Flow Metab. 2004 Jul;24(7):728-43 [15241181.001]
  • [Cites] Mol Microbiol. 2004 Aug;53(4):1003-9 [15306006.001]
  • [Cites] Science. 2004 Aug 13;305(5686):1010-3 [15310905.001]
  • [Cites] J Pharmacol Exp Ther. 2004 Sep;310(3):1053-61 [15159442.001]
  • [Cites] Nutrition. 2004 Sep;20(9):778-82 [15325687.001]
  • [Cites] Front Biosci. 2004 Sep 1;9:2500-20 [15353303.001]
  • [Cites] Physiol Rev. 2007 Jan;87(1):245-313 [17237347.001]
  • [Cites] J Neuroinflammation. 2007;4:6 [17254325.001]
  • [Cites] Neurochem Res. 2007 Feb;32(2):187-95 [16933150.001]
  • [Cites] Mult Scler. 2007 Jan;13(1):33-40 [17294609.001]
  • [Cites] Neuroscience. 2007 Mar 2;145(1):11-9 [17218064.001]
  • [Cites] J Neurosci. 2007 Feb 21;27(8):1933-41 [17314289.001]
  • [Cites] J Biol Chem. 2007 Mar 2;282(9):6823-32 [17197703.001]
  • [Cites] Oncogene. 2007 Feb 26;26(9):1351-6 [17322921.001]
  • [Cites] Biochem Biophys Res Commun. 2007 Apr 20;355(4):1075-80 [17335774.001]
  • [Cites] Ann Neurol. 2007 Mar;61(3):209-18 [17187374.001]
  • [Cites] Ann Neurol. 2007 Mar;61(3):219-27 [17387730.001]
  • [Cites] Curr Drug Metab. 2007 Apr;8(3):197-200 [17430106.001]
  • [Cites] Curr Drug Metab. 2007 Apr;8(3):245-66 [17430113.001]
  • [Cites] Genes Dev. 2007 Apr 15;21(8):920-8 [17437997.001]
  • [Cites] Autoimmunity. 2007 Mar;40(2):148-60 [17453713.001]
  • [Cites] Am J Pathol. 2007 May;170(5):1695-712 [17456775.001]
  • [Cites] Eur J Immunol. 2007 May;37(5):1290-301 [17407101.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7217-22 [17438283.001]
  • [Cites] Expert Opin Ther Targets. 2007 May;11(5):695-705 [17465726.001]
  • [Cites] Nat Med. 2007 May;13(5):579-86 [17417651.001]
  • [Cites] Brain Pathol. 2007 Jan;17(1):45-55 [17493037.001]
  • [Cites] Gene. 2007 Jul 1;396(1):203-13 [17499941.001]
  • [Cites] Diabetologia. 2007 Jul;50(7):1523-31 [17508197.001]
  • [Cites] Biochem Biophys Res Commun. 2007 Aug 3;359(3):665-71 [17560549.001]
  • [Cites] J Immunol. 2007 Jul 1;179(1):305-12 [17579050.001]
  • [Cites] Nature. 2007 Jun 21;447(7147):1007-11 [17581586.001]
  • [Cites] Neurochem Int. 2007 Jun;50(7-8):954-8 [17222947.001]
  • [Cites] Med Hypotheses. 2007;69(3):618-28 [17349750.001]
  • [Cites] Expert Rev Mol Med. 2007;9(20):1-19 [17637110.001]
  • [Cites] J Neurosci. 2007 Jul 18;27(29):7717-30 [17634366.001]
  • [Cites] Invest Ophthalmol Vis Sci. 2007 Aug;48(8):3602-9 [17652729.001]
  • [Cites] Glia. 2007 Sep;55(12):1251-62 [17659524.001]
  • [Cites] Glia. 2007 Sep;55(12):1280-6 [17659530.001]
  • [Cites] Biochem Biophys Res Commun. 2006 Jul 21;346(1):188-92 [16750163.001]
  • [Cites] J Immunol. 2006 Jul 1;177(1):130-7 [16785507.001]
  • [Cites] Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9685-90 [16769901.001]
  • [Cites] Blood. 2006 Jul 1;108(1):228-37 [16522817.001]
  • [Cites] Diabetes Metab Res Rev. 2006 Jul-Aug;22(4):284-94 [16544364.001]
  • [Cites] Free Radic Biol Med. 2006 Jul 15;41(2):311-7 [16814112.001]
  • [Cites] J Neurosci. 2006 Aug 16;26(33):8484-91 [16914673.001]
  • [Cites] Curr Neurovasc Res. 2006 Aug;3(3):203-13 [16918384.001]
  • [Cites] Expert Rev Mol Med. 2006;8(20):1-27 [16942634.001]
  • [Cites] Am J Physiol Heart Circ Physiol. 2006 Oct;291(4):H1545-53 [16632544.001]
  • [Cites] Biochem Biophys Res Commun. 2006 Oct 20;349(2):533-9 [16956582.001]
  • [Cites] J Neurochem. 2006 Oct;99(1):165-76 [16987244.001]
  • [Cites] J Neurosci. 2006 Sep 20;26(38):9794-804 [16988050.001]
  • [Cites] Dev Biol. 2006 Oct 1;298(1):118-31 [16875686.001]
  • [Cites] J Immunol. 2006 Oct 15;177(8):5639-46 [17015752.001]
  • [Cites] Nat Biotechnol. 2006 Oct;24(10):1179-80 [17033640.001]
  • [Cites] Eur J Neurosci. 2006 Oct;24(8):2169-76 [17042794.001]
  • [Cites] Front Biosci. 2007;12:2728-34 [17127275.001]
  • [Cites] J Neurosci. 2006 Dec 13;26(50):12904-13 [17167081.001]
  • [Cites] J Antimicrob Chemother. 2007 Jan;59(1):74-9 [17079237.001]
  • [Cites] Nat Rev Neurosci. 2007 Jan;8(1):57-69 [17180163.001]
  • [Cites] J Immunol. 2007 Jan 1;178(1):95-102 [17182544.001]
  • [Cites] J Pharmacol Exp Ther. 2007 Jan;320(1):458-64 [17021258.001]
  • [Cites] Adv Exp Med Biol. 2007;590:171-83 [17191385.001]
  • [Cites] Am J Pathol. 2007 Jan;170(1):214-26 [17200195.001]
  • [Cites] Trends Biochem Sci. 2007 Jan;32(1):12-9 [17161604.001]
  • [Cites] Arch Biochem Biophys. 1999 Dec 1;372(1):1-7 [10562410.001]
  • [Cites] Am Heart J. 1999 Dec;138(6 Pt 1):1082-7 [10577438.001]
  • [Cites] J Cell Biol. 1999 Dec 13;147(6):1123-8 [10601327.001]
  • [Cites] Neurosci Lett. 2000 Mar 10;281(2-3):111-4 [10704755.001]
  • [Cites] Eur J Biochem. 2000 Mar;267(6):1550-64 [10712584.001]
  • [Cites] Am J Public Health. 2000 May;90(5):727-38 [10800421.001]
  • [Cites] Development. 2000 Jun;127(12):2653-62 [10821763.001]
  • [Cites] Biochim Biophys Acta. 2000 Jun 26;1486(1):84-96 [10856715.001]
  • [Cites] Mutat Res. 2000 Jun 30;460(1):1-15 [10856830.001]
  • [Cites] Brain Pathol. 2000 Jul;10(3):402-18 [10885659.001]
  • [Cites] J Neurobiol. 2000 Jul;44(1):7-19 [10880128.001]
  • [Cites] Redox Rep. 2000;5(2-3):101-4 [10939283.001]
  • [Cites] Cancer. 2000 Aug 15;89(4):925-31 [10951359.001]
  • [Cites] N Engl J Med. 2000 Sep 28;343(13):898-904 [11006365.001]
  • [Cites] N Engl J Med. 2000 Sep 28;343(13):938-52 [11006371.001]
  • [Cites] Science. 2000 Sep 22;289(5487):2126-8 [11000115.001]
  • [Cites] Rheumatology (Oxford). 2001 Mar;40(3):329-35 [11285382.001]
  • [Cites] J Neuroimmunol. 2001 Jul 2;117(1-2):78-86 [11431007.001]
  • [Cites] Neuropediatrics. 2000 Dec;31(6):314-7 [11508552.001]
  • [Cites] Cell. 2001 Oct 19;107(2):149-59 [11672523.001]
  • [Cites] Science. 2001 Nov 9;294(5545):1296-7 [11701918.001]
  • [Cites] Nat Neurosci. 2001 Dec;4(12):1199-206 [11770485.001]
  • [Cites] Mol Med. 2001 Nov;7(11):761-6 [11788790.001]
  • [Cites] Infect Immun. 2002 Feb;70(2):859-68 [11796621.001]
  • [Cites] Free Radic Biol Med. 2002 Feb 15;32(4):314-8 [11841921.001]
  • [Cites] J Immunol. 2002 Mar 1;168(5):2508-15 [11859145.001]
  • [Cites] Herpes. 2001 Nov;8(3):60-3 [11867021.001]
  • [Cites] Neuroreport. 2002 Feb 11;13(2):213-6 [11893912.001]
  • [Cites] Br J Nutr. 2002 Feb;87(2):115-9 [11895163.001]
  • [Cites] Brain. 2002 Jun;125(Pt 6):1297-308 [12023318.001]
  • [Cites] CNS Drugs. 2002;16(6):405-18 [12027786.001]
  • [Cites] Neuropsychopharmacology. 2002 Aug;27(2):309-18 [12093605.001]
  • [Cites] Arch Immunol Ther Exp (Warsz). 2002;50(3):187-96 [12098934.001]
  • [Cites] J Neuroimmunol. 2002 Aug;129(1-2):186-96 [12161035.001]
  • [Cites] Pharmacol Biochem Behav. 2002 Nov;73(4):901-10 [12213537.001]
  • [Cites] Trends Neurosci. 2002 Oct;25(10):532-7 [12220882.001]
  • [Cites] Pharmacol Rev. 2002 Sep;54(3):375-429 [12223530.001]
  • [Cites] Mol Med. 2002 May;8(5):283-9 [12359959.001]
  • [Cites] J Neuroimmunol. 2008 Jul 15;197(2):140-6 [18555539.001]
  • [Cites] Physiol Rev. 2008 Jul;88(3):841-86 [18626062.001]
  • [Cites] Biosci Biotechnol Biochem. 2008 Jul;72(7):1667-72 [18603814.001]
  • [Cites] Annu Rev Nutr. 2008;28:115-30 [18429699.001]
  • [Cites] Biochem Pharmacol. 2008 Aug 15;76(4):443-52 [18547543.001]
  • [Cites] Free Radic Biol Med. 2008 Sep 1;45(5):726-31 [18554520.001]
  • [Cites] J Biol Chem. 2008 Sep 5;283(36):24571-83 [18599483.001]
  • [Cites] Cell Cycle. 2008 Sep 15;7(18):2821-5 [18797187.001]
  • [Cites] Exp Cell Res. 2008 Oct 1;314(16):3069-74 [18687325.001]
  • [Cites] Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14447-52 [18794531.001]
  • [Cites] Phytother Res. 2008 Oct;22(10):1367-71 [18688788.001]
  • [Cites] J Leukoc Biol. 2008 Oct;84(4):940-8 [18678605.001]
  • [Cites] Mol Cell Biol. 2008 Oct;28(20):6384-401 [18710944.001]
  • [Cites] J Cell Biochem. 2008 Oct 15;105(3):905-12 [18759251.001]
  • [Cites] Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15599-604 [18829436.001]
  • [Cites] J Nutr Biochem. 2008 Nov;19(11):746-53 [18436439.001]
  • [Cites] Arterioscler Thromb Vasc Biol. 2008 Nov;28(11):2016-22 [18669886.001]
  • [Cites] Brain. 2008 Nov;131(Pt 11):3081-91 [18790823.001]
  • [Cites] Atherosclerosis. 2009 Jan;202(1):68-75 [18550065.001]
  • [Cites] Int J Biochem Cell Biol. 2009 Mar;41(3):467-71 [18282734.001]
  • [Cites] Cardiovasc Res. 2009 Feb 15;81(3):582-91 [18719074.001]
  • [Cites] Cell Metab. 2008 May;7(5):365-75 [18460328.001]
  • [Cites] J Neurosci Res. 2005 Apr 1;80(1):66-74 [15723383.001]
  • [Cites] Brain Res. 2005 May 17;1044(1):8-15 [15862784.001]
  • [Cites] Nat Rev Drug Discov. 2005 May;4(5):421-40 [15864271.001]
  • [Cites] Methods. 2005 Jun;36(2):117-28 [15893938.001]
  • [Cites] J Clin Invest. 2005 Jun;115(6):1449-57 [15931380.001]
  • [Cites] J Neurol Sci. 2005 Jun 15;233(1-2):93-7 [15896807.001]
  • [Cites] J Physiol Biochem. 2004 Dec;60(4):245-52 [15957242.001]
  • [Cites] Shock. 2005 Jul;24(1):59-65 [15988322.001]
  • [Cites] J Neurosci Res. 2005 Jul 1;81(1):1-8 [15920740.001]
  • [Cites] J Neurosci Res. 2005 Jul 15;81(2):190-8 [15931673.001]
  • [Cites] J Neuroimmunol. 2005 Aug;165(1-2):83-91 [15958276.001]
  • [Cites] Nature. 2005 Jul 14;436(7048):266-71 [16015332.001]
  • [Cites] J Biol Chem. 2005 Jul 22;280(29):26649-52 [15929991.001]
  • [Cites] FASEB J. 2005 Aug;19(10):1347-9 [15939737.001]
  • [Cites] J Cell Biol. 2005 Aug 1;170(3):349-55 [16043516.001]
  • [Cites] Neuroscientist. 2005 Aug;11(4):308-22 [16061518.001]
  • [Cites] Blood. 2005 Sep 1;106(5):1755-61 [15905186.001]
  • [Cites] J Immunol. 2005 Sep 1;175(5):3075-83 [16116196.001]
  • [Cites] Blood. 2005 Oct 1;106(7):2375-81 [15947091.001]
  • [Cites] Curr Neurovasc Res. 2005 Oct;2(4):271-85 [16181120.001]
  • [Cites] Mol Biol Cell. 2005 Oct;16(10):4623-35 [16079181.001]
  • [Cites] Neurotoxicology. 2005 Oct;26(5):847-55 [15923038.001]
  • [Cites] Nat Clin Pract Cardiovasc Med. 2004 Dec;1(2):84-9 [16265311.001]
  • [Cites] Science. 2005 Nov 4;310(5749):850-5 [16272121.001]
  • [Cites] Inflamm Res. 2005 Nov;54(11):435-50 [16307217.001]
  • [Cites] J Clin Invest. 2005 Dec;115(12):3634-40 [16322797.001]
  • [Cites] J Biol Chem. 2005 Dec 30;280(52):43121-30 [16207712.001]
  • [Cites] Adv Neurol. 2006;98:77-89 [16400828.001]
  • [Cites] Clin Chim Acta. 2006 Feb;364(1-2):82-90 [16139256.001]
  • [Cites] Biochem Pharmacol. 2006 Feb 28;71(5):646-56 [16386710.001]
  • [Cites] Hum Mol Genet. 2006 Feb 15;15(4):625-35 [16403805.001]
  • [Cites] Int J Cardiol. 2006 Apr 4;108(2):143-54 [15978685.001]
  • [Cites] No To Shinkei. 2006 Feb;58(2):141-4 [16519110.001]
  • [Cites] Biochem Biophys Res Commun. 2006 Apr 21;342(4):1312-8 [16516847.001]
  • [Cites] Brain Res. 2006 Feb 16;1073-1074:25-37 [16448631.001]
  • [Cites] Blood. 2006 Apr 1;107(7):2846-54 [16339401.001]
  • [Cites] Curr Med Chem. 2006;13(8):967-77 [16611078.001]
  • [Cites] Cell Cycle. 2006 Apr;5(8):873-7 [16628003.001]
  • [Cites] Ann Pharmacother. 2006 Jun;40(6):1158-61 [16684809.001]
  • [Cites] Nat Rev Drug Discov. 2006 Jun;5(6):493-506 [16732220.001]
  • [Cites] Biochem Biophys Res Commun. 2006 Jul 14;345(4):1386-92 [16730329.001]
  • [Cites] Neuron. 2006 Jun 15;50(6):819-21 [16772165.001]
  • [Cites] Int J Dermatol. 1983 Jan-Feb;22(1):44-5 [6832880.001]
  • [Cites] Biochemistry. 1983 Oct 25;22(22):5188-94 [6317018.001]
  • [Cites] Proc Natl Acad Sci U S A. 1984 Feb;81(3):908-12 [6422465.001]
  • [Cites] J Clin Invest. 1986 Apr;77(4):1312-20 [2937805.001]
  • [Cites] Infect Immun. 1986 Aug;53(2):347-51 [3089936.001]
  • [Cites] Lancet. 1987 Apr 18;1(8538):893-5 [2882294.001]
  • [Cites] Neurology. 1987 Jul;37(7):1097-102 [3110648.001]
  • [Cites] Int J Tissue React. 1987;9(4):317-24 [3114164.001]
  • [Cites] Lancet. 1987 Oct 17;2(8564):920 [2889118.001]
  • [Cites] J Neuroimmunol. 1989 Dec;25(2-3):151-9 [2685040.001]
  • [Cites] Postgrad Med. 1990 Jan;87(1):163-7, 170 [2296564.001]
  • [Cites] N Engl J Med. 1990 Mar 29;322(13):874-81 [1690352.001]
  • [Cites] Arch Biochem Biophys. 1990 Nov 15;283(1):40-5 [2146924.001]
  • [Cites] J Neurocytol. 1990 Aug;19(4):494-503 [1700810.001]
  • [Cites] Acta Neuropathol. 1990;80(5):521-6 [2251909.001]
  • [Cites] J Neurosci. 1991 Oct;11(10):3146-54 [1941078.001]
  • [Cites] Adv Exp Med Biol. 1991;294:675-8 [1837697.001]
  • [Cites] J Neurol Sci. 1992 Jun;109(2):140-7 [1634896.001]
  • [Cites] J Neuroimmunol. 1992 Oct;40(2-3):225-30 [1430153.001]
  • [Cites] Br J Dermatol. 1993 May;128(5):578-80 [8504053.001]
  • [Cites] J Am Coll Nutr. 1993 Aug;12(4):412-6 [8409103.001]
  • [Cites] J Neurosci. 1993 Oct;13(10):4354-60 [8410191.001]
  • [Cites] Science. 1993 Oct 29;262(5134):695-700 [8235590.001]
  • [Cites] J Neurol. 1993 Dec;241(2):108-14 [8138825.001]
  • [Cites] J Neurosci. 1994 Jun;14(6):3915-21 [8207495.001]
  • [Cites] Intern Med. 1994 Feb;33(2):82-6 [8019047.001]
  • [Cites] J Neuropathol Exp Neurol. 1996 Jun;55(6):673-86 [8642393.001]
  • [Cites] Neurology. 1996 Apr;46(4):907-11 [8780061.001]
  • [Cites] Neurology. 1996 Sep;47(3):829-34 [8797491.001]
  • [Cites] Nat Med. 1997 Jan;3(1):73-6 [8986744.001]
  • [Cites] J Nutr. 1997 Jan;127(1):117-21 [9040554.001]
  • [Cites] J Exp Med. 1997 Oct 6;186(7):1041-9 [9314553.001]
  • [Cites] Nat Med. 1997 Oct;3(10):1089-95 [9334719.001]
  • [Cites] J Cereb Blood Flow Metab. 1997 Nov;17(11):1143-51 [9390645.001]
  • [Cites] Am J Pathol. 1998 Feb;152(2):611-9 [9466588.001]
  • [Cites] J Neurochem. 1998 Apr;70(4):1759-63 [9523595.001]
  • [Cites] Blood. 1998 Aug 15;92(4):1324-33 [9694721.001]
  • [Cites] Science. 1998 Aug 21;281(5380):1191-3 [9712583.001]
  • [Cites] J Neuropathol Exp Neurol. 1998 Aug;57(8):758-67 [9720491.001]
  • [Cites] J Infect Dis. 1998 Sep;178(3):875-8 [9728563.001]
  • [Cites] Eur J Immunol. 1998 Nov;28(11):3435-47 [9842886.001]
  • [Cites] Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15769-74 [9861045.001]
  • [Cites] J Immunol. 1999 Jan 15;162(2):957-64 [9916720.001]
  • [Cites] Gastroenterology. 1999 Feb;116(2):335-45 [9922314.001]
  • [Cites] J Exp Med. 1999 May 3;189(9):1363-72 [10224276.001]
  • [Cites] Clin Exp Dermatol. 1999 May;24(3):167-9 [10354170.001]
  • [Cites] J Ment Sci. 1952 Jan;98(410):130-42 [14898212.001]
  • [Cites] J Clin Exp Psychopathol. 1957 Apr-Jun;18(2):131-58 [13439009.001]
  • [Cites] Lancet. 1962 Feb 10;1(7224):316-9 [14482545.001]
  • [Cites] Can Med Assoc J. 1959 Aug 15;81:235-8 [14402370.001]
  • [Cites] J Biol Chem. 2004 Dec 3;279(49):50754-63 [15381699.001]
  • [Cites] Am J Forensic Med Pathol. 2004 Dec;25(4):342-4 [15577526.001]
  • [Cites] J Immunol. 2005 Feb 15;174(4):1971-9 [15699125.001]
  • [Cites] Nat Med. 2005 Mar;11(3):312-9 [15711557.001]
  • [Cites] J Immunol. 2004 Sep 15;173(6):3748-54 [15356121.001]
  • [Cites] Toxicology. 2005 Apr 15;209(2):135-47 [15767026.001]
  • [Cites] BMC Genomics. 2008;9:171 [18412984.001]
  • [Cites] Dev Cell. 2008 May;14(5):661-73 [18477450.001]
  • [Cites] J Neuropathol Exp Neurol. 2008 Jun;67(6):543-54 [18520773.001]
  • [Cites] J Immunol. 2008 Jul 1;181(1):92-103 [18566373.001]
  • [Cites] Autoimmunity. 2008 Aug;41(5):405-13 [18568646.001]
  • [Cites] Am J Pathol. 2008 Jul;173(1):2-13 [18535182.001]
  • [Cites] Genes Dev. 2008 Jul 1;22(13):1753-7 [18550784.001]
  • [Cites] J Clin Invest. 2008 Jul;118(7):2562-73 [18568076.001]
  • [Cites] Microbes Infect. 2004 Jul;6(9):806-12 [15374002.001]
  • [Cites] Nat Rev Immunol. 2004 Oct;4(10):762-74 [15459668.001]
  • [Cites] Steroids. 2004 Sep;69(10):653-9 [15465110.001]
  • [Cites] J Endocrinol Invest. 2004 Jul-Aug;27(7):695-707 [15505998.001]
  • [Cites] Nat New Biol. 1971 Nov 10;234(45):62-4 [5288733.001]
  • [Cites] J Neural Transm. 1973;34(3):205-14 [4146521.001]
  • [Cites] Nutr Rev. 1975 Jan;33(1):15-7 [1089213.001]
  • [Cites] J Neural Transm. 1975;37(4):297-304 [1206393.001]
  • [Cites] Acta Neuropathol. 1978 Nov 15;44(2):91-102 [213928.001]
  • [Cites] J Nutr. 1979 Apr;109(4):654-62 [34678.001]
  • [Cites] J Neurochem. 1979 Oct;33(4):895-904 [158635.001]
  • [Cites] J Neurol Neurosurg Psychiatry. 1981 Mar;44(3):209-15 [7229643.001]
  • (PMID = 19149604.001).
  • [ISSN] 1873-4286
  • [Journal-full-title] Current pharmaceutical design
  • [ISO-abbreviation] Curr. Pharm. Des.
  • [Language] ENG
  • [Grant] United States / NINDS NIH HHS / NS / R21 NS059724; United States / NINDS NIH HHS / NS / R21 NS059724-01A2; United States / NINDS NIH HHS / NS / R21NS059724
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0U46U6E8UK / NAD
  • [Number-of-references] 346
  • [Other-IDs] NLM/ NIHMS96557; NLM/ PMC2651433
  •  go-up   go-down


2. Lin H, Kwan AL, Dutcher SK: Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii. PLoS Genet; 2010 Sep 09;6(9):e1001105
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii.
  • The essential coenzyme nicotinamide adenine dinucleotide (NAD+) plays important roles in metabolic reactions and cell regulation in all organisms.
  • Bacteria, fungi, plants, and animals use different pathways to synthesize NAD+.
  • Our molecular and genetic data demonstrate that in the unicellular green alga Chlamydomonas NAD+ is synthesized from aspartate (de novo synthesis), as in plants, or nicotinamide, as in mammals (salvage synthesis).
  • The de novo pathway requires five different enzymes: L-aspartate oxidase (ASO), quinolinate synthetase (QS), quinolate phosphoribosyltransferase (QPT), nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT), and NAD+ synthetase (NS).
  • Sequence similarity searches, gene isolation and sequencing of mutant loci indicate that mutations in each enzyme result in a nicotinamide-requiring mutant phenotype in the previously isolated nic mutants.
  • NMNAT, which is also in the de novo pathway, and nicotinamide phosphoribosyltransferase (NAMPT) constitute the nicotinamide-dependent salvage pathway.
  • A mutation in NAMPT (npt1-1) has no obvious growth defect and is not nicotinamide-dependent.
  • When the de novo pathway is inactive, the salvage pathway is essential to Chlamydomonas for the synthesis of NAD+.
  • Our results suggest that Chlamydomonas is an excellent model system to study NAD+ metabolism and cell longevity.
  • [MeSH-major] Chlamydomonas reinhardtii / metabolism. NAD / biosynthesis
  • [MeSH-minor] Amino Acid Sequence. Animals. Aspartic Acid / metabolism. Base Sequence. Biological Evolution. Biosynthetic Pathways / drug effects. Biosynthetic Pathways / genetics. Gene Expression Regulation / drug effects. Gene Expression Regulation, Plant / drug effects. Genes, Plant / genetics. Mammals. Molecular Sequence Data. Mutagenesis, Insertional / drug effects. Mutation / genetics. Niacinamide / pharmacology. Nicotinamide-Nucleotide Adenylyltransferase / metabolism. Phenotype. Plant Proteins / genetics. Plant Proteins / metabolism. Pyridines / pharmacology. Time Factors. Transcription, Genetic / drug effects

  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. (L)-ASPARTIC ACID .
  • Hazardous Substances Data Bank. NICOTINAMIDE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Genetics. 2007 Jun;176(2):913-25 [17435233.001]
  • [Cites] Plant Cell. 2008 Oct;20(10):2909-25 [18978034.001]
  • [Cites] PLoS Genet. 2006 Oct 13;2(10):e167 [17040130.001]
  • [Cites] Nature. 2008 Feb 14;451(7180):783-8 [18273011.001]
  • [Cites] Mol Biol Cell. 1998 Jun;9(6):1293-308 [9614175.001]
  • [Cites] Genes Dev. 1999 Oct 1;13(19):2570-80 [10521401.001]
  • [Cites] Structure. 2005 Sep;13(9):1385-96 [16154095.001]
  • [Cites] Cell. 2006 Jan 27;124(2):315-29 [16439206.001]
  • [Cites] Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11647-52 [16868079.001]
  • [Cites] Genes Dev. 2006 May 1;20(9):1075-80 [16618798.001]
  • [Cites] J Bacteriol. 2005 Apr;187(8):2774-82 [15805524.001]
  • [Cites] Plant J. 2007 Feb;49(4):694-703 [17270012.001]
  • [Cites] Front Biosci. 2004 May 1;9:1577-86 [14977569.001]
  • [Cites] Nature. 2008 Mar 27;452(7186):492-6 [18337721.001]
  • [Cites] Cell. 2007 Sep 21;130(6):1095-107 [17889652.001]
  • [Cites] J Bacteriol. 1999 Sep;181(17):5509-11 [10464228.001]
  • [Cites] Cell. 2007 May 4;129(3):473-84 [17482543.001]
  • [Cites] Science. 2007 Oct 12;318(5848):245-50 [17932292.001]
  • [Cites] Cell Metab. 2007 Nov;6(5):363-75 [17983582.001]
  • [Cites] J Biol Chem. 2007 Apr 13;282(15):10841-5 [17307730.001]
  • [Cites] Cell Cycle. 2007 May 2;6(9):1011-8 [17457050.001]
  • [Cites] Mol Cell Biol. 1994 Jun;14(6):4011-9 [8196640.001]
  • [Cites] Chem Biol. 2003 Dec;10(12):1195-204 [14700627.001]
  • [Cites] J Mol Biol. 2000 Jul 21;300(4):1005-16 [10891285.001]
  • [Cites] Mol Biol Cell. 1999 Oct;10(10):3507-20 [10512883.001]
  • [Cites] Cell. 2001 Oct 19;107(2):137-48 [11672522.001]
  • [Cites] Curr Pharm Des. 2009;15(1):20-8 [19149599.001]
  • [Cites] J Mol Biol. 2007 Oct 26;373(3):755-63 [17868694.001]
  • [Cites] Cell. 2007 Sep 7;130(5):797-810 [17803904.001]
  • [Cites] Proteomics. 2004 Jun;4(6):1581-90 [15174128.001]
  • [Cites] FEMS Microbiol Rev. 2001 Jan;25(1):15-37 [11152939.001]
  • [Cites] Science. 2009 May 1;324(5927):654-7 [19286518.001]
  • [Cites] Nature. 2001 Mar 8;410(6825):227-30 [11242085.001]
  • [Cites] Cell. 1999 Dec 23;99(7):735-45 [10619427.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 Sep 18;104(38):15150-5 [17823244.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):829-33 [17213307.001]
  • [Cites] Plant Physiol. 2006 Jul;141(3):851-7 [16698895.001]
  • [Cites] Oncogene. 2007 Aug 13;26(37):5505-20 [17694090.001]
  • [Cites] Z Vererbungsl. 1959;90(1):74-82 [13660246.001]
  • [Cites] Genetics. 1965 Jun;51(6):931-45 [17248263.001]
  • [Cites] Science. 2001 Jul 20;293(5529):510-4 [11441146.001]
  • [Cites] Genetics. 2002 Jan;160(1):181-200 [11805055.001]
  • [Cites] Cell. 2004 May 14;117(4):495-502 [15137942.001]
  • [Cites] Nature. 2008 Dec 4;456(7222):599-604 [18923395.001]
  • [Cites] Genetics. 1991 Jul;128(3):549-61 [1874415.001]
  • [Cites] Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2216-20 [8134376.001]
  • [Cites] Biochem Biophys Res Commun. 2000 Jul 5;273(2):793-8 [10873683.001]
  • [Cites] Plant Cell. 2008 Mar;20(3):502-7 [18359853.001]
  • [Cites] Genetics. 1962 May;47:531-43 [13889019.001]
  • [Cites] Trends Biochem Sci. 2007 Jan;32(1):12-9 [17161604.001]
  • [Cites] Mol Cells. 2009 Nov 30;28(5):407-15 [19936627.001]
  • [Cites] Cell Metab. 2007 Oct;6(4):280-93 [17908557.001]
  • [Cites] Bioessays. 2003 Jul;25(7):683-90 [12815723.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 May 1;104(18):7705-10 [17460045.001]
  • [Cites] Plant Physiol. 2007 Jul;144(3):1508-19 [17468215.001]
  • [Cites] J Bacteriol. 1975 Dec;124(3):1615-7 [127787.001]
  • [Cites] J Biol Chem. 2002 Mar 8;277(10):8524-30 [11751893.001]
  • [Cites] Genes Dev. 2008 Apr 1;22(7):918-30 [18334618.001]
  • [Cites] Cell. 2008 Jul 25;134(2):317-28 [18662546.001]
  • [Cites] Science. 2009 Apr 10;324(5924):191-2 [19359572.001]
  • [Cites] Anal Biochem. 1990 Dec;191(2):396-400 [2085185.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4678-83 [12682299.001]
  • [Cites] Trends Genet. 2007 Aug;23(8):413-8 [17559965.001]
  • [Cites] Development. 2009 Nov;136(21):3637-46 [19820182.001]
  • [Cites] Science. 2000 Sep 22;289(5487):2126-8 [11000115.001]
  • [Cites] Gene. 2001 Oct 17;277(1-2):221-9 [11602359.001]
  • [Cites] J Biol Chem. 2009 Jan 2;284(1):158-64 [19001417.001]
  • [Cites] Cell. 2010 Jan 22;140(2):280-93 [20141841.001]
  • [Cites] J Cell Sci. 2009 Feb 15;122(Pt 4):489-98 [19174463.001]
  • [Cites] Mol Biol Cell. 2000 Jul;11(7):2297-313 [10888669.001]
  • [Cites] Cell. 2008 Nov 28;135(5):907-18 [19041753.001]
  • [Cites] Science. 1989 Dec 15;246(4936):1503-4 [17756009.001]
  • [Cites] Nature. 2008 Apr 17;452(7189):887-91 [18344983.001]
  • [Cites] Nature. 2009 Oct 15;461(7266):947-55 [19829375.001]
  • [Cites] PLoS Biol. 2006 Nov;4(12):e416 [17132048.001]
  • [Cites] Genetics. 2009 Nov;183(3):885-96 [19720863.001]
  • [Cites] Eukaryot Cell. 2003 Apr;2(2):362-79 [12684385.001]
  • [Cites] J Biol Chem. 2005 May 6;280(18):18326-35 [15753098.001]
  • [Cites] Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15998-6003 [15520384.001]
  • [Cites] Science. 2004 Jul 16;305(5682):390-2 [15205477.001]
  • [Cites] BMC Genomics. 2009;10:210 [19422688.001]
  • [Cites] Genetics. 1995 Oct;141(2):543-9 [8647391.001]
  • [Cites] Bioinformatics. 2007 Nov 1;23(21):2947-8 [17846036.001]
  • [Cites] Genetics. 1990 Dec;126(4):875-88 [1981764.001]
  • [Cites] J Hered. 1991 Jul-Aug;82(4):295-301 [1880392.001]
  • (PMID = 20838591.001).
  • [ISSN] 1553-7404
  • [Journal-full-title] PLoS genetics
  • [ISO-abbreviation] PLoS Genet.
  • [Language] eng
  • [Grant] United States / NIGMS NIH HHS / GM / R01 GM032843; United States / NIGMS NIH HHS / GM / R01 GM032843-25A2; United States / NHGRI NIH HHS / HG / HG-00249; United States / NIGMS NIH HHS / GM / GM-32842; United States / NHGRI NIH HHS / HG / R01 HG000249
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Plant Proteins; 0 / Pyridines; 00QT8FX306 / 3-acetylpyridine; 0U46U6E8UK / NAD; 25X51I8RD4 / Niacinamide; 30KYC7MIAI / Aspartic Acid; EC 2.7.7.1 / Nicotinamide-Nucleotide Adenylyltransferase
  • [Other-IDs] NLM/ PMC2936527
  •  go-up   go-down


3. Shi F, Li Y, Li Y, Wang X: Molecular properties, functions, and potential applications of NAD kinases. Acta Biochim Biophys Sin (Shanghai); 2009 May;41(5):352-61
BioCyc. gene/protein/disease-specific - nadK .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Molecular properties, functions, and potential applications of NAD kinases.
  • NAD kinase catalyzes the phosphorylation of NAD(H) to form NADP(H), using ATP as phosphoryl donor.
  • It is the only key enzyme leading to the de novo NADP(+)/NADPH biosynthesis.
  • Coenzymes such as NAD(H) and NADP(H) are known for their important functions.
  • Recent studies have partially demonstrated that NAD kinase plays a crucial role in the regulation of NAD(H)/NADP(H) conversion.
  • Here, the molecular properties, physiologic functions, and potential applications of NAD kinase are discussed.
  • [MeSH-major] Bacterial Proteins / metabolism. NAD / metabolism. NADP / metabolism. Phosphotransferases (Alcohol Group Acceptor) / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19430699.001).
  • [ISSN] 1745-7270
  • [Journal-full-title] Acta biochimica et biophysica Sinica
  • [ISO-abbreviation] Acta Biochim. Biophys. Sin. (Shanghai)
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] China
  • [Chemical-registry-number] 0 / Anti-Bacterial Agents; 0 / Bacterial Proteins; 0U46U6E8UK / NAD; 53-59-8 / NADP; EC 2.7.1.- / Phosphotransferases (Alcohol Group Acceptor); EC 2.7.1.23 / NAD kinase
  • [Number-of-references] 73
  •  go-up   go-down


Advertisement
4. Chen YG, Kowtoniuk WE, Agarwal I, Shen Y, Liu DR: LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat Chem Biol; 2009 Dec;5(12):879-81
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] LC/MS analysis of cellular RNA reveals NAD-linked RNA.
  • This technique revealed NAD-linked RNA in Escherichia coli and Streptomyces venezuelae.
  • Subsequent characterization showed that NAD is a 5' modification of RNA, cannot be installed in vitro through aberrant transcriptional initiation, is only found among smaller cellular RNAs and is present at a surprisingly high abundance of approximately 3,000 copies per cell.
  • [MeSH-major] Escherichia coli / chemistry. NAD / isolation & purification. RNA, Bacterial / isolation & purification. RNA, Fungal / isolation & purification. RNA, Transfer / isolation & purification. Streptomyces / chemistry

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Nat Rev Mol Cell Biol. 2004 Jun;5(6):451-63 [15173824.001]
  • [Cites] Proc Natl Acad Sci U S A. 2009 May 12;106(19):7768-73 [19416889.001]
  • [Cites] Nature. 1975 Jan 31;253(5490):374-5 [163011.001]
  • [Cites] J Mol Evol. 1976 Mar 29;7(2):101-4 [1263263.001]
  • [Cites] J Mol Evol. 1978 Jun 20;11(2):163-8 [671563.001]
  • [Cites] Proc Natl Acad Sci U S A. 1980 Jan;77(1):201-4 [6153795.001]
  • [Cites] J Bacteriol. 1984 Jun;158(3):769-76 [6373741.001]
  • [Cites] Methods Enzymol. 1990;193:796-824 [1706064.001]
  • [Cites] Nucleic Acids Res. 1994 Jun 25;22(12):2183-96 [7518580.001]
  • [Cites] J Mol Evol. 1995 Jun;40(6):551-8 [7643406.001]
  • [Cites] Proteins. 1998 Sep 1;32(4):414-24 [9726413.001]
  • [Cites] J Biol Chem. 1958 Mar;231(1):241-57 [13538965.001]
  • [Cites] Nature. 1950 Aug 5;166(4214):237-8 [15439258.001]
  • [Cites] Nucleic Acids Res. 2005;33(1):e2 [15640439.001]
  • [Cites] Nature. 2001 Jan 18;409(6818):387-90 [11201752.001]
  • [Cites] Annu Rev Biochem. 2001;70:39-80 [11395402.001]
  • [Cites] Nucleic Acids Res. 2003 Feb 1;31(3):e8 [12560511.001]
  • [Cites] J Am Chem Soc. 2004 Apr 28;126(16):5044-5 [15099068.001]
  • [Cites] Mol Microbiol. 2005 Oct;58(2):456-66 [16194232.001]
  • [Cites] Mol Cell. 2007 Jul 6;27(1):79-90 [17612492.001]
  • [Cites] J Am Chem Soc. 2008 Nov 19;130(46):15611-26 [18956864.001]
  • [Cites] Biol Cell. 2009 Feb;101(2):117-31 [19076068.001]
  • [Cites] Cell. 2009 Feb 20;136(4):615-28 [19239884.001]
  • [Cites] Science. 2004 Sep 10;305(5690):1601-5 [15319493.001]
  • (PMID = 19820715.001).
  • [ISSN] 1552-4469
  • [Journal-full-title] Nature chemical biology
  • [ISO-abbreviation] Nat. Chem. Biol.
  • [Language] eng
  • [Databank-accession-numbers] PubChem-Substance/ 85195596/ 85195597/ 85195598/ 85195599
  • [Grant] United States / NIGMS NIH HHS / GM / R01GM065865; United States / NIGMS NIH HHS / GM / R01 GM065865-05A1; United States / Howard Hughes Medical Institute / / ; United States / NIGMS NIH HHS / GM / R01 GM065865-06S1; United States / NIGMS NIH HHS / GM / R01 GM065865-06; United States / NIGMS NIH HHS / GM / R01 GM065865
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / RNA, Bacterial; 0 / RNA, Fungal; 0U46U6E8UK / NAD; 9014-25-9 / RNA, Transfer
  • [Other-IDs] NLM/ NIHMS140940; NLM/ PMC2842606
  •  go-up   go-down


5. Hanson MS, Steffen A, Danobeitia JS, Ludwig B, Fernandez LA: Flow Cytometric Quantification of Glucose-Stimulated β-Cell Metabolic Flux Can Reveal Impaired Islet Functional Potency. Cell Transplant; 2008 Dec;17(12):1337-1347

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Glucose-induced metabolic activity was indicated by changes in Fura Red fluorescence and the autofluorescence of the pyridine [NAD(P)H] and flavin (FAD/FMN) nucleotides.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28876094.001).
  • [ISSN] 1555-3892
  • [Journal-full-title] Cell transplantation
  • [ISO-abbreviation] Cell Transplant
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; Diabetes / Flow cytometry / Glucose / Islet; β-Cell / Mitochondria / Pancreas / Transplantation
  •  go-up   go-down


6. Ansari HR, Raghava GP: Identification of NAD interacting residues in proteins. BMC Bioinformatics; 2010;11:160
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Identification of NAD interacting residues in proteins.
  • Nicotinamide adenine dinucleotide (NAD+ or NAD) is one of the most commonly used organic cofactors in living cells, which plays a critical role in cellular metabolism, storage and regulatory processes.
  • In the past, several NAD binding proteins (NADBP) have been reported in the literature, which are responsible for a wide-range of activities in the cell.
  • Attempts have been made to derive a rule for the binding of NAD+ to its target proteins.
  • Thus a sequence and non-similarity based method is needed to characterize the NAD binding sites to help in the annotation.
  • In this study attempts have been made to predict NAD binding proteins and their interacting residues (NIRs) from amino acid sequence using bioinformatics tools.
  • RESULTS: We extracted 1556 proteins chains from 555 NAD binding proteins whose structure is available in Protein Data Bank.
  • Then we removed all redundant protein chains and finally obtained 195 non-redundant NAD binding protein chains, where no two chains have more than 40% sequence identity.
  • In this study all models were developed and evaluated using five-fold cross validation technique on the above dataset of 195 NAD binding proteins.
  • Gly, Tyr, Thr, His) in NAD interaction, residues like Ala, Glu, Leu, Lys are not preferred.
  • A support vector machine (SVM) based method has been developed using various window lengths of amino acid sequence for predicting NAD interacting residues and obtained maximum Matthew's correlation coefficient (MCC) 0.47 with accuracy 74.13% at window length 17.
  • CONCLUSION: For the first time a sequence-based method has been developed for the prediction of NAD binding proteins and their interacting residues, in the absence of any prior structural information.
  • The present model will aid in the understanding of NAD+ dependent mechanisms of action in the cell.
  • [MeSH-major] NAD / chemistry. Proteins / chemistry

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Nucleic Acids Res. 2009 Jan;37(Database issue):D195-200 [18842629.001]
  • [Cites] Protein Sci. 2003 May;12(5):923-9 [12717015.001]
  • [Cites] Bioinformatics. 2009 May 1;25(9):1192-4 [19251774.001]
  • [Cites] BMC Bioinformatics. 2009;10:105 [19358699.001]
  • [Cites] BMC Bioinformatics. 2008;9:312 [18637174.001]
  • [Cites] Curr Opin Struct Biol. 2003 Jun;13(3):389-95 [12831892.001]
  • [Cites] Nucleic Acids Res. 2004 Jan 1;32(Database issue):D129-33 [14681376.001]
  • [Cites] Proteins. 2004 Apr 1;55(1):83-90 [14997542.001]
  • [Cites] Nature. 1976 Aug 19;262(5570):726 [183143.001]
  • [Cites] FASEB J. 1996 Sep;10(11):1257-69 [8836039.001]
  • [Cites] Mol Microbiol. 1996 Aug;21(4):667-74 [8878030.001]
  • [Cites] Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [9254694.001]
  • [Cites] Bioinformatics. 1999 Apr;15(4):327-32 [10320401.001]
  • [Cites] J Cell Biol. 2005 Aug 1;170(3):349-55 [16043516.001]
  • [Cites] Science. 2005 Aug 12;309(5737):1093-6 [16099990.001]
  • [Cites] Proteins. 2005 Nov 1;61(2):318-24 [16106377.001]
  • [Cites] Protein Eng Des Sel. 2006 Feb;19(2):67-75 [16403825.001]
  • [Cites] Bioinformatics. 2006 Jul 1;22(13):1658-9 [16731699.001]
  • [Cites] Curr Protein Pept Sci. 2006 Oct;7(5):395-406 [17073692.001]
  • [Cites] Nucleic Acids Res. 2007 Jan;35(Database issue):D515-20 [17082206.001]
  • [Cites] Protein Pept Lett. 2007;14(6):575-80 [17627599.001]
  • [Cites] BMC Bioinformatics. 2007;8:337 [17854501.001]
  • [Cites] Nucleic Acids Res. 2008 Jan;36(Database issue):D618-22 [17720712.001]
  • [Cites] Proteins. 2008 Apr;71(1):189-94 [17932917.001]
  • [Cites] J R Soc Interface. 2009 Feb 6;6(31):129-47 [19019817.001]
  • (PMID = 20353553.001).
  • [ISSN] 1471-2105
  • [Journal-full-title] BMC bioinformatics
  • [ISO-abbreviation] BMC Bioinformatics
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Proteins; 0U46U6E8UK / NAD
  • [Other-IDs] NLM/ PMC2853471
  •  go-up   go-down


7. Billington RA, Travelli C, Ercolano E, Galli U, Roman CB, Grolla AA, Canonico PL, Condorelli F, Genazzani AA: Characterization of NAD uptake in mammalian cells. J Biol Chem; 2008 Mar 7;283(10):6367-74
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Characterization of NAD uptake in mammalian cells.
  • Recent evidence has shown that NAD(P) plays a variety of roles in cell-signaling processes.
  • Surprisingly, the presence of NAD(P) utilizing ectoenzymes suggests that NAD(P) is present extracellularly.
  • Indeed, nanomolar concentrations of NAD have been found in plasma and other body fluids.
  • Although very high concentrations of NAD have been shown to enter cells, it is not known whether lower, more physiological concentrations are able to be taken up.
  • Here we show that two mammalian cell types are able to transport low NAD concentrations effectively.
  • Furthermore, extracellular application of NAD was able to counteract FK866-induced cell death and restore intracellular NAD(P) levels.
  • We propose that NAD uptake may play a role in physiological NAD homeostasis.
  • [MeSH-major] NAD / metabolism. NADP / metabolism. Signal Transduction / physiology

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18180302.001).
  • [ISSN] 0021-9258
  • [Journal-full-title] The Journal of biological chemistry
  • [ISO-abbreviation] J. Biol. Chem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Acrylamides; 0 / N-(4-(1-benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide; 0 / Piperidines; 0U46U6E8UK / NAD; 53-59-8 / NADP
  •  go-up   go-down


8. Gazzaniga F, Stebbins R, Chang SZ, McPeek MA, Brenner C: Microbial NAD metabolism: lessons from comparative genomics. Microbiol Mol Biol Rev; 2009 Sep;73(3):529-41, Table of Contents
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Microbial NAD metabolism: lessons from comparative genomics.
  • NAD is a coenzyme for redox reactions and a substrate of NAD-consuming enzymes, including ADP-ribose transferases, Sir2-related protein lysine deacetylases, and bacterial DNA ligases.
  • Microorganisms that synthesize NAD from as few as one to as many as five of the six identified biosynthetic precursors have been identified.
  • De novo NAD synthesis from aspartate or tryptophan is neither universal nor strictly aerobic.
  • Salvage NAD synthesis from nicotinamide, nicotinic acid, nicotinamide riboside, and nicotinic acid riboside occurs via modules of different genes.
  • Nicotinamide salvage genes nadV and pncA, found in distinct bacteria, appear to have spread throughout the tree of life via horizontal gene transfer.
  • [MeSH-major] Bacteria. Genomics. NAD / metabolism

  • COS Scholar Universe. author profiles.
  • BioCyc. gene/protein/disease-specific - pncA .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Bacteriol. 2001 Feb;183(4):1168-74 [11157928.001]
  • [Cites] Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3083-8 [19204287.001]
  • [Cites] Mol Microbiol. 2001 Jun;40(6):1241-8 [11442824.001]
  • [Cites] Science. 2001 Dec 14;294(5550):2310-4 [11743192.001]
  • [Cites] Structure. 2002 Jan;10(1):69-79 [11796112.001]
  • [Cites] J Biol Chem. 2002 Feb 1;277(5):3698-707 [11704676.001]
  • [Cites] Yeast. 2002 Feb;19(3):215-24 [11816029.001]
  • [Cites] Nature. 2002 Jan 31;415(6871):497-502 [11823852.001]
  • [Cites] J Biol Chem. 2002 May 24;277(21):18881-90 [11884393.001]
  • [Cites] J Biol Chem. 2002 Sep 6;277(36):33291-9 [12068016.001]
  • [Cites] Extremophiles. 2002 Aug;6(4):275-81 [12215812.001]
  • [Cites] J Biol Chem. 2002 Nov 22;277(47):45099-107 [12297502.001]
  • [Cites] J Bacteriol. 2002 Dec;184(24):6906-17 [12446641.001]
  • [Cites] Cell. 2002 Nov 27;111(5):747-56 [12464185.001]
  • [Cites] Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13 [12456892.001]
  • [Cites] J Biol Chem. 2003 Mar 7;278(10):8804-8 [12496312.001]
  • [Cites] Mol Microbiol. 2003 Apr;48(1):77-84 [12657046.001]
  • [Cites] Bioinformatics. 2003 Aug 12;19(12):1572-4 [12912839.001]
  • [Cites] J Bacteriol. 2003 Sep;185(17):5220-33 [12923095.001]
  • [Cites] J Biol Chem. 2003 Aug 29;278(35):33049-55 [12771147.001]
  • [Cites] Chem Biol. 2003 Dec;10(12):1195-204 [14700627.001]
  • [Cites] Infect Immun. 2004 Feb;72(2):1143-6 [14742562.001]
  • [Cites] Trends Biochem Sci. 2004 Mar;29(3):111-8 [15003268.001]
  • [Cites] Science. 2004 Apr 2;304(5667):66-74 [15001713.001]
  • [Cites] J Bacteriol. 2004 May;186(9):2862-71 [15090528.001]
  • [Cites] Cell. 2004 May 14;117(4):495-502 [15137942.001]
  • [Cites] J Biol Chem. 1967 Feb 10;242(3):385-92 [4290215.001]
  • [Cites] J Exp Med. 1969 Jan 1;129(1):1-21 [4304436.001]
  • [Cites] J Bacteriol. 1994 Jun;176(11):3400-2 [8195100.001]
  • [Cites] Science. 1995 Jul 28;269(5223):496-512 [7542800.001]
  • [Cites] Nat Med. 1996 Jun;2(6):662-7 [8640557.001]
  • [Cites] Eur J Biochem. 1996 Jul 15;239(2):427-33 [8706750.001]
  • [Cites] J Bacteriol. 1998 Jun;180(12):3218-21 [9620974.001]
  • [Cites] Nature. 2000 Feb 17;403(6771):795-800 [10693811.001]
  • [Cites] Biochem Biophys Res Commun. 2000 Jul 5;273(2):793-8 [10873683.001]
  • [Cites] FEBS Lett. 1999 Feb 12;444(2-3):222-6 [10050763.001]
  • [Cites] FEBS Lett. 1999 Jul 16;455(1-2):13-7 [10428462.001]
  • [Cites] J Bacteriol. 1999 Sep;181(17):5509-11 [10464228.001]
  • [Cites] J Biol Chem. 1951 Apr;189(2):889-99 [14832305.001]
  • [Cites] J Biol Chem. 1958 Aug;233(2):488-92 [13563526.001]
  • [Cites] J Biol Chem. 1958 Aug;233(2):493-500 [13563527.001]
  • [Cites] Nucleic Acids Res. 2005 Jan 1;33(Database issue):D34-8 [15608212.001]
  • [Cites] Nat Genet. 2005 Feb;37(2):153-9 [15640799.001]
  • [Cites] Science. 2005 May 6;308(5723):866-70 [15774723.001]
  • [Cites] Structure. 2005 Sep;13(9):1239-40 [16154080.001]
  • [Cites] Structure. 2005 Sep;13(9):1385-96 [16154095.001]
  • [Cites] Nucleic Acids Res. 2005;33(17):5691-702 [16214803.001]
  • [Cites] J Biol Chem. 2005 Oct 28;280(43):36334-41 [16118205.001]
  • [Cites] Science. 2006 Mar 3;311(5765):1283-7 [16513982.001]
  • [Cites] J Bacteriol. 2006 Apr;188(8):3012-23 [16585762.001]
  • [Cites] Plant Physiol. 2006 Jul;141(3):851-7 [16698895.001]
  • [Cites] Nucleic Acids Res. 2007 Jan;35(Database issue):D224-8 [17202162.001]
  • [Cites] Trends Biochem Sci. 2007 Jan;32(1):12-9 [17161604.001]
  • [Cites] Biochemistry. 2007 Apr 24;46(16):4912-22 [17402747.001]
  • [Cites] Cell. 2007 May 4;129(3):473-84 [17482543.001]
  • [Cites] Mol Microbiol. 2007 Oct;66(1):14-25 [17725566.001]
  • [Cites] PLoS Biol. 2007 Oct 2;5(10):e263 [17914902.001]
  • [Cites] Structure. 2008 Feb;16(2):196-209 [18275811.001]
  • [Cites] Nucleic Acids Res. 2008 Apr;36(6):2047-59 [18276643.001]
  • [Cites] Nucleic Acids Res. 2008 Apr;36(6):2032-46 [18276644.001]
  • [Cites] J Biol Chem. 2008 Jul 11;283(28):19329-41 [18490451.001]
  • [Cites] Annu Rev Nutr. 2008;28:115-30 [18429699.001]
  • [Cites] J Biol Chem. 2009 Jan 2;284(1):158-64 [19001417.001]
  • [Cites] Genome Biol. 2001;2(1):REVIEWS0001 [11380987.001]
  • (PMID = 19721089.001).
  • [ISSN] 1098-5557
  • [Journal-full-title] Microbiology and molecular biology reviews : MMBR
  • [ISO-abbreviation] Microbiol. Mol. Biol. Rev.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0U46U6E8UK / NAD
  • [Number-of-references] 69
  • [Other-IDs] NLM/ PMC2738131
  •  go-up   go-down


9. Niemiec P, Zak I: [Vascular NAD(P)H oxidases--role in the pathogenesis of atherosclerosis]. Postepy Biochem; 2005;51(1):1-11
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Vascular NAD(P)H oxidases--role in the pathogenesis of atherosclerosis].
  • [Transliterated title] Naczyniowe oksydazy NAD(P)H--znaczenie w patogenezie miazdzycy.
  • Vascular NAD(P)H oxidases are multicomponent enzymes found in vascular smooth muscle cells and endothelial cells.
  • Vascular NAD(P)H oxidases are predominant sources of superoxide in the vasculature.
  • Active forms of NAD(P)H oxidases are associated with plasma membrane and consist of at least six components, namely: NOX, p22phox peptides and p47phox, p67phox, p40phox and Rac.
  • Angiotensin II is the most important activator of NAD(P)H oxidases in vasculature.
  • Moreover, reactive oxygen species produced by NAD(P)H oxidases may be involved in endothelial cells apoptosis, oxidation of low density lipoproteins and vascular myocytes hypertrophy and proliferation.
  • Specific inhibitors of NAD(P)H oxidases may be useful experimental tools for atherosclerosis research and may have potential therapeutic significance in the future.

  • MedlinePlus Health Information. consumer health - Atherosclerosis.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16209336.001).
  • [ISSN] 0032-5422
  • [Journal-full-title] Postepy biochemii
  • [ISO-abbreviation] Postepy Biochem.
  • [Language] pol
  • [Publication-type] English Abstract; Journal Article; Review
  • [Publication-country] Poland
  • [Chemical-registry-number] 11062-77-4 / Superoxides; 11128-99-7 / Angiotensin II; EC 1.6.3.1 / NADPH Oxidase
  • [Number-of-references] 92
  •  go-up   go-down


10. Ying W: NAD+ and NADH in neuronal death. J Neuroimmune Pharmacol; 2007 Sep;2(3):270-5
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] NAD+ and NADH in neuronal death.
  • Increasing evidence has suggested that NAD+ and NADH mediate not only energy metabolism and mitochondrial functions, but also calcium homeostasis, aging, and cell death.
  • This article is written to provide an overview about the information suggesting significant roles of NAD+ and NADH in neuronal death in certain neurological diseases.
  • Our latest studies have suggested that intranasal administration with NAD+ can profoundly decrease ischemic brain damage.
  • These observations suggest that NAD+ administration may be a novel therapeutic strategy for some neurological diseases.
  • [MeSH-major] NAD / physiology. Neurons / physiology

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18040861.001).
  • [ISSN] 1557-1904
  • [Journal-full-title] Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology
  • [ISO-abbreviation] J Neuroimmune Pharmacol
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0U46U6E8UK / NAD
  • [Number-of-references] 50
  •  go-up   go-down


11. Huang X, El-Sayed IH, Yi X, El-Sayed MA: Gold nanoparticles: catalyst for the oxidation of NADH to NAD(+). J Photochem Photobiol B; 2005 Nov 1;81(2):76-83
Hazardous Substances Data Bank. GOLD, ELEMENTAL .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Gold nanoparticles: catalyst for the oxidation of NADH to NAD(+).
  • Nicotinamide adenine dinucleotide is an important coenzyme involved in the production of ATP, the fuel of energy, in every cell.
  • It alternates between the oxidized form NAD(+) and the reduced form dihydronicotinamide adenine dinucleotide (NADH) and serves as a hydrogen and electron carrier in the cellular respiratory processes.
  • In the present work, the catalytic effect of gold nanoparticles on the oxidization of NADH to NAD(+) was investigated.
  • The intensity of the 340 nm absorption band of NADH was found to decrease while that of the 260 nm band of NAD(+) was found to increase as the concentration of gold nanoparticles increased.
  • This gives a strong support that the conversion of NADH to NAD(+) is occurring on the surface of the gold nanoparticles, i.e.
  • [MeSH-major] Gold / chemistry. NAD / chemistry

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16125965.001).
  • [ISSN] 1011-1344
  • [Journal-full-title] Journal of photochemistry and photobiology. B, Biology
  • [ISO-abbreviation] J. Photochem. Photobiol. B, Biol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0U46U6E8UK / NAD; 7440-57-5 / Gold
  •  go-up   go-down


12. Frankenthaler A, Lee M, Seery V, Renzi S, Kinnaman M, Liu V, Friedman E, Atkins MB, Cutaneous Oncology Program: Impact of concomitant immunosuppression on the presentation and prognosis of patients with melanoma. J Clin Oncol; 2009 May 20;27(15_suppl):9070

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • METHODS: We examined the Beth Israel Deaconess Medical Center Cutaneous Oncology Program database for pts with immune suppression at the time of melanoma diagnosis.
  • Melanoma stages at diagnosis were in situ 1, IB 7, IIA 1, IIB 1, IIIB 3, IIIC 5, and IV 1.
  • In addition, more cases appeared to have an amelanotic primary (21% vs. 5.4%) or an atypical mole syndrome (21% vs 10.2%).
  • At a median f/up of 52 mos, 37% of the cases had relapsed and all of these pts had died.
  • At a median f/up of 76 mos, 30% of the controls had relapsed yet only 47% of these pts had died.
  • CONCLUSIONS: Compared to the general melanoma population, pts with concomitant immune suppression appear more likely to be female, have an amelanotic primary or atypical mole syndrome and more advanced disease at presentation.
  • Thus, diagnosis and treatment of a primary melanoma at an early stage appears especially important in an immunosuppressed population.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27962173.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


13. Mazzone PJ, Videtic G, Murthy S, Mason D, Rice T, Pennell N, Rich T, Machuzak M, Mekhail T: The serial effects of multimodality therapy for stage III non-small cell carcinoma on lung function. J Clin Oncol; 2009 May 20;27(15_suppl):7551

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • : 7551 Purpose: To describe the effects of multimodality treatment on lung function in patients with stage III non-small cell carcinoma of the lung (NSCLC) Methods: Pulmonary function tests (PFTs) were reviewed for 32 patients with stage III NSCLC who were enrolled in a multimodality protocol that included neoadjuvant (NAd) combined chemoradiotherapy (taxol 50 mg/m2, carboplatin AUC 2 weekly X 3, radiation (XRT) 1.8 Gy BID to 30 Gy + erlotinib 150 mg/d for 28 days, followed by resection (R) and adjuvant (Ad) chemoradiotherapy (same as induction) followed by erlotinib 150mg/d maintenance (M) for 2 years.
  • Changes in PFTs were analyzed at multiple time points (baseline to after NAd, after NAd to after R, after R to after Ad) and for the overall effect of treatment (baseline to the end of treatment).

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27963339.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


14. Pishvaian MJ, Marshall JL, Hwang JJ, Malik S, He AR, Deeken JF, Kelso CB, Cotarla I, Berger MS: A phase I trial of GMX1777, an inhibitor of nicotinamide phosphoribosyl transferase (NAMPRT), given as a 24-hour infusion. J Clin Oncol; 2009 May 20;27(15_suppl):3581

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] A phase I trial of GMX1777, an inhibitor of nicotinamide phosphoribosyl transferase (NAMPRT), given as a 24-hour infusion.
  • : 3581 Background: GMX1777 is a pro-drug which converts to GMX1778, a potent and specific small molecule inhibitor of NAMPRT, the rate-limiting enzyme in NAD+ synthesis.
  • Thrombocytopenia, GI hemorrhage, and skin rash (the last occurring after multiple cycles) were encountered at higher doses.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27961760.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


15. Hensel M, Goetzenich A, Hanhoff N, Wolf E, Knechten H, Mosthaf F: Cancer incidence in HIV-positive patients in Germany: A nation-wide survey from 2000 to 2007. J Clin Oncol; 2009 May 20;27(15_suppl):e22115

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The purpose of this study was to gather data on the epidemiology of AIDS-defining (AD) and non-AIDS-defining (NAD) malignancies in HIV-positive patients (pts) in Germany in the past decade.
  • Among the 299 cases (54.2%) of NAD malignomas were 213 solid tumors including 71 anal carcinomas (= 33.5% of all NAD malignancies) and 85 hemoblastoses including 29 Hodgkin lymphomas (= 9.6% of all NAD malignancies).
  • The high proportion of NAD malignancies has remained constant over all observation periods, as well as the relative incidence of most of the different subentities.
  • CONCLUSIONS: Our observations show a high incidence of NAD malignomas over the past 8 years in Germany.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27963512.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


16. Billington RA, Genazzani AA, Travelli C, Condorelli F: NAD depletion by FK866 induces autophagy. Autophagy; 2008 Apr;4(3):385-7

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] NAD depletion by FK866 induces autophagy.
  • NAD is a multifunctional molecule involved in both metabolic processes and signaling pathways.
  • Such signalling pathways consume NAD which is replenished via one of several biosynthesis pathways.
  • We show that influx of NAD across the plasma membrane may be able to contribute to the homeostasis of intracellular NAD levels.
  • Indeed, extracellular application of NAD was able to replete NAD levels that had been lowered pharmacologically using the novel drug FK866 and was also able to rescue cells from FK866-induced cell death.
  • A marked lag between the drop in NAD levels and cell death prompted us to investigate the mechanism of cell death.
  • Furthermore, this autophagic phenotype could be reverted by the addition of NAD to the extracellular medium.
  • [MeSH-major] Acrylamides / pharmacology. Antineoplastic Agents / pharmacology. Autophagy / drug effects. NAD / physiology. Piperidines / pharmacology

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18227641.001).
  • [ISSN] 1554-8635
  • [Journal-full-title] Autophagy
  • [ISO-abbreviation] Autophagy
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Acrylamides; 0 / Antineoplastic Agents; 0 / Apoptosis Inducing Factor; 0 / Microtubule-Associated Proteins; 0 / N-(4-(1-benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide; 0 / Piperidines; 0 / light chain 3, human; 0U46U6E8UK / NAD; 9007-43-6 / Cytochromes c; EC 3.4.22.- / Caspase 3
  •  go-up   go-down


17. Brenner C: Evolution of NAD biosynthetic enzymes. Structure; 2005 Sep;13(9):1239-40
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Evolution of NAD biosynthetic enzymes.
  • Two research groups have solved crystal structures of nicotinic acid phosphoribosyltransferase (PRTase) and made the argument that PRTases in three distinct pathways of nicotinamide adenine dinucleotide (NAD) biosynthesis evolved from a common ancestor (Shin et al., 2005 and Chappie et al., 2005).
  • [MeSH-major] Evolution, Molecular. NAD / biosynthesis. Pentosyltransferases / chemistry. Pentosyltransferases / genetics

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentOn] Structure. 2005 Sep;13(9):1385-96 [16154095.001]
  • [CommentOn] J Biol Chem. 2005 May 6;280(18):18326-35 [15753098.001]
  • (PMID = 16154080.001).
  • [ISSN] 0969-2126
  • [Journal-full-title] Structure (London, England : 1993)
  • [ISO-abbreviation] Structure
  • [Language] eng
  • [Publication-type] Comment; News
  • [Publication-country] United States
  • [Chemical-registry-number] 0U46U6E8UK / NAD; EC 2.4.2.- / Pentosyltransferases; EC 6.3.4.21 / nicotinate phosphoribosyltransferase
  •  go-up   go-down


18. Ying W: NAD+ and NADH in brain functions, brain diseases and brain aging. Front Biosci; 2007;12:1863-88
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] NAD+ and NADH in brain functions, brain diseases and brain aging.
  • Numerous studies have suggested that NAD+ and NADH mediate multiple major biological processes, including calcium homeostasis, energy metabolism, mitochondrial functions, cell death and aging.
  • In particular, NAD+ and NADH have emerged as novel, fundamental regulators of calcium homeostasis.
  • It appears that most of the components in the metabolic pathways of NAD+ and NADH, including poly(ADP-ribose), ADP-ribose, cyclic ADP-ribose, O-acetyl-ADP-ribose, nicotinamide and kynurenine, can produce significant biological effects.
  • This exquisiteness of NAD+ and NADH metabolism could epitomize the exquisiteness of life, through which we may grasp the intrinsic harmony life has evolved to produce.
  • The exquisiteness also suggests a central regulatory role of NAD+ and NADH in life.
  • It is tempted to propose that NAD+ and NADH, together with ATP and Ca2+, constitute a Central Regulatory Network of life.
  • Increasing evidence has also suggested that NAD+ and NADH play important roles in multiple biological processes in brains, such as neurotransmission and learning and memory.
  • NAD+ and NADH may also mediate brain aging and the tissue damage in various brain illnesses.
  • Our latest studies have suggested that NADH can be transported across the plasma membranes of astrocytes, and that NAD+ administration can markedly decrease ischemic brain injury.
  • Based on this information, it is proposed that NAD+ and NADH are fundamental mediators of brain functions, brain senescence and multiple brain diseases.
  • Because numerous properties of NAD+ and NADH remain unclear, future studies regarding NAD+ and NADH may expose some fundamental mechanisms underlying brain functions, brain pathologies and brain aging.
  • [MeSH-major] Aging / physiology. Brain / physiology. Brain Diseases / etiology. NAD / physiology

  • MedlinePlus Health Information. consumer health - Brain Diseases.
  • MedlinePlus Health Information. consumer health - Seniors' Health.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17127427.001).
  • [ISSN] 1093-9946
  • [Journal-full-title] Frontiers in bioscience : a journal and virtual library
  • [ISO-abbreviation] Front. Biosci.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0U46U6E8UK / NAD
  • [Number-of-references] 282
  •  go-up   go-down


19. Cvetić T, Veljović-Jovanović S, Vucinić Z: Characterization of NAD-dependent malate dehydrogenases from spinach leaves. Protoplasma; 2008;232(3-4):247-53
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Characterization of NAD-dependent malate dehydrogenases from spinach leaves.
  • Spinach leaves were used to extract isoforms of NAD-dependent malate dehydrogenase (NAD-MDH) (EC 1.1.1.37), either soluble or bound to microsomal, plasma, or chloroplast envelope membranes.
  • All fractions were subjected to isoelectric focusing analysis, which showed that purified chloroplast envelopes contain an NAD-MDH isoform tightly bound to the membranes, since treatment with 0.5 or 1% Triton X-100 was not able to release the enzyme from the envelopes.
  • In contrast, plasma membranes released an isoform with a pI of 3.5 following treatment with 0.5% Triton X-100.
  • The most abundant soluble leaf isoform had a pI of 9, while the chloroplast stroma contained an isoform with a pI of 5.3.
  • Kinetic analysis of oxaloacetate (OAA)-dependent NADH oxidation in different fractions gave different Km values for both substrates, the envelope- and plasma membrane-bound NAD-MDH exhibiting the highest affinities for OAA.
  • Our results indicate that the chloroplast envelope contains a specifically attached NAD-MDH isoform that could provide direct coupling between chloroplast and cytosol adenylate pools.
  • [MeSH-minor] Biomarkers / metabolism. Hydrogen-Ion Concentration. Isoenzymes / metabolism. Kinetics. NAD. Subcellular Fractions / enzymology

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Biochem Genet. 1997 Jun;35(5-6):155-64 [9332710.001]
  • [Cites] Plant Physiol. 1983 Jun;72(2):402-8 [16663015.001]
  • [Cites] J Biol Chem. 1973 Oct 25;248(20):7215-22 [4147558.001]
  • [Cites] Plant Physiol. 1998 Nov;118(3):715-23 [9808715.001]
  • [Cites] Proc Natl Acad Sci U S A. 1955 Jun 15;41(6):327-38 [16589675.001]
  • [Cites] Mol Cell Proteomics. 2003 May;2(5):325-45 [12766230.001]
  • [Cites] Biochim Biophys Acta. 1992 Jun 19;1100(3):217-34 [1610875.001]
  • [Cites] Biochem Biophys Res Commun. 1971 May 21;43(4):703-9 [4397919.001]
  • [Cites] Plant Physiol. 1991 Jul;96(3):971-9 [16668283.001]
  • [Cites] Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1597-602 [11038604.001]
  • [Cites] Planta. 1991 Jun;184(3):319-26 [24194148.001]
  • [Cites] J Biol Chem. 1951 Nov;193(1):265-75 [14907713.001]
  • [Cites] Biochem J. 1984 Oct 15;223(2):543-5 [6497861.001]
  • [Cites] J Biol Chem. 1998 Oct 23;273(43):27927-33 [9774405.001]
  • (PMID = 18239847.001).
  • [ISSN] 0033-183X
  • [Journal-full-title] Protoplasma
  • [ISO-abbreviation] Protoplasma
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Austria
  • [Chemical-registry-number] 0 / Biomarkers; 0 / Isoenzymes; 0U46U6E8UK / NAD; EC 1.1.1.37 / Malate Dehydrogenase
  •  go-up   go-down


20. Ma B, Pan SJ, Zupancic ML, Cormack BP: Assimilation of NAD(+) precursors in Candida glabrata. Mol Microbiol; 2007 Oct;66(1):14-25
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Assimilation of NAD(+) precursors in Candida glabrata.
  • The yeast pathogen Candida glabrata is a nicotinamide adenine dinucleotide (NAD(+)) auxotroph and its growth depends on the environmental supply of vitamin precursors of NAD(+). C. glabrata salvage pathways defined in this article allow NAD(+) to be synthesized from three compounds - nicotinic acid (NA), nicotinamide (NAM) and nicotinamide riboside (NR).
  • The second is a novel pathway in which NR is degraded by the nucleosidases Pnp1 and Urh1, with a minor role for Meu1, and ultimately converted to NAD(+) via the nicotinamidase Pnc1 and the Preiss-Handler pathway.
  • Using C. glabrata mutants whose growth depends exclusively on the external NA or NR supply, we also show that C. glabrata utilizes NR and to a lesser extent NA as NAD(+) sources during disseminated infection.
  • [MeSH-major] Candida glabrata / metabolism. Metabolic Networks and Pathways. NAD / biosynthesis

  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. NICOTINIC ACID .
  • Hazardous Substances Data Bank. NICOTINAMIDE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17725566.001).
  • [ISSN] 0950-382X
  • [Journal-full-title] Molecular microbiology
  • [ISO-abbreviation] Mol. Microbiol.
  • [Language] eng
  • [Grant] United States / NIDDK NIH HHS / DK / 2P01DK49720; United States / NIAID NIH HHS / AI / 5R01AI046223-08
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] England
  • [Chemical-registry-number] 0U46U6E8UK / NAD; 1341-23-7 / nicotinamide-beta-riboside; 25X51I8RD4 / Niacinamide; 2679MF687A / Niacin; EC 2.7.1.- / Phosphotransferases (Alcohol Group Acceptor); EC 2.7.1.- / nicotinamide riboside kinase; EC 3.2.2.- / N-Glycosyl Hydrolases; EC 3.5.1.19 / Nicotinamidase
  •  go-up   go-down


21. Denu JM: Vitamins and aging: pathways to NAD+ synthesis. Cell; 2007 May 4;129(3):453-4
Saccharomyces Genome Database. Saccharomyces Genome Database .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Vitamins and aging: pathways to NAD+ synthesis.
  • Recent genetic evidence reveals additional salvage pathways for NAD(+) synthesis.
  • In this issue, Belenky et al. (2007) report that nicotinamide riboside, a new NAD(+) precursor, regulates Sir2 deacetylase activity and life span in yeast.
  • The ability of nicotinamide riboside to enhance life span does not depend on calorie restriction.
  • [MeSH-major] Aging / metabolism. Histone Deacetylases / metabolism. NAD / biosynthesis. Niacinamide / analogs & derivatives. Saccharomyces cerevisiae / metabolism. Silent Information Regulator Proteins, Saccharomyces cerevisiae / metabolism. Sirtuins / metabolism. Vitamins / metabolism

  • MedlinePlus Health Information. consumer health - Seniors' Health.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. NICOTINAMIDE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentOn] Cell. 2007 May 4;129(3):473-84 [17482543.001]
  • (PMID = 17482537.001).
  • [ISSN] 0092-8674
  • [Journal-full-title] Cell
  • [ISO-abbreviation] Cell
  • [Language] eng
  • [Publication-type] Comment; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Silent Information Regulator Proteins, Saccharomyces cerevisiae; 0 / Vitamins; 0U46U6E8UK / NAD; 1341-23-7 / nicotinamide-beta-riboside; 25X51I8RD4 / Niacinamide; EC 3.5.1.- / SIR2 protein, S cerevisiae; EC 3.5.1.- / Sirtuin 2; EC 3.5.1.- / Sirtuins; EC 3.5.1.98 / Histone Deacetylases
  •  go-up   go-down


22. Dudev T, Lim C: Factors controlling the mechanism of NAD(+) non-redox reactions. J Am Chem Soc; 2010 Nov 24;132(46):16533-43
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Factors controlling the mechanism of NAD(+) non-redox reactions.
  • β-Nicotinamide adenine dinucleotide (NAD(+)) is an indispensable coenzyme or substrate for enzymes involved in catalyzing redox and non-redox reactions.
  • ADP-ribosylating enzymes catalyze cleavage of the nicotinamide-glycosyl bond of NAD(+) and addition of a nucleophilic group from their substrate proteins to the N-ribose anomeric carbon of NAD(+).
  • Although the role of the nicotinamide-ribose fragment in the mechanism of NAD(+) hydrolysis has been examined, the role of the doubly negatively charged, flexible, and chemically reactive NAD(+) diphosphate moiety in the reaction process has largely been neglected.
  • In this study, we endeavor to fill in these gaps and elucidate the role of these factors in controlling the NAD(+) nicotinamide-glycosyl bond cleavage.
  • Using density functional theory combined with continuum dielectric methods, we modeled both S(N)1 and S(N)2 reaction pathways and assessed the role of the diphosphate group in stabilizing the (i) NAD(+) ground state, (ii) oxocarbocation intermediate, (iii) reaction product, and (iv) nucleophile.
  • [MeSH-major] NAD / chemistry

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 21047075.001).
  • [ISSN] 1520-5126
  • [Journal-full-title] Journal of the American Chemical Society
  • [ISO-abbreviation] J. Am. Chem. Soc.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0U46U6E8UK / NAD
  •  go-up   go-down


23. Poncet-Montange G, Assairi L, Arold S, Pochet S, Labesse G: NAD kinases use substrate-assisted catalysis for specific recognition of NAD. J Biol Chem; 2007 Nov 23;282(47):33925-34
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] NAD kinases use substrate-assisted catalysis for specific recognition of NAD.
  • Here we describe the crystal structures of the NAD kinase (LmNADK1) from Listeria monocytogenes in complex with its substrate NAD, its product NADP, or two synthesized NAD mimics.
  • We identified one of the NAD mimics, di-adenosine diphosphate, as a new substrate for LmNADK1, whereas we showed that the closely related compound di-5'-thioadenosine is a novel non-natural inhibitor for this enzyme.
  • Indeed, sequence/structure comparison and directed mutagenesis have previously shown that NAD kinases (NADKs) and the distantly related 6-phosphofructokinases share the same catalytically important GGDGT motif.
  • Although this acidic residue chelates the catalytic Mg(2+) ion in 6-phosphofructokinases, it activates the phospho-acceptor (NAD) in NADKs.
  • [MeSH-minor] Amino Acid Motifs / genetics. Amino Acid Substitution. Aspartic Acid / chemistry. Aspartic Acid / genetics. Aspartic Acid / metabolism. Catalysis. Crystallography, X-Ray. Diacylglycerol Kinase / chemistry. Diacylglycerol Kinase / genetics. Diacylglycerol Kinase / metabolism. Magnesium / chemistry. Magnesium / metabolism. Mutation, Missense. NAD / chemistry. NAD / metabolism. Phosphofructokinase-1 / chemistry. Phosphofructokinase-1 / genetics. Phosphofructokinase-1 / metabolism. Structure-Activity Relationship. Substrate Specificity / genetics

  • Gene Ontology. gene/protein/disease-specific - Gene Ontology annotations from this paper .
  • Hazardous Substances Data Bank. (L)-ASPARTIC ACID .
  • Hazardous Substances Data Bank. MAGNESIUM, ELEMENTAL .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17686780.001).
  • [ISSN] 0021-9258
  • [Journal-full-title] The Journal of biological chemistry
  • [ISO-abbreviation] J. Biol. Chem.
  • [Language] eng
  • [Databank-accession-numbers] PDB/ 2I1W/ 2I29/ 2I2A/ 2I2B/ 2I2C/ 2I2D/ 2I2E/ 2I2F/ 2Q5F
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Bacterial Proteins; 0U46U6E8UK / NAD; 30KYC7MIAI / Aspartic Acid; EC 2.7.1.- / Phosphotransferases (Alcohol Group Acceptor); EC 2.7.1.- / sphingosine kinase; EC 2.7.1.107 / Diacylglycerol Kinase; EC 2.7.1.11 / Phosphofructokinase-1; EC 2.7.1.23 / NAD kinase; I38ZP9992A / Magnesium
  •  go-up   go-down


24. Benarroch D, Shuman S: Characterization of mimivirus NAD+-dependent DNA ligase. Virology; 2006 Sep 15;353(1):133-43
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Characterization of mimivirus NAD+-dependent DNA ligase.
  • Here we produced, purified, and characterized mimivirus DNA ligase (MimiLIG), an NAD+-dependent nick joining enzyme homologous to bacterial LigA and entomopoxvirus DNA ligase.
  • MimiLIG is a 636-aa polypeptide composed of an N-terminal NAD+ specificity module (domain Ia), linked to nucleotidyltransferase, OB-fold, helix-hairpin-helix, and BRCT domains, but it lacks the tetracysteine Zn-binding module found in all bacterial LigA enzymes.
  • MimiLIG requires conserved domain Ia residues Tyr36, Asp46, Tyr49, and Asp50 for its initial reaction with NAD+ to form the ligase-AMP intermediate, but not for the third step of phosphodiester formation at a preadenylylated nick.
  • The DeltaBRCT mutant of MimiLIG was impaired in sealing at a preadenylylated nick.
  • We propose that eukaryal DNA viruses acquired the NAD+-dependent ligases by horizontal transfer from a bacterium and that MimiLIG predates entomopoxvirus ligase, which lacks both the tetracysteine and BRCT domains.
  • We speculate that the dissemination of NAD+-dependent ligase from bacterium to eukaryotic virus might have occurred within an amoebal host.

  • Hazardous Substances Data Bank. CYSTEINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16844179.001).
  • [ISSN] 0042-6822
  • [Journal-full-title] Virology
  • [ISO-abbreviation] Virology
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Recombinant Proteins; EC 6.5.1.- / DNA Ligases; EC 6.5.1.2 / DNA ligase (NAD); K848JZ4886 / Cysteine
  •  go-up   go-down


25. Borradaile NM, Pickering JG: NAD(+), sirtuins, and cardiovascular disease. Curr Pharm Des; 2009;15(1):110-7
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] NAD(+), sirtuins, and cardiovascular disease.
  • The sirtuin (SIRT) family of NAD(+)-dependent protein deacetylases and ADP-ribosyltransferases have emerged as exciting targets for CVD management that can impact the cardiovascular system both directly and indirectly, the latter by modulating whole body metabolism.
  • Because SIRT activity depends on cellular NAD+ availability, enzymes involved in NAD+ biosynthesis, including nicotinamide phosphoribosyltransferase (Nampt), may also be valuable pharmaceutical targets for managing CVD.
  • Herein we review the actions of the SIRT proteins on the cardiovascular system and consider the potential of modulating SIRT activity and NAD+ availability to control CVD.
  • [MeSH-major] Cardiovascular Diseases / metabolism. NAD / metabolism. Sirtuins / metabolism

  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19149606.001).
  • [ISSN] 1873-4286
  • [Journal-full-title] Current pharmaceutical design
  • [ISO-abbreviation] Curr. Pharm. Des.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0U46U6E8UK / NAD; EC 3.5.1.- / Sirtuins
  • [Number-of-references] 100
  •  go-up   go-down


26. Wang J, He Z: NAD and axon degeneration: from the Wlds gene to neurochemistry. Cell Adh Migr; 2009 Jan-Mar;3(1):77-87

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] NAD and axon degeneration: from the Wlds gene to neurochemistry.
  • The phenotype is attributed to the overexpression of a chimeric protein Wlds which contains a short fragment of the ubiquitin assembly protein UFD2 and the full-length nicotinamide adenine dinucleotide (NAD) synthetic enzyme Nicotinamide mononucleotide adenylyl-transferase-1 (Nmnat-1).
  • Together with a significant number of subsequential reports, this finding highlighted the substantial role of nicotinamide adenine dinucleotide (NAD) in the process of axon degeneration.
  • Here we reviewed the history of axon degeneration research from a neurochemical standpoint and discuss the potential involvement of NAD synthesis, NAD consumption and NAD-dependent proteins and small molecules in axon degeneration.
  • [MeSH-major] Axons / pathology. NAD / metabolism. Nerve Tissue Proteins / genetics. Nervous System / metabolism. Nervous System / pathology. Wallerian Degeneration / metabolism. Wallerian Degeneration / pathology

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neurosci. 2006 Aug 16;26(33):8484-91 [16914673.001]
  • [Cites] J Neurosci. 2006 Sep 20;26(38):9794-804 [16988050.001]
  • [Cites] Eur J Neurosci. 2006 Oct;24(8):2163-8 [17074042.001]
  • [Cites] J Neurosci Res. 2006 Dec;84(8):1799-807 [17022038.001]
  • [Cites] Cell Death Differ. 2007 Jan;14(1):116-27 [16645633.001]
  • [Cites] PLoS Biol. 2006 Nov;4(12):e416 [17132048.001]
  • [Cites] Annu Rev Neurosci. 2005;28:127-56 [16022592.001]
  • [Cites] J Cell Biol. 2005 Aug 1;170(3):349-55 [16043516.001]
  • [Cites] J Biol Chem. 2005 Oct 28;280(43):36334-41 [16118205.001]
  • [Cites] Mol Biol Cell. 2006 Mar;17(3):1075-84 [16371511.001]
  • [Cites] Neuron. 2006 Jun 15;50(6):869-81 [16772169.001]
  • [Cites] Neuron. 2006 Jun 15;50(6):883-95 [16772170.001]
  • [Cites] J Biol Chem. 2001 Jan 5;276(1):406-12 [11027696.001]
  • [Cites] FEBS Lett. 2001 Mar 9;492(1-2):95-100 [11248244.001]
  • [Cites] J Biol Chem. 2001 Mar 9;276(10):7225-32 [11063748.001]
  • [Cites] Bioessays. 2001 Jun;23(6):543-8 [11385634.001]
  • [Cites] Nature. 2001 Jul 26;412(6845):449-52 [11473321.001]
  • [Cites] J Physiol. 2001 Aug 1;534(Pt 3):627-39 [11483696.001]
  • [Cites] Neuron. 2001 Sep 27;31(6):957-71 [11580896.001]
  • [Cites] J Biotechnol. 2001 Dec 28;92(2):81-7 [11640979.001]
  • [Cites] Cell. 2001 Oct 19;107(2):137-48 [11672522.001]
  • [Cites] Cell. 2001 Oct 19;107(2):149-59 [11672523.001]
  • [Cites] Ann Neurol. 2001 Dec;50(6):773-9 [11761475.001]
  • [Cites] Nat Neurosci. 2001 Dec;4(12):1199-206 [11770485.001]
  • [Cites] Neuron. 2001 Dec 20;32(6):1013-26 [11754834.001]
  • [Cites] Gene. 2002 Feb 6;284(1-2):23-9 [11891043.001]
  • [Cites] Science. 2002 May 3;296(5569):868-71 [11988563.001]
  • [Cites] Neurosci Lett. 2002 Aug 9;328(2):150-4 [12133577.001]
  • [Cites] J Neurochem. 2001 Jan;76(2):321-31 [11208895.001]
  • [Cites] J Cell Biol. 2002 Aug 19;158(4):647-57 [12186850.001]
  • [Cites] J Physiol. 2002 Sep 15;543(Pt 3):739-55 [12231635.001]
  • [Cites] Biochem Biophys Res Commun. 2002 Oct 4;297(4):835-40 [12359228.001]
  • [Cites] Cell. 2002 Oct 18;111(2):209-18 [12408865.001]
  • [Cites] J Biol Chem. 2002 Nov 22;277(47):45099-107 [12297502.001]
  • [Cites] Biochem Biophys Res Commun. 2003 Jan 10;300(2):297-304 [12504083.001]
  • [Cites] Eur J Immunol. 2002 Nov;32(11):3225-34 [12555668.001]
  • [Cites] J Biol Chem. 2003 Apr 11;278(15):13503-11 [12574164.001]
  • [Cites] J Neurochem. 2003 Jun;85(5):1148-58 [12753074.001]
  • [Cites] Bioessays. 2003 Jul;25(7):683-90 [12815723.001]
  • [Cites] Neuron. 2003 Jun 19;38(6):871-85 [12818174.001]
  • [Cites] Neuron. 2003 Jul 17;39(2):217-25 [12873380.001]
  • [Cites] Cancer Res. 2003 Nov 1;63(21):7436-42 [14612543.001]
  • [Cites] Neurochem Int. 2004 Apr;44(5):361-9 [14643754.001]
  • [Cites] Cell. 2004 Feb 20;116(4):551-63 [14980222.001]
  • [Cites] Science. 2004 Mar 26;303(5666):2011-5 [14976264.001]
  • [Cites] Anal Biochem. 2004 Sep 1;332(1):90-9 [15301953.001]
  • [Cites] Science. 2004 Aug 13;305(5686):1010-3 [15310905.001]
  • [Cites] J Biol Chem. 1966 Jan 10;241(1):188-91 [4285133.001]
  • [Cites] Biochim Biophys Acta. 1971 Apr 29;238(1):82-5 [4325158.001]
  • [Cites] J Biol Chem. 1989 Jan 25;264(3):1608-15 [2912976.001]
  • [Cites] J Neuropathol Exp Neurol. 1991 May;50(3):192-204 [2022963.001]
  • [Cites] Biochem Pharmacol. 1992 Sep 1;44(5):947-53 [1530662.001]
  • [Cites] Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9717-20 [8415768.001]
  • [Cites] Mol Cell Endocrinol. 1994 Jan;98(2):125-31 [8143921.001]
  • [Cites] Eur J Neurosci. 1994 Apr 1;6(4):516-24 [8025707.001]
  • [Cites] Dev Biol. 1994 Sep;165(1):63-72 [8088451.001]
  • [Cites] J Neurocytol. 1995 May;24(5):333-40 [7650538.001]
  • [Cites] J Neurosci. 1995 Oct;15(10):6445-52 [7472407.001]
  • [Cites] Biochimie. 1995;77(5):394-8 [8527495.001]
  • [Cites] Trends Neurosci. 1995 Nov;18(11):489-96 [8592758.001]
  • [Cites] Neurosci Lett. 1995 Oct 27;199(3):163-6 [8577388.001]
  • [Cites] J Biol Chem. 1996 Feb 16;271(7):3699-705 [8631983.001]
  • [Cites] J Neurochem. 1996 Sep;67(3):1259-67 [8752134.001]
  • [Cites] Exp Cell Res. 1999 Jun 15;249(2):396-403 [10366439.001]
  • [Cites] Biochem Biophys Res Commun. 1999 Jun 24;260(1):273-9 [10381378.001]
  • [Cites] Nat Genet. 1999 Sep;23(1):47-51 [10471497.001]
  • [Cites] J Physiol. 1960 Jan;150:145-68 [13800902.001]
  • [Cites] Science. 2005 Feb 25;307(5713):1282-8 [15731448.001]
  • [Cites] Mol Cell Neurosci. 2005 Mar;28(3):430-9 [15737734.001]
  • [Cites] Biochem Biophys Res Commun. 2007 Aug 3;359(3):665-71 [17560549.001]
  • [Cites] Nature. 2008 Apr 17;452(7189):887-91 [18344983.001]
  • [Cites] Biochem J. 1996 Oct 15;319 ( Pt 2):613-7 [8912702.001]
  • [Cites] Biochem J. 1997 Mar 15;322 ( Pt 3):909-17 [9148768.001]
  • [Cites] Nature. 1998 Sep 24;395(6700):395-8 [9759731.001]
  • [Cites] Free Radic Biol Med. 1998 Oct;25(6):694-702 [9801070.001]
  • [Cites] Mol Cell Neurosci. 1999 Sep;14(3):180-98 [10576889.001]
  • [Cites] J Neurosci. 2000 Feb 15;20(4):1333-41 [10662823.001]
  • [Cites] Nature. 2000 Feb 17;403(6771):795-800 [10693811.001]
  • [Cites] Eur J Biochem. 2000 Mar;267(6):1550-64 [10712584.001]
  • [Cites] Prog Neurobiol. 2000 Oct;62(3):273-95 [10840150.001]
  • [Cites] Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11377-82 [11027338.001]
  • [Cites] Science. 2000 Dec 1;290(5497):1717-21 [11099404.001]
  • [Cites] Acta Neuropathol. 1971;5:Suppl 5:3-16 [5562691.001]
  • [Cites] J Neural Transm. 1978;42(1):37-43 [641543.001]
  • [Cites] Eur J Biochem. 1987 Apr 1;164(1):197-203 [3830181.001]
  • [Cites] Proc Natl Acad Sci U S A. 1987 May;84(10):3491-5 [3472219.001]
  • [Cites] Genetics. 1987 May;116(1):9-22 [3297920.001]
  • [Cites] Toxicology. 1987 Oct 30;46(2):125-39 [3313811.001]
  • [Cites] Exp Cell Res. 1988 Jul;177(1):103-8 [3391236.001]
  • [Cites] Nat Med. 2005 May;11(5):572-7 [15821747.001]
  • [Cites] Neuron. 2003 Oct 9;40(2):401-13 [14556717.001]
  • (PMID = 19372760.001).
  • [ISSN] 1933-6926
  • [Journal-full-title] Cell adhesion & migration
  • [ISO-abbreviation] Cell Adh Migr
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Nerve Tissue Proteins; 0U46U6E8UK / NAD
  • [Number-of-references] 94
  • [Other-IDs] NLM/ PMC2675153
  •  go-up   go-down


27. Gerdes SY, Kurnasov OV, Shatalin K, Polanuyer B, Sloutsky R, Vonstein V, Overbeek R, Osterman AL: Comparative genomics of NAD biosynthesis in cyanobacteria. J Bacteriol; 2006 Apr;188(8):3012-23
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Comparative genomics of NAD biosynthesis in cyanobacteria.
  • Biosynthesis of NAD(P) cofactors is of special importance for cyanobacteria due to their role in photosynthesis and respiration.
  • Despite significant progress in understanding NAD(P) biosynthetic machinery in some model organisms, relatively little is known about its implementation in cyanobacteria.
  • A detailed reconstruction of the NAD(P) metabolic subsystem using the SEED genomic platform (http://theseed.uchicago.edu/FIG/index.cgi) helped us accurately annotate respective genes in the entire set of 13 cyanobacterial species with completely sequenced genomes available at the time.
  • Comparative analysis of operational variants implemented in this divergent group allowed us to elucidate both conserved (de novo and universal pathways) and variable (recycling and salvage pathways) aspects of this subsystem.
  • Focused genetic and biochemical experiments confirmed several conjectures about the key aspects of this subsystem. (i) The product of the slr1691 gene, a homolog of Escherichia coli gene nadE containing an additional nitrilase-like N-terminal domain, is a NAD synthetase capable of utilizing glutamine as an amide donor in vitro. (ii) The product of the sll1916 gene, a homolog of E. coli gene nadD, is a nicotinic acid mononucleotide-preferring adenylyltransferase.
  • This gene is essential for survival and cannot be compensated for by an alternative nicotinamide mononucleotide (NMN)-preferring adenylyltransferase (slr0787 gene). (iii) The product of the slr0788 gene is a nicotinamide-preferring phosphoribosyltransferase involved in the first step of the two-step non-deamidating utilization of nicotinamide (NMN shunt). (iv) The physiological role of this pathway encoded by a conserved gene cluster, slr0787-slr0788, is likely in the recycling of endogenously generated nicotinamide, as supported by the inability of this organism to utilize exogenously provided niacin.

  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. Glutamine .
  • Hazardous Substances Data Bank. NICOTINIC ACID .
  • Hazardous Substances Data Bank. NICOTINAMIDE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Biochem Soc Trans. 1996 Aug;24(3):729-33 [8878835.001]
  • [Cites] EMBO J. 1996 Oct 1;15(19):5125-34 [8895556.001]
  • [Cites] DNA Res. 1996 Jun 30;3(3):109-36 [8905231.001]
  • [Cites] Science. 1997 Sep 5;277(5331):1453-62 [9278503.001]
  • [Cites] Gene. 1997 Sep 15;197(1-2):GC11-26 [9332394.001]
  • [Cites] J Bacteriol. 1997 Dec;179(24):7718-23 [9401030.001]
  • [Cites] Nucleic Acids Res. 2005;33(17):5691-702 [16214803.001]
  • [Cites] Nature. 2003 Aug 28;424(6952):1042-7 [12917642.001]
  • [Cites] Mol Microbiol. 2003 Sep;49(6):1577-93 [12950922.001]
  • [Cites] Trends Biotechnol. 2003 Nov;21(11):504-11 [14573364.001]
  • [Cites] DNA Res. 2003 Aug 31;10(4):137-45 [14621292.001]
  • [Cites] Cell Mol Life Sci. 2004 Jan;61(1):19-34 [14704851.001]
  • [Cites] J Struct Biol. 1999 Oct;127(3):279-82 [10544053.001]
  • [Cites] Eur J Biochem. 2000 Mar;267(6):1550-64 [10712584.001]
  • [Cites] Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6658-63 [10841563.001]
  • [Cites] J Mol Microbiol Biotechnol. 1999 Aug;1(1):127-8 [10941793.001]
  • [Cites] J Bacteriol. 2001 Jan;183(1):292-300 [11114929.001]
  • [Cites] J Biol Chem. 2001 Jan 5;276(1):406-12 [11027696.001]
  • [Cites] Vitam Horm. 2001;61:103-19 [11153263.001]
  • [Cites] Methods Enzymol. 2001;330:134-57 [11210495.001]
  • [Cites] J Bacteriol. 2001 Feb;183(4):1168-74 [11157928.001]
  • [Cites] Mol Microbiol. 2001 Jun;40(6):1241-8 [11442824.001]
  • [Cites] In Silico Biol. 1999;1(2):93-108 [11471247.001]
  • [Cites] DNA Res. 2001 Oct 31;8(5):205-13; 227-53 [11759840.001]
  • [Cites] Science. 2002 Mar 8;295(5561):1895-7 [11847309.001]
  • [Cites] Int J Med Microbiol. 2002 Feb;291(6-7):523-9 [11890553.001]
  • [Cites] J Biol Chem. 2002 Apr 12;277(15):13148-54 [11788603.001]
  • [Cites] Plant Mol Biol. 2002 May;49(1):107-18 [12008895.001]
  • [Cites] Proteins. 2002 Jul 1;48(1):1-14 [12012333.001]
  • [Cites] J Bacteriol. 2002 Aug;184(16):4555-72 [12142426.001]
  • [Cites] Protein Expr Purif. 2002 Aug;25(3):547-57 [12182838.001]
  • [Cites] J Biol Chem. 2002 Sep 6;277(36):33291-9 [12068016.001]
  • [Cites] DNA Res. 2002 Aug 31;9(4):123-30 [12240834.001]
  • [Cites] J Bacteriol. 2002 Dec;184(24):6906-17 [12446641.001]
  • [Cites] Science. 2002 Nov 22;298(5598):1616-20 [12446909.001]
  • [Cites] Trends Biochem Sci. 2003 Jan;28(1):41-8 [12517451.001]
  • [Cites] Nucleic Acids Res. 2003 Jan 1;31(1):164-71 [12519973.001]
  • [Cites] Eur J Immunol. 2002 Nov;32(11):3225-34 [12555668.001]
  • [Cites] J Biol Chem. 2003 Apr 11;278(15):13503-11 [12574164.001]
  • [Cites] Res Microbiol. 2003 Apr;154(3):157-64 [12706503.001]
  • [Cites] Bioessays. 2003 Jul;25(7):683-90 [12815723.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10020-5 [12917486.001]
  • [Cites] J Biol Chem. 2003 Aug 29;278(35):33049-55 [12771147.001]
  • [Cites] Nature. 2003 Aug 28;424(6952):1037-42 [12917641.001]
  • [Cites] Curr Opin Microbiol. 2004 Apr;7(2):115-9 [15063846.001]
  • [Cites] Curr Med Chem. 2004 Apr;11(7):873-85 [15078171.001]
  • [Cites] Methods Enzymol. 1985;113:297-302 [3003498.001]
  • [Cites] J Bacteriol. 1990 May;172(5):2313-9 [2110139.001]
  • [Cites] Genome Res. 1998 Mar;8(3):203-10 [9521924.001]
  • [Cites] Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9699-704 [9689144.001]
  • [Cites] FEBS Lett. 1999 Feb 12;444(2-3):222-6 [10050763.001]
  • [Cites] Curr Opin Plant Biol. 1998 Jun;1(3):217-23 [10066592.001]
  • [Cites] Adv Enzymol Relat Areas Mol Biol. 1999;73:135-82, xi [10218108.001]
  • [Cites] J Bacteriol. 1999 Jul;181(13):3994-4003 [10383967.001]
  • [Cites] Genetics. 1999 Aug;152(4):1299-305 [10430560.001]
  • [Cites] J Bacteriol. 1999 Sep;181(17):5509-11 [10464228.001]
  • [Cites] J Biol Chem. 1999 Oct 22;274(43):30540-9 [10521436.001]
  • [Cites] J Biol Chem. 2004 Dec 3;279(49):50754-63 [15381699.001]
  • [Cites] Bioinformatics. 2005 Feb 1;21(3):293-306 [15347579.001]
  • [Cites] Res Microbiol. 2005 Mar;156(2):173-7 [15748981.001]
  • [Cites] Bioinformatics. 2005 Jun;21 Suppl 1:i478-86 [15961494.001]
  • [Cites] J Bacteriol. 1990 Jun;172(6):3138-45 [2160938.001]
  • [Cites] Arch Microbiol. 1992;157(4):336-42 [1590707.001]
  • [Cites] Mol Cell Biol. 1994 Feb;14(2):1431-7 [8289818.001]
  • [Cites] J Bacteriol. 1994 Jun;176(11):3400-2 [8195100.001]
  • [Cites] Biochemistry. 1994 Nov 22;33(46):13662-7 [7947774.001]
  • [Cites] J Bacteriol. 1995 Jun;177(12):3527-33 [7768863.001]
  • [Cites] Science. 1995 Jul 28;269(5223):496-512 [7542800.001]
  • [Cites] Biochemistry. 1995 Oct 17;34(41):13431-6 [7577930.001]
  • [Cites] Anal Biochem. 1995 Jun 10;228(1):64-8 [8572289.001]
  • (PMID = 16585762.001).
  • [ISSN] 0021-9193
  • [Journal-full-title] Journal of bacteriology
  • [ISO-abbreviation] J. Bacteriol.
  • [Language] ENG
  • [Grant] United States / NIAID NIH HHS / AI / R01 AI059146; United States / NIAID NIH HHS / AI / 1R01 AI 059146-01A2
  • [Publication-type] Comparative Study; Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] 0RH81L854J / Glutamine; 0U46U6E8UK / NAD; 1094-61-7 / Nicotinamide Mononucleotide; 25X51I8RD4 / Niacinamide; 2679MF687A / Niacin; 321-02-8 / nicotinate mononucleotide; EC 2.4.2.- / Pentosyltransferases; EC 2.4.2.12 / Nicotinamide Phosphoribosyltransferase; EC 2.7.7.- / Nucleotidyltransferases; EC 2.7.7.42 / glutamine-synthetase adenylyltransferase; EC 6.3.1.- / Amide Synthases; EC 6.3.1.5 / NAD+ synthase
  • [Other-IDs] NLM/ PMC1446974
  •  go-up   go-down


28. Vilchèze C, Weisbrod TR, Chen B, Kremer L, Hazbón MH, Wang F, Alland D, Sacchettini JC, Jacobs WR Jr: Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob Agents Chemother; 2005 Feb;49(2):708-20
Hazardous Substances Data Bank. ISONIAZID .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria.
  • All mutants had defects in NdhII activity resulting in an increase in intracellular NADH/NAD(+) ratios.
  • Increasing NADH levels were shown to protect InhA against inhibition by the INH-NAD adduct formed upon INH activation.
  • We conclude that ndh mutations mediate a novel mechanism of resistance by increasing the NADH cellular concentration, which competitively inhibits the binding of INH-NAD or ETH-NAD adduct to InhA.

  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. ETHIONAMIDE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Antimicrob Agents Chemother. 2000 Jan;44(1):103-10 [10602730.001]
  • [Cites] J Biol Chem. 2003 Jun 6;278(23):20547-54 [12654922.001]
  • [Cites] J Bacteriol. 2000 Jul;182(14):4059-67 [10869086.001]
  • [Cites] Tuber Lung Dis. 2000;80(1):47-56 [10897383.001]
  • [Cites] Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9677-82 [10944230.001]
  • [Cites] J Biol Chem. 2000 Sep 8;275(36):28326-31 [10869356.001]
  • [Cites] J Bacteriol. 2000 Dec;182(24):6884-91 [11092846.001]
  • [Cites] Biochim Biophys Acta. 2000 Aug 15;1459(2-3):274-83 [11004440.001]
  • [Cites] Antimicrob Agents Chemother. 2001 Jul;45(7):2157-9 [11408244.001]
  • [Cites] J Biol Chem. 2002 Apr 12;277(15):12824-9 [11823459.001]
  • [Cites] Antimicrob Agents Chemother. 2003 Dec;47(12):3799-805 [14638486.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13881-6 [14623976.001]
  • [Cites] J Biol Chem. 2004 Jan 30;279(5):3354-60 [14610090.001]
  • [Cites] J Clin Microbiol. 2004 Mar;42(3):1294-5 [15004099.001]
  • [Cites] Am Rev Respir Dis. 1965 Nov;92(5):687-703 [5321145.001]
  • [Cites] Tubercle. 1966 Jun;47(2):198-206 [4960414.001]
  • [Cites] Rev Tuberc Pneumol (Paris). 1967 Jun;31(4):433-74 [4974609.001]
  • [Cites] Nature. 1970 Aug 15;227(5259):680-5 [5432063.001]
  • [Cites] Antimicrob Agents Chemother. 1972 Jul;2(1):29-35 [4208567.001]
  • [Cites] Am Rev Respir Dis. 1964 Sep;90:468-9 [14215919.001]
  • [Cites] Biochemistry. 1981 Jun 9;20(12):3621-8 [7020757.001]
  • [Cites] Biochemistry. 1987 Dec 1;26(24):7732-7 [3122832.001]
  • [Cites] FEBS Lett. 1991 Feb 11;279(1):5-8 [1995341.001]
  • [Cites] Nature. 1991 Jun 6;351(6326):456-60 [1904554.001]
  • [Cites] Nature. 1992 Aug 13;358(6387):591-3 [1501713.001]
  • [Cites] Biochim Biophys Acta. 1993 Feb 8;1141(1):1-17 [8435434.001]
  • [Cites] J Bacteriol. 1993 May;175(10):3020-5 [8491720.001]
  • [Cites] Mol Microbiol. 1993 May;8(3):521-4 [8392139.001]
  • [Cites] Science. 1994 Jan 14;263(5144):227-30 [8284673.001]
  • [Cites] Lancet. 1994 Jul 30;344(8918):293-8 [7914261.001]
  • [Cites] Mol Microbiol. 1994 May;12(3):433-44 [8065261.001]
  • [Cites] Mol Microbiol. 1994 Jul;13(2):172-82 [7984099.001]
  • [Cites] Science. 1995 Mar 17;267(5204):1638-41 [7886450.001]
  • [Cites] Biochemistry. 1995 Jul 4;34(26):8235-41 [7599116.001]
  • [Cites] J Bacteriol. 1996 Oct;178(20):6013-8 [8830700.001]
  • [Cites] Science. 1998 Jan 2;279(5347):98-102 [9417034.001]
  • [Cites] J Bacteriol. 1998 May;180(9):2459-67 [9573199.001]
  • [Cites] Biochim Biophys Acta. 1998 May 6;1364(2):125-33 [9593856.001]
  • [Cites] J Infect Dis. 1998 Sep;178(3):769-75 [9728546.001]
  • [Cites] Proc Int Conf Intell Syst Mol Biol. 1998;6:175-82 [9783223.001]
  • [Cites] Infect Immun. 1998 Nov;66(11):5099-106 [9784509.001]
  • [Cites] Antimicrob Agents Chemother. 1999 Mar;43(3):711-3 [10049298.001]
  • [Cites] Science. 1952 Aug 8;116(3006):129-34 [14950210.001]
  • [Cites] Metab Eng. 2002 Apr;4(2):182-92 [12009797.001]
  • [Cites] Antimicrob Agents Chemother. 2002 Jul;46(7):2137-44 [12069966.001]
  • [Cites] Mol Microbiol. 2002 Oct;46(2):453-66 [12406221.001]
  • [Cites] Antimicrob Agents Chemother. 2003 Apr;47(4):1241-50 [12654653.001]
  • [Cites] Arch Intern Med. 2003 May 12;163(9):1009-21 [12742798.001]
  • [Cites] Tuberculosis (Edinb). 2003;83(1-3):44-51 [12758188.001]
  • [Cites] J Biol Chem. 2000 Jan 28;275(4):2520-6 [10644708.001]
  • (PMID = 15673755.001).
  • [ISSN] 0066-4804
  • [Journal-full-title] Antimicrobial agents and chemotherapy
  • [ISO-abbreviation] Antimicrob. Agents Chemother.
  • [Language] ENG
  • [Grant] United States / NIAID NIH HHS / AI / R21 AI043268; United States / NIAID NIH HHS / AI / AI46669; United States / NIAID NIH HHS / AI / R01 AI043268; United States / NIAID NIH HHS / AI / R01 AI046669; United States / NIAID NIH HHS / AI / AI43268
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antitubercular Agents; 0 / Culture Media; 0U46U6E8UK / NAD; EC 1.6.99.- / Quinone Reductases; EC 1.6.99.3 / NADH Dehydrogenase; EC 1.6.99.5 / NADH dehydrogenase (quinone); OAY8ORS3CQ / Ethionamide; V83O1VOZ8L / Isoniazid
  • [Other-IDs] NLM/ PMC547332
  •  go-up   go-down


29. Olesen UH, Christensen MK, Björkling F, Jäättelä M, Jensen PB, Sehested M, Nielsen SJ: Anticancer agent CHS-828 inhibits cellular synthesis of NAD. Biochem Biophys Res Commun; 2008 Mar 21;367(4):799-804
antibodies-online. View related products from antibodies-online.com (subscription/membership/fee required).

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Anticancer agent CHS-828 inhibits cellular synthesis of NAD.
  • Nicotinamide adenine dinucleotide (NAD) is required for both processes and is also continuously degraded by cellular enzymes.
  • Nicotinamide phosphoribosyltransferase (Nampt) is a crucial factor in the resynthesis of NAD, and thus in cancer cell survival.
  • Here, we establish the cytotoxic mechanism of action of the small molecule inhibitor CHS-828 to result from impaired synthesis of NAD.
  • Initially, we detected cross-resistance in cells between CHS-828 and a known inhibitor of Nampt, FK866, a compound of a structurally different class.
  • We then showed that nicotinamide protects against CHS-828-mediated cytotoxicity.
  • Finally, we observed that treatment with CHS-828 depletes cellular NAD levels in sensitive cancer cells.
  • In conclusion, these results strongly suggest that, like FK866, CHS-828 kills cancer cells by depleting NAD.
  • [MeSH-major] Acrylamides / administration & dosage. Antineoplastic Agents / administration & dosage. Apoptosis / drug effects. Cyanides / administration & dosage. Guanidines / administration & dosage. Lung Neoplasms / metabolism. NAD / metabolism. Piperidines / administration & dosage. Signal Transduction / drug effects

  • MedlinePlus Health Information. consumer health - Lung Cancer.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18201551.001).
  • [ISSN] 1090-2104
  • [Journal-full-title] Biochemical and biophysical research communications
  • [ISO-abbreviation] Biochem. Biophys. Res. Commun.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Acrylamides; 0 / Antineoplastic Agents; 0 / Cyanides; 0 / Guanidines; 0 / N-(4-(1-benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide; 0 / N-(6-chlorophenoxyhexyl)-N''-cyano-N''-4-pyridylguanidine; 0 / Piperidines; 0U46U6E8UK / NAD
  •  go-up   go-down


30. Lawson M, Uciechowska U, Schemies J, Rumpf T, Jung M, Sippl W: Inhibitors to understand molecular mechanisms of NAD(+)-dependent deacetylases (sirtuins). Biochim Biophys Acta; 2010 Oct-Dec;1799(10-12):726-39
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Inhibitors to understand molecular mechanisms of NAD(+)-dependent deacetylases (sirtuins).
  • Unlike the other three of the four classes of HDACs that have been identified in humans, which are zinc-dependent amidohydrolases, class III HDACs depend on nicotinamide adenine dinucleotide (NAD(+)) for their catalytic activity.
  • [MeSH-major] Histone Deacetylase Inhibitors. NAD. Sirtuins

  • Saccharomyces Genome Database. Saccharomyces Genome Database .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2010 Elsevier B.V. All rights reserved.
  • (PMID = 20601279.001).
  • [ISSN] 0006-3002
  • [Journal-full-title] Biochimica et biophysica acta
  • [ISO-abbreviation] Biochim. Biophys. Acta
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Histone Deacetylase Inhibitors; 0U46U6E8UK / NAD; EC 3.5.1.- / Sirtuins
  •  go-up   go-down


31. Adams JD Jr: Alzheimer's disease, ceramide, visfatin and NAD. CNS Neurol Disord Drug Targets; 2008 Dec;7(6):492-8
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Alzheimer's disease, ceramide, visfatin and NAD.
  • A new mechanism for visfatin/NAD (nicotinamide adenine dinucleotide)-induced oxidative stress is presented involving redox cycling catalyzed by xanthine dehydrogenase and NADH oxidase.
  • [MeSH-major] Alzheimer Disease / metabolism. Ceramides / metabolism. NAD / metabolism. Nicotinamide Phosphoribosyltransferase / metabolism

  • MedlinePlus Health Information. consumer health - Alzheimer's Disease.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19128206.001).
  • [ISSN] 1996-3181
  • [Journal-full-title] CNS & neurological disorders drug targets
  • [ISO-abbreviation] CNS Neurol Disord Drug Targets
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United Arab Emirates
  • [Chemical-registry-number] 0 / Ceramides; 0U46U6E8UK / NAD; EC 2.4.2.12 / Nicotinamide Phosphoribosyltransferase
  • [Number-of-references] 67
  •  go-up   go-down


32. Fukuwatari T, Shibata K: Consideration of diurnal variations in human blood NAD and NADP concentrations. J Nutr Sci Vitaminol (Tokyo); 2009 Jun;55(3):279-81
Hazardous Substances Data Bank. NICOTINAMIDE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Consideration of diurnal variations in human blood NAD and NADP concentrations.
  • The sum of the urinary excretion of nicotinamide and its catabolites, which are metabolites of NAD and NADP, were observed to have clear diurnal variations in human urine.
  • Then, we examined whether NAD and NADP in blood also showed the diurnal variation.
  • In addition, we examined whether diurnal variations were affected by the intakes of dietary nicotinamide or not.
  • As a result, neither the NAD nor the NADP content of the blood shows the diurnal variation regardless of the administered amount of nicotinamide.
  • The concentrations of NAD and NADP did not increase according to the intake of nicotinamide.
  • The existence of a mechanism by which NAD and the NADP levels of the blood are constantly maintained by the adjustment of the amount of excretion to the urinary bladder, was suggested.
  • [MeSH-major] Circadian Rhythm / physiology. NAD / blood. NADP / blood

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19602837.001).
  • [ISSN] 1881-7742
  • [Journal-full-title] Journal of nutritional science and vitaminology
  • [ISO-abbreviation] J. Nutr. Sci. Vitaminol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Japan
  • [Chemical-registry-number] 0U46U6E8UK / NAD; 25X51I8RD4 / Niacinamide; 53-59-8 / NADP
  •  go-up   go-down


33. Ren X, Yang L, Tang F, Yan C, Ren J: Enzyme biosensor based on NAD-sensitive quantum dots. Biosens Bioelectron; 2010 Sep 15;26(1):271-4

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Enzyme biosensor based on NAD-sensitive quantum dots.
  • In this system, the fluorescence intensities of the QDs are quenched by nicotinamide adenine dinucleotide (NAD, the coenzyme of LDH) first and then intensified with increasing amounts of the LDH because of the consumption of the NAD in the biocatalyzed reaction.
  • [MeSH-major] Biosensing Techniques / instrumentation. L-Lactate Dehydrogenase / chemistry. NAD / analysis. Quantum Dots. Spectrometry, Fluorescence / instrumentation

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright 2010 Elsevier B.V. All rights reserved.
  • (PMID = 20627509.001).
  • [ISSN] 1873-4235
  • [Journal-full-title] Biosensors & bioelectronics
  • [ISO-abbreviation] Biosens Bioelectron
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0U46U6E8UK / NAD; EC 1.1.1.27 / L-Lactate Dehydrogenase
  •  go-up   go-down


34. Koch-Nolte F, Haag F, Guse AH, Lund F, Ziegler M: Emerging roles of NAD+ and its metabolites in cell signaling. Sci Signal; 2009;2(57):mr1
Hazardous Substances Data Bank. NICOTINAMIDE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Emerging roles of NAD+ and its metabolites in cell signaling.
  • Nicotinamide adenine dinucleotide (NAD(+)) is the universal currency of energy metabolism and electron transfer.
  • Recent studies indicate that apart from its role as a coenzyme, NAD(+) and its metabolites also function in cell signaling pathways; for example, they are substrates for nucleotide-metabolizing enzymes and ligands for extra- and intracellular receptors and ion channels.
  • Moreover, the NAD(+) and NAD(+) phosphate metabolites adenosine 5'-diphosphoribose (ADP-ribose), cyclic ADP-ribose, and nicotinic acid adenine dinucleotide phosphate (NAADP) have emerged as key second messengers in Ca(2+) signaling.
  • A symposium in Hamburg, Germany, brought together 120 researchers from various fields, who were all engaged in the molecular characterization of the key players of NAD(+) signaling (www.NAD2008.de).
  • [MeSH-major] Cell Physiological Phenomena. NAD / metabolism. Signal Transduction / physiology
  • [MeSH-minor] Adenosine Diphosphate Ribose / metabolism. Animals. Energy Metabolism. Humans. NADP / metabolism. Niacinamide / metabolism. Second Messenger Systems / physiology

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19211509.001).
  • [ISSN] 1937-9145
  • [Journal-full-title] Science signaling
  • [ISO-abbreviation] Sci Signal
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0U46U6E8UK / NAD; 20762-30-5 / Adenosine Diphosphate Ribose; 25X51I8RD4 / Niacinamide; 53-59-8 / NADP
  • [Number-of-references] 50
  •  go-up   go-down


35. Till S, Ladurner AG: Sensing NAD metabolites through macro domains. Front Biosci (Landmark Ed); 2009;14:3246-58
Saccharomyces Genome Database. Saccharomyces Genome Database .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Sensing NAD metabolites through macro domains.
  • Many macro domains, including those of the human histone macroH2A1.1, bind NAD metabolites such as ADP-ribose, suggesting that macro domains may function in the recognition of this and related molecules.
  • Current evidence suggests that macro domains also represent a novel tool for studying NAD metabolites and may be an attractive drug target for the treatment of diseases.
  • [MeSH-major] NAD / metabolism

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19273270.001).
  • [ISSN] 1093-4715
  • [Journal-full-title] Frontiers in bioscience (Landmark edition)
  • [ISO-abbreviation] Front Biosci (Landmark Ed)
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Histones; 0U46U6E8UK / NAD; EC 2.4.2.30 / Poly(ADP-ribose) Polymerases
  • [Number-of-references] 68
  •  go-up   go-down


36. Ying W: NAD+ and NADH in ischemic brain injury. Front Biosci; 2008;13:1141-51
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] NAD+ and NADH in ischemic brain injury.
  • NAD+ and NADH have been emerging as the common mediators of energy metabolism, mitochondrial functions, calcium homeostasis, aging and cell death.
  • NAD+ and NADH can affect cell death by various mechanisms, such as influencing energy metabolism, mitochondrial permeability transition pores, and apoptosis-inducing factor.
  • Because energy failure, calcium disregulation and cell death are the key components in the tissue damaging cascade initiated by cerebral ischemia, it is likely that NAD+ and NADH play significant roles in ischemic brain damage.
  • Many studies, including the findings that poly(ADP-ribose) polymerase-1 mediates ischemic brain injury and that NAD+ administration can decrease ischemic brain damage, have suggested significant roles of NAD+ and NADH in the debilitating illness.
  • However, there is still distinct insufficiency of the information regarding the roles of NAD+ and NADH in ischemic brain injury.
  • Because increasing evidence has indicated critical functions of NAD+ and NADH in various biological processes, future studies on the roles of NAD+ and NADH in cerebral ischemia may expose essential mechanisms underlying ischemic brain injury and suggest novel therapeutic strategies for the illness.
  • [MeSH-major] Brain Injuries / pathology. Brain Ischemia / metabolism. NAD / metabolism
  • [MeSH-minor] Animals. Apoptosis. Brain / metabolism. Brain / pathology. Cell Death. Humans. Ischemia. Ischemic Preconditioning. Models, Biological. Poly Adenosine Diphosphate Ribose / metabolism. Poly(ADP-ribose) Polymerases / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17981619.001).
  • [ISSN] 1093-9946
  • [Journal-full-title] Frontiers in bioscience : a journal and virtual library
  • [ISO-abbreviation] Front. Biosci.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0U46U6E8UK / NAD; 26656-46-2 / Poly Adenosine Diphosphate Ribose; EC 2.4.2.30 / Poly(ADP-ribose) Polymerases
  • [Number-of-references] 135
  •  go-up   go-down


37. Li ZJ, Cai L, Wu Q, Chen GQ: Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production. Appl Microbiol Biotechnol; 2009 Jul;83(5):939-47
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production.
  • NAD kinase was overexpressed to enhance the accumulation of poly(3-hydroxybutyrate) (PHB) in recombinant Escherichia coli harboring PHB synthesis pathway via an accelerated supply of NADPH, which is one of the most crucial factors influencing PHB production.
  • A high copy number expression plasmid pE76 led to a stronger NAD kinase activity than that brought about by the low copy number plasmid pELRY.
  • Overexpressing NAD kinase in recombinant E. coli was found not to have a negative effect on cell growth in the absence of PHB synthesis.
  • Shake flask experiments demonstrated that excess NAD kinase in E. coli harboring the PHB synthesis operon could increase the accumulation of PHB to 16-35 wt.
  • Although the two NAD kinase overexpression recombinants exhibited large disparity on NAD kinase activity, their influence on cell growth and PHB accumulation was not proportional.
  • Under the same growth conditions without process optimization, the NAD kinase-overexpressing recombinant produced 14 g/L PHB compared with 7 g/L produced by the control in a 28-h fermentor study.
  • In addition, substrate to PHB yield Y (PHB/glucose) showed an increase from 0.08 g PHB/g glucose for the control to 0.15 g PHB/g glucose for the NAD kinase-overexpressing strain, a 76% increase for the Y (PHB/glucose).
  • These results clearly showed that the overexpression of NAD kinase could be used to enhance the PHB synthesis.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19357844.001).
  • [ISSN] 1432-0614
  • [Journal-full-title] Applied microbiology and biotechnology
  • [ISO-abbreviation] Appl. Microbiol. Biotechnol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Bacterial Proteins; 0 / Escherichia coli Proteins; 0 / Hydroxybutyrates; 0 / Polyesters; 26063-00-3 / poly-beta-hydroxybutyrate; 53-59-8 / NADP; EC 2.7.- / Phosphotransferases; EC 2.7.1.- / NadK protein, E coli
  •  go-up   go-down


38. Ying W: NAD+ and NADH in cellular functions and cell death. Front Biosci; 2006;11:3129-48
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] NAD+ and NADH in cellular functions and cell death.
  • Increasing evidence has indicated that NAD+ and NADH play critical roles not only in energy metabolism, but also in cell death and various cellular functions including regulation of calcium homeostasis and gene expression.
  • It has also been indicated that NAD+ and NADH are mediators of multiple major biological processes including aging.
  • NAD+ and NADH produce the biological effects by regulating numerous NAD+/NADH-dependent enzymes, including dehydrogenases, poly(ADP-ribose) polymerases, Sir2 family proteins (sirtuins), mono(ADP-ribosyl)transferases, and ADP-ribosyl cyclases.
  • Of particular interest, NAD+-dependent generation of ADP-ribose, cyclic ADP-ribose and O-acetyl-ADP-ribose can mediate calcium homeostasis by affecting TRPM2 receptors and ryanodine receptors; and sirtuins and PARPs appear to play key roles in aging, cell death and a variety of cellular functions.
  • It has also been indicated that NADH and NAD+ can be transported across plasma membranes of cells, and that extracellular NAD+ may be a new signaling molecule.
  • Our latest studies have shown that intranasal NAD+ administration can profoundly decrease ischemic brain damage.
  • These new pieces of information have fundamentally changed our understanding about NAD+ and NADH, suggesting novel paradigms about the metabolism and biological activities of NAD+ and NADH.
  • Based on this information, it is tempted to hypothesize that NAD+ and NADH, together with ATP and Ca2+, may be four most fundamental components in life, which can significantly affect nearly all major biological processes.
  • Future studies on NAD+ and NADH may not only elucidate some fundamental mysteries in biology, but also provide novel insights for interfering aging and many disease processes.
  • [MeSH-major] Cell Death. Cell Physiological Phenomena. NAD / biosynthesis. NAD / metabolism

  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16720381.001).
  • [ISSN] 1093-9946
  • [Journal-full-title] Frontiers in bioscience : a journal and virtual library
  • [ISO-abbreviation] Front. Biosci.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Poly(ADP-ribose) Polymerase Inhibitors; 0U46U6E8UK / NAD; EC 2.4.2.30 / PARP1 protein, human; EC 2.4.2.30 / Poly(ADP-ribose) Polymerases
  • [Number-of-references] 187
  •  go-up   go-down


39. Jauch R, Humm A, Huber R, Wahl MC: Structures of Escherichia coli NAD synthetase with substrates and products reveal mechanistic rearrangements. J Biol Chem; 2005 Apr 15;280(15):15131-40
Hazardous Substances Data Bank. (L)-Phenylalanine .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Structures of Escherichia coli NAD synthetase with substrates and products reveal mechanistic rearrangements.
  • Nicotinamide adenine dinucleotide synthetases (NADS) catalyze the amidation of nicotinic acid adenine dinucleotide (NAAD) to yield the enzyme cofactor nicotinamide adenine dinucleotide (NAD).
  • Here we describe the crystal structures of the ammonia-dependent homodimeric NADS from Escherichia coli alone and in complex with natural substrates and with the reaction product NAD.
  • The structures disclosed two NAAD/NAD binding sites at the dimer interface and an adenosine triphosphate (ATP) binding site within each subunit.
  • Comparison with the Bacillus subtilis NADS showed pronounced chemical differences in the NAAD/NAD binding sites and less prominent differences in the ATP binding pockets.
  • In addition, the E. coli NADS structures revealed unexpected dynamical rearrangements in the NAAD/NAD binding pocket upon NAAD-to-NAD conversion, which define a catalysis state and a substrate/product exchange state.
  • The two states are adopted by concerted movement of the nicotinysyl moieties of NAAD and NAD, Phe-170, and residues 224-228, which may be triggered by differential coordination of a magnesium ion to NAAD and NAD.
  • [MeSH-major] Amide Synthases / chemistry. Escherichia coli / enzymology. NAD / analogs & derivatives
  • [MeSH-minor] Adenosine Triphosphate / chemistry. Amino Acid Sequence. Bacillus subtilis / metabolism. Binding Sites. Cloning, Molecular. Crystallography, X-Ray. Dimerization. Humans. Models, Chemical. Models, Molecular. Molecular Sequence Data. Phenylalanine / chemistry. Phylogeny. Protein Conformation. Protein Structure, Secondary. Protein Structure, Tertiary. Sequence Homology, Amino Acid

  • BioCyc. gene/protein/disease-specific - nadE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15699042.001).
  • [ISSN] 0021-9258
  • [Journal-full-title] The Journal of biological chemistry
  • [ISO-abbreviation] J. Biol. Chem.
  • [Language] eng
  • [Databank-accession-numbers] PDB/ 1WXE/ 1WXF/ 1WXG/ 1WXH/ 1WXI
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0U46U6E8UK / NAD; 47E5O17Y3R / Phenylalanine; 6450-77-7 / nicotinic acid adenine dinucleotide; 8L70Q75FXE / Adenosine Triphosphate; EC 6.3.1.- / Amide Synthases; EC 6.3.1.5 / NAD+ synthase
  •  go-up   go-down


40. Hoff KG, Avalos JL, Sens K, Wolberger C: Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide. Structure; 2006 Aug;14(8):1231-40

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide.
  • Sirtuin proteins comprise a unique class of NAD+-dependent protein deacetylases.
  • Although several structures of sirtuins have been determined, the mechanism by which NAD+ cleavage occurs has remained unclear.
  • We report the structures of ternary complexes containing NAD+ and acetylated peptide bound to the bacterial sirtuin Sir2Tm and to a catalytic mutant (Sir2Tm(H116Y)).
  • NAD+ in these structures binds in a conformation different from that seen in previous structures, exposing the alpha face of the nicotinamide ribose to the carbonyl oxygen of the acetyl lysine substrate.
  • The NAD+ conformation is identical in both structures, suggesting that proper coenzyme orientation is not dependent on contacts with the catalytic histidine.
  • Taken together, these structures suggest a mechanism for nicotinamide cleavage in which an invariant phenylalanine plays a central role in promoting formation of the O-alkylamidate reaction intermediate and preventing nicotinamide exchange.
  • [MeSH-minor] Crystallization. Crystallography, X-Ray. NAD / chemistry. NAD / metabolism. O-Acetyl-ADP-Ribose / chemistry. O-Acetyl-ADP-Ribose / metabolism. Peptides / chemistry. Peptides / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16905097.001).
  • [ISSN] 0969-2126
  • [Journal-full-title] Structure (London, England : 1993)
  • [ISO-abbreviation] Structure
  • [Language] eng
  • [Databank-accession-numbers] PDB/ 2H4F/ 2H4H/ 2H4J/ 2H59
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / 3-O-acetyl-ADP-ribose; 0 / Multiprotein Complexes; 0 / O-Acetyl-ADP-Ribose; 0 / Peptides; 0U46U6E8UK / NAD; EC 3.5.1.- / Sirtuins
  •  go-up   go-down


41. Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y: Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem; 2007 Mar 2;282(9):6823-32
Saccharomyces Genome Database. Saccharomyces Genome Database .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1.
  • Sir2 (silent information regulator 2) is an NAD(+)-dependent histone deacetylase that contributes to longevity in yeast.


42. Gimenes D, Constantin J, Comar JF, Kelmer-Bracht AM, Broetto-Biazon AC, Bracht A: Liver parenchyma heterogeneity in the response to extracellular NAD+. Cell Biochem Funct; 2006 Jul-Aug;24(4):313-25
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Liver parenchyma heterogeneity in the response to extracellular NAD+.
  • The perfused rat liver responds intensely to NAD+ infusion (20-100 microM).
  • The aim of the present work was to investigate the distribution of the response to extracellular NAD+ along the hepatic acinus.
  • Various combinations of perfusion directions (antegrade and retrograde) and infusion routes (portal vein, hepatic vein and hepatic artery) were used in order to supply NAD+ to different regions of the liver parenchyma, also taking advantage of the fact that its extracellular transformation generates steep concentration gradients.
  • Oxygen uptake was stimulated by NAD+ in retrograde perfusion (irrespective of the infusion route) and transiently inhibited in antegrade perfusion.
  • Stimulation of glucose release was more intense when NAD+ was infused into the portal vein or into the hepatic artery, indicating that stimulation of glycogenolysis predominates in the periportal area.
  • The increases in perfusion pressure were more pronounced when the periportal area was supplied with NAD+ suggesting that the vasoconstrictive elements responding to NAD+ predominate in this region.
  • The response to extracellular NAD+ is thus unequally distributed in the liver.
  • As a paracrine agent, NAD+ is likely to be released locally.
  • [MeSH-major] Glucose / secretion. Liver / metabolism. Liver Glycogen / metabolism. NAD / metabolism

  • Hazardous Substances Data Bank. GLUCOSE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright (c) 2005 John Wiley & Sons, Ltd.
  • (PMID = 15920702.001).
  • [ISSN] 0263-6484
  • [Journal-full-title] Cell biochemistry and function
  • [ISO-abbreviation] Cell Biochem. Funct.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Liver Glycogen; 0U46U6E8UK / NAD; IY9XDZ35W2 / Glucose
  •  go-up   go-down


43. Wozniacka A, Szajerski P, Adamus J, Gebicki J, Sysa-Jedrzejowska A: In search for new antipsoriatic agents: NAD topical composition. Skin Pharmacol Physiol; 2007;20(1):37-42
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] In search for new antipsoriatic agents: NAD topical composition.
  • The aim of the study was to examine the effectiveness of the oxidized form of nicotinamide adenine dinucleotide (NAD(+)), adenosine precursor, in 37 patients suffering from psoriasis.
  • As NAD(+) is known to be relatively unstable, the second goal was to establish the proper conditions for the satisfactory stability of topical NAD(+) composition.
  • Topical treatment with 1 or 0.3% NAD(+) in Vaseline ointment administered twice daily was compared with overnight therapy with 0.1% anthralin applied for 12 h and placebo.
  • The enzymatic method was applied to determine the stability of NAD(+) in Vaseline ointment.
  • After a 4-week application, the reduction in erythema, infiltration and desquamation caused by 1 or 0.3% topical NAD(+) composition was similar to the reduction caused by 0.1% anthralin.
  • It was demonstrated that NAD(+) underwent a considerable decomposition at room temperature, while it was sufficiently stable at 5 degrees C; thus, for a longer use the agent should be stored at fridge temperature.
  • NAD(+) therapy combines good efficacy, cosmetic acceptability and convenient twice-daily application.
  • [MeSH-major] Dermatologic Agents / therapeutic use. NAD / therapeutic use. Psoriasis / drug therapy

  • MedlinePlus Health Information. consumer health - Psoriasis.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17035720.001).
  • [ISSN] 1660-5527
  • [Journal-full-title] Skin pharmacology and physiology
  • [ISO-abbreviation] Skin Pharmacol Physiol
  • [Language] eng
  • [Publication-type] Clinical Trial; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0 / Dermatologic Agents; 0 / Ointments; 0U46U6E8UK / NAD; U8CJK0JH5M / Anthralin
  •  go-up   go-down


44. Ménétrey J, Flatau G, Boquet P, Ménez A, Stura EA: Structural basis for the NAD-hydrolysis mechanism and the ARTT-loop plasticity of C3 exoenzymes. Protein Sci; 2008 May;17(5):878-86
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Structural basis for the NAD-hydrolysis mechanism and the ARTT-loop plasticity of C3 exoenzymes.
  • This modification process goes through three sequential steps involving NAD-hydrolysis, Rho recognition, and binding, leading to Rho ADP-ribosylation.
  • Supporting the critical role of the ARTT loop, we have shown previously that it adopts a distinct conformation upon NAD binding.
  • Here, we present seven wild-type and ARTT loop-mutant structures of C3 exoenzyme of Clostridium botulinum free and bound to its true substrate, NAD, and to its NAD-hydrolysis product, nicotinamide.
  • [MeSH-major] ADP Ribose Transferases / chemistry. Botulinum Toxins / chemistry. NAD / chemistry

  • Hazardous Substances Data Bank. GLUTAMIC ACID HYDROCHLORIDE .
  • Hazardous Substances Data Bank. ASPARAGINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Biochem Biophys Res Commun. 1991 Jan 31;174(2):459-64 [1993048.001]
  • [Cites] J Biol Chem. 1989 May 25;264(15):8602-5 [2498316.001]
  • [Cites] J Biol Chem. 1992 May 25;267(15):10274-80 [1587816.001]
  • [Cites] Biochemistry. 1995 Jan 10;34(1):334-40 [7819216.001]
  • [Cites] FEBS Lett. 1995 Sep 4;371(2):105-9 [7672106.001]
  • [Cites] Biochimie. 1995;77(5):326-32 [8527485.001]
  • [Cites] Biochemistry. 1996 Jan 9;35(1):282-9 [8555186.001]
  • [Cites] Biochemistry. 1998 Apr 14;37(15):5296-304 [9548761.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21 [9757107.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):938-40 [10089341.001]
  • [Cites] Rev Physiol Biochem Pharmacol. 2004;152:1-22 [15372308.001]
  • [Cites] J Mol Biol. 2001 Jan 5;305(1):95-107 [11114250.001]
  • [Cites] J Biol Chem. 2001 Mar 23;276(12):9537-42 [11124969.001]
  • [Cites] Infect Immun. 2001 Dec;69(12):7760-71 [11705958.001]
  • [Cites] Biochemistry. 2002 Feb 5;41(5):1539-44 [11814347.001]
  • [Cites] Int J Med Microbiol. 2002 Feb;291(6-7):523-9 [11890553.001]
  • [Cites] J Biol Chem. 2002 Apr 26;277(17):14771-6 [11847234.001]
  • [Cites] J Biol Chem. 2002 Aug 23;277(34):30950-7 [12029083.001]
  • [Cites] Nature. 2002 Dec 12;420(6916):629-35 [12478284.001]
  • [Cites] Biochem Biophys Res Commun. 2003 Feb 28;302(1):127-32 [12593858.001]
  • [Cites] J Biol Chem. 2003 Aug 1;278(31):28523-7 [12750364.001]
  • [Cites] Biochemistry. 2003 Aug 19;42(32):9694-702 [12911311.001]
  • [Cites] J Biol Chem. 2003 Nov 14;278(46):45924-30 [12933793.001]
  • [Cites] Mol Cell Biol. 1988 Jan;8(1):418-26 [3122025.001]
  • [Cites] Biochem J. 1987 Oct 15;247(2):363-8 [3122724.001]
  • [Cites] Eur J Biochem. 1988 Mar 1;172(2):445-50 [3127209.001]
  • [Cites] J Biol Chem. 1991 Oct 15;266(29):19312-9 [1918048.001]
  • (PMID = 18369192.001).
  • [ISSN] 1469-896X
  • [Journal-full-title] Protein science : a publication of the Protein Society
  • [ISO-abbreviation] Protein Sci.
  • [Language] eng
  • [Databank-accession-numbers] PDB/ 2C89/ 2C8A/ 2C8B/ 2C8C/ 2C8D/ 2C8E/ 2C8F
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0U46U6E8UK / NAD; 3KX376GY7L / Glutamic Acid; 7006-34-0 / Asparagine; EC 2.4.2.- / ADP Ribose Transferases; EC 2.4.2.- / exoenzyme C3, Clostridium botulinum; EC 3.4.24.69 / Botulinum Toxins
  • [Other-IDs] NLM/ PMC2327275
  •  go-up   go-down


45. Micheli V, Jacomelli G, Di Marcello F, Notarantonio L, Sestini S, Cerboni B, Bertelli M, Pompucci G, Jinnah HA: NAD metabolism in HPRT-deficient mice. Metab Brain Dis; 2009 Jun;24(2):311-9
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] NAD metabolism in HPRT-deficient mice.
  • The activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT) is virtually absent in Lesch-Nyhan disease (LND), an X-linked genetic disorder characterized by uric acid accumulation and neurodevelopmental dysfunction.
  • Prior studies of cells from affected patients have shown abnormalities of NAD metabolism.
  • In the current studies, NAD metabolism was evaluated in HPRT gene knock-out mice.
  • NAD content and the activities of the enzymes required for synthesis and breakdown of this coenzyme were investigated in blood, brain and liver of HPRT(-) and control mice.
  • NAD concentration and enzyme activities were found to be significantly increased in liver, but not in brain or blood of the HPRT(-) mice.
  • These results demonstrate that changes in NAD metabolism occur in response to HPRT deficiency depending on both species and tissue type.
  • [MeSH-major] Hypoxanthine Phosphoribosyltransferase / metabolism. Lesch-Nyhan Syndrome / enzymology. Liver / metabolism. NAD / metabolism

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19319672.001).
  • [ISSN] 1573-7365
  • [Journal-full-title] Metabolic brain disease
  • [ISO-abbreviation] Metab Brain Dis
  • [Language] eng
  • [Grant] United States / NICHD NIH HHS / HD / R01 HD053312
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Blood Proteins; 0 / Purines; 0 / Pyridines; 0U46U6E8UK / NAD; EC 2.4.2.8 / Hypoxanthine Phosphoribosyltransferase
  • [Other-IDs] NLM/ NIHMS785541; NLM/ PMC4876432
  •  go-up   go-down


46. Grose JH, Bergthorsson U, Roth JR: Regulation of NAD synthesis by the trifunctional NadR protein of Salmonella enterica. J Bacteriol; 2005 Apr;187(8):2774-82
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Regulation of NAD synthesis by the trifunctional NadR protein of Salmonella enterica.
  • The N-terminal domain represses transcription of genes for NAD synthesis and salvage.
  • The C-terminal domain has nicotinamide ribose kinase (NmR-K; EC 2.7.1.22) activity, which is essential for assimilation of NmR, converting it internally to nicotinamide mononucleotide (NMN).
  • The central domain has a weak adenylyltransferase (NMN-AT; EC 2.7.7.1) activity that converts NMN directly to NAD but is physiologically irrelevant.
  • This central domain mediates regulatory effects of NAD on all NadR activities.
  • NAD allows NadR to bind DNA in the presence of ATP and causes repression in vivo.
  • The mutant protein shows full NmR kinase activity that is 10-fold more sensitive to NAD inhibition than the wild type.
  • It is proposed that NAD and the superrepressor mutation exert their effects by preventing ATP from binding to the central domain.

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Mol Biol. 1990 Oct 5;215(3):403-10 [2231712.001]
  • [Cites] J Bacteriol. 1989 Aug;171(8):4402-9 [2546921.001]
  • [Cites] J Bacteriol. 1991 Feb;173(3):1311-20 [1991724.001]
  • [Cites] FEMS Microbiol Lett. 1993 Sep 1;112(2):179-83 [8405960.001]
  • [Cites] Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [7984417.001]
  • [Cites] Anal Biochem. 1995 Jun 10;228(1):64-8 [8572289.001]
  • [Cites] Mol Gen Genet. 1996 Sep 25;252(4):456-64 [8879247.001]
  • [Cites] Adv Exp Med Biol. 1997;419:381-8 [9193680.001]
  • [Cites] J Bacteriol. 1999 Jan;181(2):648-55 [9882682.001]
  • [Cites] Adv Enzymol Relat Areas Mol Biol. 1999;73:135-82, xi [10218108.001]
  • [Cites] J Bacteriol. 1999 Sep;181(17):5509-11 [10464228.001]
  • [Cites] J Biol Chem. 1956 Jan;218(1):97-106 [13278318.001]
  • [Cites] J Biol Chem. 2002 Sep 6;277(36):33291-9 [12068016.001]
  • [Cites] J Mol Microbiol Biotechnol. 1999 Aug;1(1):127-8 [10941793.001]
  • [Cites] J Bacteriol. 2001 Jul;183(13):3974-81 [11395461.001]
  • [Cites] Eur J Biochem. 2001 Aug;268(15):4359-65 [11488932.001]
  • [Cites] J Bacteriol. 2002 Mar;184(5):1474-80 [11844783.001]
  • [Cites] J Bacteriol. 2002 Dec;184(24):6906-17 [12446641.001]
  • [Cites] Science. 2002 Dec 20;298(5602):2390-2 [12493915.001]
  • [Cites] Microbiology. 2003 Apr;149(Pt 4):983-90 [12686640.001]
  • [Cites] Cold Spring Harb Symp Quant Biol. 1968;33:21-6 [4306814.001]
  • [Cites] Cold Spring Harb Symp Quant Biol. 1968;33:27-34 [4306816.001]
  • [Cites] J Biol Chem. 1971 Feb 25;246(4):1107-16 [5543676.001]
  • [Cites] Anal Biochem. 1972 Mar;46(1):181-6 [4336011.001]
  • [Cites] Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7 [271968.001]
  • [Cites] J Biol Chem. 1979 Jul 25;254(14):6270-2 [221495.001]
  • [Cites] CRC Crit Rev Biochem. 1985;17(4):313-451 [3157549.001]
  • [Cites] J Gen Microbiol. 1985 Jun;131(6):1313-22 [3900274.001]
  • [Cites] J Bacteriol. 1987 Jan;169(1):184-8 [3025169.001]
  • [Cites] Mol Gen Genet. 1987 Jun;208(1-2):279-87 [3039308.001]
  • [Cites] J Bacteriol. 1988 Jan;170(1):117-25 [3275606.001]
  • [Cites] Science. 1988 Apr 29;240(4852):640-2 [2834821.001]
  • [Cites] Science. 1988 Jun 3;240(4857):1302-9 [3287616.001]
  • [Cites] Proc Natl Acad Sci U S A. 1988 Jul;85(13):4799-803 [2838846.001]
  • [Cites] J Bacteriol. 1989 Apr;171(4):2173-80 [2649488.001]
  • [Cites] J Bacteriol. 1991 Feb;173(3):1302-10 [1991723.001]
  • (PMID = 15805524.001).
  • [ISSN] 0021-9193
  • [Journal-full-title] Journal of bacteriology
  • [ISO-abbreviation] J. Bacteriol.
  • [Language] ENG
  • [Grant] United States / NIGMS NIH HHS / GM / GM23408
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Bacterial Proteins; 0 / DNA, Bacterial; 0 / NadR protein, bacteria; 0 / Repressor Proteins; 0U46U6E8UK / NAD
  • [Other-IDs] NLM/ PMC1070365
  •  go-up   go-down


47. Liu Q, Kriksunov IA, Jiang H, Graeff R, Lin H, Lee HC, Hao Q: Covalent and noncovalent intermediates of an NAD utilizing enzyme, human CD38. Chem Biol; 2008 Oct 20;15(10):1068-78
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Covalent and noncovalent intermediates of an NAD utilizing enzyme, human CD38.
  • Enzymatic utilization of nicotinamide adenine dinucleotide (NAD) has increasingly been shown to have fundamental roles in gene regulation, signal transduction, and protein modification.
  • Many of the processes require the cleavage of the nicotinamide moiety from the substrate and the formation of a reactive intermediate.
  • Using X-ray crystallography, we show that human CD38, an NAD-utilizing enzyme, is capable of catalyzing the cleavage reactions through both covalent and noncovalent intermediates, depending on the substrate used.
  • Our structural results favor the proposal of a noncovalent intermediate during normal enzymatic utilization of NAD by human CD38 and provide structural insights into the design of covalent and noncovalent inhibitors targeting NAD-utilization pathways.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Biochem J. 2000 Jul 1;349(Pt 1):203-10 [10861229.001]
  • [Cites] J Biol Chem. 2001 Jan 5;276(1):649-55 [11001947.001]
  • [Cites] Nat Med. 2001 Nov;7(11):1209-16 [11689885.001]
  • [Cites] Biochemistry. 2002 Jul 2;41(26):8455-63 [12081495.001]
  • [Cites] FASEB J. 2003 Mar;17(3):369-75 [12631576.001]
  • [Cites] J Vet Med Sci. 2003 Dec;65(12):1325-30 [14709821.001]
  • [Cites] Immunity. 2004 Mar;20(3):279-91 [15030772.001]
  • [Cites] J Mol Biol. 2004 Apr 16;338(1):1-6 [15050818.001]
  • [Cites] Curr Med Chem. 2004 Apr;11(7):807-26 [15078167.001]
  • [Cites] Curr Med Chem. 2004 Apr;11(7):857-72 [15078170.001]
  • [Cites] Curr Mol Med. 2004 May;4(3):227-37 [15101681.001]
  • [Cites] Curr Mol Med. 2004 May;4(3):249-61 [15101683.001]
  • [Cites] Annu Rev Biochem. 2004;73:417-35 [15189148.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2004 Aug;60(Pt 8):1355-63 [15272157.001]
  • [Cites] J Biol Chem. 1978 Jul 25;253(14):5186-92 [209029.001]
  • [Cites] J Biol Chem. 1989 Jan 25;264(3):1608-15 [2912976.001]
  • [Cites] Acta Crystallogr A. 1991 Mar 1;47 ( Pt 2):110-9 [2025413.001]
  • [Cites] Biochem Biophys Res Commun. 1993 Mar 15;191(2):639-45 [8461019.001]
  • [Cites] Science. 1993 Nov 12;262(5136):1056-9 [8235624.001]
  • [Cites] Mol Cell Biochem. 1994 Sep;138(1-2):229-35 [7898468.001]
  • [Cites] Mol Cell Biochem. 1994 Sep;138(1-2):245-51 [7898470.001]
  • [Cites] J Biol Chem. 1995 Dec 22;270(51):30327-33 [8530456.001]
  • [Cites] J Biol Chem. 1996 Sep 27;271(39):23967-72 [8798630.001]
  • [Cites] Biochemistry. 1998 Sep 22;37(38):13239-49 [9748331.001]
  • [Cites] J Biol Chem. 1999 Jan 22;274(4):1869-72 [9890936.001]
  • [Cites] Mol Cell Biochem. 1999 Mar;193(1-2):89-98 [10331643.001]
  • [Cites] Cell. 2005 Feb 25;120(4):497-512 [15734682.001]
  • [Cites] Science. 2005 Aug 12;309(5737):1093-6 [16099990.001]
  • [Cites] Structure. 2005 Sep;13(9):1331-9 [16154090.001]
  • [Cites] FEBS J. 2005 Sep;272(18):4590-7 [16156781.001]
  • [Cites] Biochemistry. 2006 Jan 10;45(1):272-82 [16388603.001]
  • [Cites] Microbiol Mol Biol Rev. 2006 Sep;70(3):789-829 [16959969.001]
  • [Cites] J Biol Chem. 2006 Oct 27;281(43):32861-9 [16951430.001]
  • [Cites] J Biol Chem. 2007 Feb 23;282(8):5853-61 [17182614.001]
  • [Cites] Nature. 2007 Mar 1;446(7131):41-5 [17287729.001]
  • [Cites] Mol Med. 2006 Nov-Dec;12(11-12):317-23 [17380198.001]
  • [Cites] Biochem J. 2007 May 15;404(1):1-13 [17447894.001]
  • [Cites] Chem Immunol. 2000;75:39-59 [10851778.001]
  • [Cites] J Biol Chem. 2000 Jul 14;275(28):21566-71 [10781610.001]
  • [Cites] N Engl J Med. 2000 Dec 14;343(24):1750-7 [11114313.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 2001;41:317-45 [11264460.001]
  • (PMID = 18940667.001).
  • [ISSN] 1074-5521
  • [Journal-full-title] Chemistry & biology
  • [ISO-abbreviation] Chem. Biol.
  • [Language] ENG
  • [Databank-accession-numbers] PDB/ 3DZF/ 3DZG/ 3DZH/ 3DZI/ 3DZJ/ 3DZK
  • [Grant] United States / NCRR NIH HHS / RR / P41 RR001646-256438; United States / NIGMS NIH HHS / GM / GM061568-07; United States / NCRR NIH HHS / RR / RR01646; United States / NIGMS NIH HHS / GM / R01 GM061568-07; United States / NCRR NIH HHS / RR / RR001646-256438; United States / NCRR NIH HHS / RR / P41 RR001646; United States / NIGMS NIH HHS / GM / GM061568; United States / NIGMS NIH HHS / GM / DMR0225180; United States / NIGMS NIH HHS / GM / R01 GM061568
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Glycosides; 0U46U6E8UK / NAD; 1094-61-7 / Nicotinamide Mononucleotide; EC 3.2.2.5 / Antigens, CD38
  • [Other-IDs] NLM/ NIHMS75814; NLM/ PMC2607045
  •  go-up   go-down


48. Tachibana S, Naka N, Kawai F, Yasuda M: Purification and characterization of cytoplasmic NAD-dependent polypropylene glycol dehydrogenase from Stenotrophomonas maltophilia. FEMS Microbiol Lett; 2008 Nov;288(2):266-72
Hazardous Substances Data Bank. Polypropylene glycol .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Purification and characterization of cytoplasmic NAD-dependent polypropylene glycol dehydrogenase from Stenotrophomonas maltophilia.
  • The oxidizing enzyme NAD(+)-dependent polypropylene glycol dehydrogenase (PPG-DH) was purified to homogeneity from the cytoplasmic fraction of Stenotrophomonas maltophilia grown on polypropylene glycol (diol type) 2000.
  • The purified enzyme consisted of a homotetrameric protein (37 kDa subunit) with a molecular mass of around 154 kDa.
  • The N-terminal amino acid sequence (25 residues) showed similarity to the sequences of NAD(+)-dependent secondary alcohol dehydrogenases and NADH-dependent reductases.
  • Consequently, the enzyme was classified into a group of NAD(+)-dependent secondary alcohol dehydrogenases.
  • [MeSH-major] Alcohol Dehydrogenase. NAD / metabolism. Polymers / metabolism. Propylene Glycols / metabolism. Stenotrophomonas maltophilia / enzymology

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19054086.001).
  • [ISSN] 0378-1097
  • [Journal-full-title] FEMS microbiology letters
  • [ISO-abbreviation] FEMS Microbiol. Lett.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Polymers; 0 / Propylene Glycols; 0U46U6E8UK / NAD; 25322-69-4 / polypropylene glycol; EC 1.1.1.1 / Alcohol Dehydrogenase
  •  go-up   go-down


49. Zhou H, Zhang Z, Yu P, Su L, Ohsaka T, Mao L: Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors. Langmuir; 2010 Apr 20;26(8):6028-32
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors.
  • This study describes a facile approach to the preparation of integrated dehydrogenase-based electrochemical biosensors through noncovalent attachment of an oxidized form of beta-nicotinamide adenine dinucleotide (NAD(+)) onto carbon nanotubes with the interaction between the adenine subunit in NAD(+) molecules and multiwalled carbon nanotubes (MWCNTs).
  • X-ray photoelectron spectroscopic and cyclic voltammetric results suggest that NAD(+) is noncovalently attached onto MWCNTs to form an NAD(+)/MWCNT composite that acts as the electronic transducer for the integrated dehydrogenase-based electrochemical biosensors.
  • With glucose dehydrogenase (GDH) as a model dehydrogenase-based recognition unit, electrochemical studies reveal that glucose is readily oxidized at the GDH/NAD(+)/MWCNT-modified electrode without addition of NAD(+) in the phosphate buffer.
  • The potential for the oxidation of glucose at the GDH/NAD(+)/MWCNT-modified electrode remains very close to that for NADH oxidation at the MWCNT-modified electrode, but it is more negative than those for the oxidation of glucose at the MWCNT-modified electrode and for NADH oxidation at a bare glassy carbon electrode.
  • These results demonstrate that NAD(+) molecules stably attached onto MWCNTs efficiently act as the cofactor for the dehydrogenases.
  • MWCNTs employed here not only serve as the electronic transducer and the support to confine NAD(+) cofactor onto the electrode surface, but also act as the electrocatalyst for NADH oxidation in the dehydrogenase-based electrochemical biosensors.
  • At the GDH/NAD(+)/MWCNT-based glucose biosensor, the current is linear with the concentration of glucose being within a concentration range from 10 to 300 microM with a limit of detection down to 4.81 microM (S/N = 3).
  • [MeSH-major] Biosensing Techniques / methods. Electrochemistry / methods. Glucose 1-Dehydrogenase / chemistry. Glucose 1-Dehydrogenase / metabolism. NAD / chemistry. Nanotubes, Carbon / chemistry

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20121055.001).
  • [ISSN] 1520-5827
  • [Journal-full-title] Langmuir : the ACS journal of surfaces and colloids
  • [ISO-abbreviation] Langmuir
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Nanotubes, Carbon; 0U46U6E8UK / NAD; EC 1.1.1.47 / Glucose 1-Dehydrogenase
  •  go-up   go-down


50. Haag F, Adriouch S, Braß A, Jung C, Möller S, Scheuplein F, Bannas P, Seman M, Koch-Nolte F: Extracellular NAD and ATP: Partners in immune cell modulation. Purinergic Signal; 2007 Mar;3(1-2):71-81

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Extracellular NAD and ATP: Partners in immune cell modulation.
  • Extracellular NAD and ATP exert multiple, partially overlapping effects on immune cells.
  • ATP and its metabolites signal through purinergic P2 and P1 receptors, whereas extracellular NAD exerts its effects by serving as a substrate for ADP-ribosyltransferases (ARTs) and NAD glycohydrolases/ADPR cyclases like CD38 and CD157.
  • While ATP activates P2X7 directly as a soluble ligand, activation via NAD occurs by ART-dependent ADP-ribosylation of cell surface proteins, providing an immobilised ligand.
  • Activation by ATP requires high micromolar concentrations of nucleotide and is readily reversible, whereas NAD-dependent stimulation begins at low micromolar concentrations and is more stable.
  • Under conditions of cell stress or inflammation, ATP and NAD are released into the extracellular space from intracellular stores by lytic and non-lytic mechanisms, and may serve as "danger signals" to alert the immune response to tissue damage.
  • Since ART expression is limited to naïve/resting T cells, P2X7-mediated NAD-induced cell death (NICD) specifically targets this cell population.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Biol Chem. 2001 Feb 9;276(6):3820-6 [11056157.001]
  • [Cites] J Biol Chem. 2001 Apr 6;276(14):11135-42 [11150303.001]
  • [Cites] Pharmacol Rev. 2001 Mar;53(1):107-18 [11171941.001]
  • [Cites] FEBS Lett. 2001 Mar 9;492(1-2):4-8 [11248227.001]
  • [Cites] Mutat Res. 2001 Jun 2;477(1-2):97-110 [11376691.001]
  • [Cites] J Immunol. 2001 Jun 15;166(12):7172-7 [11390464.001]
  • [Cites] J Immunol. 2001 Jul 1;167(1):196-203 [11418649.001]
  • [Cites] Neurochem Res. 2001 Sep;26(8-9):959-69 [11699948.001]
  • [Cites] Biochem J. 2002 Oct 1;367(Pt 1):121-8 [12099890.001]
  • [Cites] Eur J Immunol. 2002 Sep;32(9):2409-17 [12207325.001]
  • [Cites] Mol Cell Biol. 2002 Nov;22(21):7535-42 [12370300.001]
  • [Cites] J Immunol. 2002 Oct 15;169(8):4108-12 [12370338.001]
  • [Cites] Blood. 2003 May 15;101(10):3985-90 [12446452.001]
  • [Cites] J Leukoc Biol. 2003 Mar;73(3):339-43 [12629147.001]
  • [Cites] Biochem J. 1998 Mar 15;330 ( Pt 3):1383-90 [9494110.001]
  • [Cites] Blood. 1998 Aug 15;92(4):1324-33 [9694721.001]
  • [Cites] Pharmacol Rev. 1998 Sep;50(3):413-92 [9755289.001]
  • [Cites] Immunity. 2001 Nov;15(5):825-35 [11728343.001]
  • [Cites] Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):495-500 [11756680.001]
  • [Cites] Blood. 2002 Jan 15;99(2):706-8 [11781259.001]
  • [Cites] J Biol Chem. 2002 Mar 22;277(12):10482-8 [11790776.001]
  • [Cites] Nat Med. 2002 Apr;8(4):358-65 [11927941.001]
  • [Cites] Lancet. 2002 Mar 30;359(9312):1114-9 [11943260.001]
  • [Cites] Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8231-5 [12060767.001]
  • [Cites] Protein Sci. 2002 Jul;11(7):1657-70 [12070318.001]
  • [Cites] Anal Biochem. 2003 Mar 1;314(1):108-15 [12633608.001]
  • [Cites] Mol Pharmacol. 2003 Apr;63(4):773-6 [12644576.001]
  • [Cites] Blood. 2003 Jul 15;102(2):613-20 [12649135.001]
  • [Cites] Can J Vet Res. 2003 Jul;67(3):229-31 [12889731.001]
  • [Cites] Biochim Biophys Acta. 2003 Sep 2;1615(1-2):7-32 [12948585.001]
  • [Cites] Immunity. 2003 Sep;19(3):403-12 [14499115.001]
  • [Cites] Immunity. 2003 Oct;19(4):571-82 [14563321.001]
  • [Cites] J Neurosci. 2004 Jan 7;24(1):1-7 [14715932.001]
  • [Cites] J Pharmacol Exp Ther. 2000 Dec;295(3):862-9 [11082418.001]
  • [Cites] Science. 1996 May 3;272(5262):735-8 [8614837.001]
  • [Cites] Immunity. 2004 Mar;20(3):279-91 [15030772.001]
  • [Cites] Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9479-84 [15194822.001]
  • [Cites] Biochem J. 2005 Jan 1;385(Pt 1):309-17 [15361073.001]
  • [Cites] J Biol Chem. 2004 Nov 19;279(47):48893-903 [15364945.001]
  • [Cites] J Physiol. 2004 Dec 1;561(Pt 2):499-513 [15579539.001]
  • [Cites] J Bone Miner Res. 2005 Jan;20(1):41-9 [15619668.001]
  • [Cites] J Immunol. 2005 Mar 15;174(6):3298-305 [15749861.001]
  • [Cites] Mol Biol Cell. 2005 Jul;16(7):3100-6 [15843434.001]
  • [Cites] Mol Biol Cell. 2005 Aug;16(8):3659-65 [15944221.001]
  • [Cites] Br J Pharmacol. 2005 Oct;146(3):435-44 [15997228.001]
  • [Cites] Nat Rev Immunol. 2005 Sep;5(9):712-21 [16110315.001]
  • [Cites] J Immunol. 2005 Sep 1;175(5):3075-83 [16116196.001]
  • [Cites] Cell Immunol. 2005 Jul-Aug;236(1-2):59-65 [16168396.001]
  • [Cites] Purinergic Signal. 2005 Sep;1(3):205-9 [18404505.001]
  • [Cites] J Biol Chem. 1996 Mar 29;271(13):7686-93 [8631807.001]
  • [Cites] Trends Pharmacol Sci. 1997 Mar;18(3):79-82 [9133776.001]
  • [Cites] Blood. 1997 Aug 15;90(4):1600-10 [9269779.001]
  • [Cites] J Biol Chem. 1997 Oct 10;272(41):25881-9 [9325320.001]
  • [Cites] Cell Biochem Biophys. 1998;28(1):45-62 [9386892.001]
  • [Cites] Lab Invest. 1998 Nov;78(11):1375-83 [9840612.001]
  • [Cites] Biofactors. 1998;8(3-4):301-3 [9914832.001]
  • [Cites] Cell Death Differ. 1998 Mar;5(3):191-9 [10200464.001]
  • [Cites] Eur J Biochem. 1999 Jun;262(2):342-8 [10336617.001]
  • [Cites] Biochem J. 1999 Sep 1;342 ( Pt 2):249-68 [10455009.001]
  • [Cites] J Mol Med (Berl). 2000;78(1):26-35 [10759027.001]
  • [Cites] FASEB J. 2001 Jan;15(1):10-12 [11099492.001]
  • [Cites] Blood. 2001 Feb 1;97(3):587-600 [11157473.001]
  • [Cites] J Immunol. 2001 Feb 1;166(3):1611-7 [11160202.001]
  • [Cites] FASEB J. 2001 Sep;15(11):1963-70 [11532976.001]
  • [Cites] J Immunol. 2001 Sep 15;167(6):3300-7 [11544318.001]
  • [Cites] J Biotechnol. 2001 Dec 28;92(2):81-7 [11640979.001]
  • [Cites] Blood. 2002 Mar 1;99(5):1715-22 [11861288.001]
  • [Cites] Blood. 2005 May 1;105(9):3663-70 [15657180.001]
  • [Cites] J Biol Chem. 2005 Oct 28;280(43):36334-41 [16118205.001]
  • [Cites] Cell Immunol. 2005 Jul-Aug;236(1-2):66-71 [16271711.001]
  • [Cites] Pharmacol Rev. 1972 Sep;24(3):509-81 [4404211.001]
  • [Cites] J Biol Chem. 1993 Dec 5;268(34):25273-6 [8244957.001]
  • [Cites] J Biol Chem. 1995 Dec 22;270(51):30327-33 [8530456.001]
  • [Cites] J Exp Med. 1997 Feb 3;185(3):579-82 [9053458.001]
  • [Cites] Immunity. 1997 Sep;7(3):433-44 [9324363.001]
  • [Cites] Electrophoresis. 1999 Jul;20(10):2111-7 [10451123.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 2000;40:563-80 [10836147.001]
  • [Cites] J Immunol. 2000 Oct 15;165(8):4463-9 [11035085.001]
  • (PMID = 18404420.001).
  • [ISSN] 1573-9538
  • [Journal-full-title] Purinergic signalling
  • [ISO-abbreviation] Purinergic Signal.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Other-IDs] NLM/ PMC2096762
  •  go-up   go-down


51. Imai S: Toward productive aging: SIRT1, systemic NAD biosynthesis, and the NAD world. Cornea; 2010 Nov;29 Suppl 1:S7-12
MedlinePlus Health Information. consumer health - Seniors' Health.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Toward productive aging: SIRT1, systemic NAD biosynthesis, and the NAD world.
  • To achieve this goal, we have been studying mechanisms of mammalian aging and longevity, focusing on the physiological importance of the mammalian nicotinamide adenine dinucleotide (NAD)--dependent protein deacetylase SIRT1 and systemic NAD biosynthesis mediated by nicotinamide phosphoribosyltransferase for the regulation of metabolism and aging.
  • Through these studies, we have recently proposed a comprehensive concept of a novel systemic regulatory network for metabolism and aging, named "NAD World."
  • This new concept of NAD World also conveys ideas of functional hierarchy and frailty for the induction of aging in mammals.
  • Details of the NAD World and its implications to age-associated metabolic diseases such as type 2 diabetes will be discussed.
  • [MeSH-major] Aging / physiology. NAD / biosynthesis. Sirtuin 1 / physiology
  • [MeSH-minor] Cytokines / metabolism. Energy Metabolism. Humans. Nicotinamide Phosphoribosyltransferase / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20935547.001).
  • [ISSN] 1536-4798
  • [Journal-full-title] Cornea
  • [ISO-abbreviation] Cornea
  • [Language] eng
  • [Grant] United States / NIA NIH HHS / AG / AG024150
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Cytokines; 0U46U6E8UK / NAD; EC 2.4.2.12 / Nicotinamide Phosphoribosyltransferase; EC 2.4.2.12 / nicotinamide phosphoribosyltransferase, human; EC 3.5.1.- / SIRT1 protein, human; EC 3.5.1.- / Sirtuin 1
  •  go-up   go-down


52. Franchetti P, Petrelli R, Cappellacci L, Pasqualini M, Vita P, Sorci L, Mazzola F, Raffaelli N, Magni G: Synthesis and biological evaluation of NAD analogs as human pyridine nucleotide adenylyltransferase inhibitors. Nucleosides Nucleotides Nucleic Acids; 2005;24(5-7):477-9

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Synthesis and biological evaluation of NAD analogs as human pyridine nucleotide adenylyltransferase inhibitors.
  • NAD analogs modified at the ribose adenylyl moiety, named N-2'-MeAD and Na-2'-MeAD, were synthesized as ligands of pyridine nucleotide (NMN/NaMN) adenylyltransferase (NMNAT).
  • [MeSH-major] Enzyme Inhibitors / chemical synthesis. NAD / chemical synthesis. Nicotinamide-Nucleotide Adenylyltransferase / antagonists & inhibitors

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16247974.001).
  • [ISSN] 1525-7770
  • [Journal-full-title] Nucleosides, nucleotides & nucleic acids
  • [ISO-abbreviation] Nucleosides Nucleotides Nucleic Acids
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Enzyme Inhibitors; 0 / Ligands; 0U46U6E8UK / NAD; EC 2.7.7.1 / Nicotinamide-Nucleotide Adenylyltransferase
  •  go-up   go-down


53. Lu SP, Lin SJ: Regulation of yeast sirtuins by NAD(+) metabolism and calorie restriction. Biochim Biophys Acta; 2010 Aug;1804(8):1567-75
Saccharomyces Genome Database. Saccharomyces Genome Database .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Regulation of yeast sirtuins by NAD(+) metabolism and calorie restriction.
  • The Sir2 family proteins (sirtuins) are evolutionally conserved NAD(+) (nicotinamide adenine dinucleotide)-dependent protein deacetylases and ADP-ribosylases, which have been shown to play important roles in the regulation of stress response, gene transcription, cellular metabolism and longevity.
  • Recent studies have also suggested that sirtuins are downstream targets of calorie restriction (CR), which mediate CR-induced beneficial effects including life span extension in an NAD(+)-dependent manner.
  • This review focuses on discussing advances in studies of sirtuins and NAD(+) metabolism in genetically tractable model system, the budding yeast Saccharomyces cerevisiae.
  • These studies have unraveled key metabolic longevity factors in the CR signaling and NAD(+) biosynthesis pathways, which may also contribute to the regulation of sirtuin activity.
  • Many components of the NAD(+) biosynthesis pathway and CR signaling pathway are conserved in yeast and higher eukaryotes including humans.

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright 2009 Elsevier B.V. All rights reserved.
  • [Cites] Trends Biochem Sci. 1998 Apr;23(4):131-4 [9584615.001]
  • [Cites] Exp Cell Res. 1998 Dec 15;245(2):379-88 [9851879.001]
  • [Cites] Cell. 2004 Feb 6;116(3):405-15 [15016375.001]
  • [Cites] Science. 2004 Mar 26;303(5666):2011-5 [14976264.001]
  • [Cites] Nature. 2004 Aug 5;430(7000):686-9 [15254550.001]
  • [Cites] Mol Microbiol. 2004 Aug;53(4):1003-9 [15306006.001]
  • [Cites] J Biol Chem. 2004 Sep 17;279(38):40122-9 [15269219.001]
  • [Cites] PLoS Biol. 2004 Sep;2(9):E296 [15328540.001]
  • [Cites] Mol Cell Biol. 1986 Feb;6(2):688-702 [3023863.001]
  • [Cites] Genetics. 1987 May;116(1):9-22 [3297920.001]
  • [Cites] Cell. 1990 Nov 16;63(4):751-62 [2225075.001]
  • [Cites] Mol Gen Genet. 1992 Jun;233(3):355-62 [1620093.001]
  • [Cites] Genes Dev. 1993 Apr;7(4):592-604 [8458576.001]
  • [Cites] Microbiol Rev. 1993 Jun;57(2):383-401 [8393130.001]
  • [Cites] J Biol Chem. 1994 Jul 15;269(28):18638-45 [8034612.001]
  • [Cites] Genes Dev. 1995 Dec 1;9(23):2888-902 [7498786.001]
  • [Cites] Nature. 1996 Sep 5;383(6595):92-6 [8779721.001]
  • [Cites] Genes Dev. 1997 Jan 1;11(1):83-93 [9000052.001]
  • [Cites] Aging Cell. 2007 Oct;6(5):649-62 [17711561.001]
  • [Cites] Cell Metab. 2007 Oct;6(4):280-93 [17908557.001]
  • [Cites] Science. 1999 Feb 12;283(5404):981-5 [9974390.001]
  • [Cites] Cell. 1999 Apr 16;97(2):245-56 [10219245.001]
  • [Cites] Mol Cell. 1999 Apr;3(4):447-55 [10230397.001]
  • [Cites] Genes Dev. 1999 Oct 1;13(19):2570-80 [10521401.001]
  • [Cites] J Biol Chem. 1958 Aug;233(2):488-92 [13563526.001]
  • [Cites] J Biol Chem. 1958 Aug;233(2):493-500 [13563527.001]
  • [Cites] Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15998-6003 [15520384.001]
  • [Cites] Nature. 2005 Mar 3;434(7029):113-8 [15744310.001]
  • [Cites] Cell. 2005 May 20;121(4):515-27 [15907466.001]
  • [Cites] J Bacteriol. 2005 Jul;187(13):4410-20 [15968050.001]
  • [Cites] J Bacteriol. 2005 Jul;187(13):4521-30 [15968063.001]
  • [Cites] Circ Res. 2005 Jul 8;97(1):25-34 [15947248.001]
  • [Cites] Gene. 2005 Jul 18;354:22-7 [15890475.001]
  • [Cites] Science. 2005 Sep 16;309(5742):1861-4 [16051752.001]
  • [Cites] Curr Opin Chem Biol. 2005 Oct;9(5):431-40 [16122969.001]
  • [Cites] Science. 2005 Oct 14;310(5746):314-7 [16224023.001]
  • [Cites] Cell. 2005 Nov 18;123(4):655-67 [16286010.001]
  • [Cites] Science. 2005 Nov 18;310(5751):1193-6 [16293764.001]
  • [Cites] Cell. 2007 May 4;129(3):473-84 [17482543.001]
  • [Cites] Mol Cell. 2004 Aug 13;15(3):409-21 [15304221.001]
  • [Cites] Nature. 2007 May 31;447(7144):545-9 [17538612.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10877-81 [17581878.001]
  • [Cites] Ageing Res Rev. 2007 Aug;6(2):128-40 [17512264.001]
  • [Cites] PLoS Med. 2007 Mar;4(3):e76 [17341128.001]
  • [Cites] Nat Genet. 1999 Nov;23(3):281-5 [10545947.001]
  • [Cites] EMBO J. 1999 Nov 15;18(22):6448-54 [10562556.001]
  • [Cites] Nature. 2000 Feb 17;403(6771):795-800 [10693811.001]
  • [Cites] Proc Natl Acad Sci U S A. 2000 May 23;97(11):5807-11 [10811920.001]
  • [Cites] Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6658-63 [10841563.001]
  • [Cites] FEBS Lett. 2000 Jun 23;475(3):237-41 [10869563.001]
  • [Cites] Biochem Biophys Res Commun. 2000 Jul 5;273(2):793-8 [10873683.001]
  • [Cites] Science. 2000 Sep 22;289(5487):2126-8 [11000115.001]
  • [Cites] FASEB J. 2000 Nov;14(14):2135-7 [11024000.001]
  • [Cites] FEMS Microbiol Rev. 2001 Jan;25(1):15-37 [11152939.001]
  • [Cites] Nature. 2001 Mar 8;410(6825):227-30 [11242085.001]
  • [Cites] EMBO J. 2001 Jan 15;20(1-2):197-209 [11226170.001]
  • [Cites] Science. 2001 Apr 13;292(5515):288-90 [11292860.001]
  • [Cites] Mol Cell Biol. 2001 May;21(10):3514-22 [11313477.001]
  • [Cites] EMBO J. 2001 Aug 15;20(16):4522-35 [11500379.001]
  • [Cites] Mol Cell. 2001 Jul;8(1):45-55 [11511359.001]
  • [Cites] Int J Med Microbiol. 2001 Aug;291(3):219-25 [11554562.001]
  • [Cites] Mol Cell. 2001 Sep;8(3):489-98 [11583612.001]
  • [Cites] Genes Dev. 1997 Jan 15;11(2):241-54 [9009206.001]
  • [Cites] Genes Dev. 1997 Jan 15;11(2):255-69 [9009207.001]
  • [Cites] Science. 1997 Aug 29;277(5330):1313-6 [9271578.001]
  • [Cites] Cell. 1997 Dec 26;91(7):1033-42 [9428525.001]
  • [Cites] Mech Ageing Dev. 2006 Jan;127(1):48-56 [16280150.001]
  • [Cites] Science. 2005 Dec 9;310(5754):1641 [16339438.001]
  • [Cites] Genes Dev. 2006 Jan 15;20(2):174-84 [16418483.001]
  • [Cites] PLoS Genet. 2005 Nov;1(5):e69 [16311627.001]
  • [Cites] Annu Rev Biochem. 2006;75:435-65 [16756498.001]
  • [Cites] Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10224-9 [16788062.001]
  • [Cites] Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10230-5 [16790548.001]
  • [Cites] Curr Biol. 2006 Jul 11;16(13):1280-9 [16815704.001]
  • [Cites] Nat Struct Mol Biol. 2006 Jul;13(7):582-8 [16783377.001]
  • [Cites] J Neurosci. 2006 Aug 16;26(33):8484-91 [16914673.001]
  • [Cites] Cell. 2006 Sep 8;126(5):941-54 [16959573.001]
  • [Cites] Mol Biol Cell. 2006 Dec;17(12):5287-97 [17035629.001]
  • [Cites] EMBO Rep. 2006 Dec;7(12):1247-51 [17110954.001]
  • [Cites] Nature. 2006 Dec 14;444(7121):868-74 [17167475.001]
  • [Cites] Trends Biochem Sci. 2007 Jan;32(1):12-9 [17161604.001]
  • [Cites] J Biol Chem. 2007 Mar 2;282(9):6161-71 [17200108.001]
  • [Cites] Cell Mol Life Sci. 2007 Mar;64(6):752-67 [17260088.001]
  • [Cites] FASEB J. 2007 Apr;21(4):1271-5 [17215485.001]
  • [Cites] PLoS Biol. 2007 Oct 2;5(10):e261 [17914901.001]
  • [Cites] PLoS Biol. 2007 Oct 2;5(10):e263 [17914902.001]
  • [Cites] Cell Metab. 2007 Nov;6(5):363-75 [17983582.001]
  • [Cites] PLoS Genet. 2008 Jan;4(1):e13 [18225956.001]
  • [Cites] Genes Dev. 2008 Apr 1;22(7):931-44 [18381895.001]
  • [Cites] Nature. 2008 Apr 17;452(7189):887-91 [18344983.001]
  • [Cites] Cell. 2008 May 16;133(4):627-39 [18485871.001]
  • [Cites] Biochim Biophys Acta. 2008 Jul;1783(7):1280-5 [18445486.001]
  • [Cites] Genes Dev. 2008 Jul 1;22(13):1753-7 [18550784.001]
  • [Cites] Annu Rev Nutr. 2008;28:115-30 [18429699.001]
  • [Cites] Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18764-9 [19020097.001]
  • [Cites] PLoS One. 2009;4(4):e5212 [19381334.001]
  • [Cites] Nature. 2009 Jun 11;459(7248):802-7 [19516333.001]
  • [Cites] J Biol Chem. 2009 Jun 19;284(25):17110-9 [19416965.001]
  • [Cites] J Clin Invest. 2004 May;113(9):1318-27 [15124023.001]
  • [Cites] Genome Biol. 2004;5(5):224 [15128440.001]
  • [Cites] Cell. 2004 May 14;117(4):441-53 [15137938.001]
  • [Cites] Cell. 2004 May 14;117(4):495-502 [15137942.001]
  • [Cites] Nature. 2004 Jun 17;429(6993):771-6 [15175761.001]
  • [Cites] Science. 2004 Jul 16;305(5682):390-2 [15205477.001]
  • [Cites] Biochemistry. 2004 Aug 3;43(30):9877-87 [15274642.001]
  • [Cites] Mol Cell Biol. 2004 Aug;24(16):6931-46 [15282295.001]
  • [Cites] J Biol Chem. 2001 Oct 19;276(42):38837-43 [11483616.001]
  • [Cites] Cell. 2001 Oct 19;107(2):137-48 [11672522.001]
  • [Cites] Cell. 2001 Oct 19;107(2):149-59 [11672523.001]
  • [Cites] Yeast. 2002 Feb;19(3):215-24 [11816029.001]
  • [Cites] Genetics. 2002 Mar;160(3):877-89 [11901108.001]
  • [Cites] J Biol Chem. 2002 May 24;277(21):18881-90 [11884393.001]
  • [Cites] FEBS Lett. 2002 Apr 24;517(1-3):97-102 [12062417.001]
  • [Cites] Nature. 2002 Jul 18;418(6895):344-8 [12124627.001]
  • [Cites] Science. 2002 Aug 2;297(5582):811 [12161648.001]
  • [Cites] Exp Gerontol. 2002 Aug-Sep;37(8-9):1023-30 [12213553.001]
  • [Cites] J Biol Chem. 2002 Sep 13;277(37):34489-98 [12091395.001]
  • [Cites] Mol Cell Biol. 2002 Nov;22(22):8056-66 [12391171.001]
  • [Cites] J Biol Chem. 2002 Nov 22;277(47):45099-107 [12297502.001]
  • [Cites] Science. 2002 Dec 20;298(5602):2390-2 [12493915.001]
  • [Cites] Trends Biochem Sci. 2003 Jan;28(1):41-8 [12517451.001]
  • [Cites] Mol Cell. 2003 Feb;11(2):437-44 [12620231.001]
  • [Cites] Science. 2003 Mar 14;299(5613):1751-3 [12610228.001]
  • [Cites] Curr Opin Cell Biol. 2003 Apr;15(2):241-6 [12648681.001]
  • [Cites] Nature. 2003 May 8;423(6936):181-5 [12736687.001]
  • [Cites] Biochemistry. 2003 Aug 12;42(31):9249-56 [12899610.001]
  • [Cites] Mol Cell Biol. 2003 Oct;23(19):7044-54 [12972620.001]
  • [Cites] Science. 2003 Dec 19;302(5653):2124-6 [14605207.001]
  • [Cites] Genes Dev. 2004 Jan 1;18(1):12-6 [14724176.001]
  • [Cites] Mol Cell Biol. 2004 Feb;24(3):1301-12 [14729974.001]
  • (PMID = 19818879.001).
  • [ISSN] 0006-3002
  • [Journal-full-title] Biochimica et biophysica acta
  • [ISO-abbreviation] Biochim. Biophys. Acta
  • [Language] ENG
  • [Grant] United States / NIA NIH HHS / AG / R01 AG024351-02; United States / NIA NIH HHS / AG / AG024351-05; United States / BHP HRSA HHS / AH / R01-AH24351; United States / NIA NIH HHS / AG / AG024351-01; United States / NIA NIH HHS / AG / AG024351-02; United States / NIA NIH HHS / AG / R01 AG024351-03; United States / NIA NIH HHS / AG / AG024351-03; United States / NIA NIH HHS / AG / R01 AG024351-04; United States / NIA NIH HHS / AG / AG024351-04; United States / NIA NIH HHS / AG / R01 AG024351-05; United States / NIA NIH HHS / AG / R01 AG024351-01; United States / NIA NIH HHS / AG / R01 AG024351
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Review
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Silent Information Regulator Proteins, Saccharomyces cerevisiae; 0U46U6E8UK / NAD; EC 3.5.1.- / SIR2 protein, S cerevisiae; EC 3.5.1.- / Sirtuin 2
  • [Number-of-references] 132
  • [Other-IDs] NLM/ NIHMS151397; NLM/ PMC2886167
  •  go-up   go-down


54. Rossolillo P, Marinoni I, Galli E, Colosimo A, Albertini AM: YrxA is the transcriptional regulator that represses de novo NAD biosynthesis in Bacillus subtilis. J Bacteriol; 2005 Oct;187(20):7155-60
Hazardous Substances Data Bank. NICOTINIC ACID .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] YrxA is the transcriptional regulator that represses de novo NAD biosynthesis in Bacillus subtilis.
  • The first genetic, in vivo, and in vitro evidences that YrxA is the regulator of NAD de novo biosynthesis in Bacillus subtilis are hereby reported.
  • [MeSH-major] Bacillus subtilis / genetics. Bacillus subtilis / metabolism. Genes, Bacterial / physiology. NAD / biosynthesis

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Protein Expr Purif. 2000 Feb;18(1):64-70 [10648170.001]
  • [Cites] Microbiology. 1998 Nov;144 ( Pt 11):3097-104 [9846745.001]
  • [Cites] Vitam Horm. 2001;61:103-19 [11153263.001]
  • [Cites] J Mol Biol. 2001 Apr 13;307(5):1271-92 [11292341.001]
  • [Cites] Science. 2001 Oct 26;294(5543):849-52 [11679669.001]
  • [Cites] Science. 2002 Jun 14;296(5575):2028-33 [12004073.001]
  • [Cites] Drug Discov Today. 2003 Apr 15;8(8):335-6 [12681931.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4678-83 [12682299.001]
  • [Cites] Nature. 2003 May 1;423(6935):81-6 [12721629.001]
  • [Cites] Nature. 2003 May 1;423(6935):87-91 [12721630.001]
  • [Cites] J Bacteriol. 2003 Aug;185(16):4844-50 [12897004.001]
  • [Cites] Biochemistry. 2003 Oct 28;42(42):12430-8 [14567704.001]
  • [Cites] Genome Biol. 2004;5(10):R77 [15461803.001]
  • [Cites] Biochim Biophys Acta. 1968 Feb 1;156(1):77-84 [4296374.001]
  • [Cites] Biochim Biophys Acta. 1973 Apr 28;304(2):309-15 [4351074.001]
  • [Cites] J Bacteriol. 1975 Jan;121(1):212-8 [163810.001]
  • [Cites] Eur J Biochem. 1975 May;54(1):239-45 [238844.001]
  • [Cites] J Biol Chem. 1982 Jan 25;257(2):626-32 [7033218.001]
  • [Cites] J Gen Microbiol. 1985 Oct;131(10):2759-70 [3934331.001]
  • [Cites] Mol Gen Genet. 1987 Jun;208(1-2):279-87 [3039308.001]
  • [Cites] J Bacteriol. 1988 May;170(5):2113-20 [2834324.001]
  • [Cites] Eur J Biochem. 1988 Aug 1;175(2):221-8 [2841129.001]
  • [Cites] J Bacteriol. 1999 Jan;181(2):648-55 [9882682.001]
  • [Cites] Structure. 1999 Jul 15;7(7):745-56 [10425677.001]
  • [Cites] J Bacteriol. 1999 Sep;181(17):5509-11 [10464228.001]
  • [Cites] J Bacteriol. 1950 Jul;60(1):17-28 [15436457.001]
  • [Cites] J Bacteriol. 2005 Apr;187(8):2774-82 [15805524.001]
  • [Cites] Biol Chem Hoppe Seyler. 1990 Mar;371(3):239-48 [2187483.001]
  • [Cites] J Bacteriol. 1991 Feb;173(3):1311-20 [1991724.001]
  • [Cites] Genetics. 1991 Apr;127(4):657-70 [2029967.001]
  • [Cites] J Bacteriol. 1993 Mar;175(5):1423-32 [8444804.001]
  • [Cites] J Biol Chem. 1995 Mar 17;270(11):6181-5 [7890752.001]
  • [Cites] Nature. 1997 Nov 20;390(6657):249-56 [9384377.001]
  • [Cites] J Bacteriol. 1998 Sep;180(17):4739-41 [9721319.001]
  • [Cites] Nucleic Acids Res. 2000 Nov 1;28(21):4317-31 [11058132.001]
  • (PMID = 16199587.001).
  • [ISSN] 0021-9193
  • [Journal-full-title] Journal of bacteriology
  • [ISO-abbreviation] J. Bacteriol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Bacterial Proteins; 0 / nifS protein, Bacteria; 0U46U6E8UK / NAD; 2679MF687A / Niacin; EC 2.4.2.- / Pentosyltransferases; EC 6.3.4.21 / nicotinate phosphoribosyltransferase
  • [Other-IDs] NLM/ PMC1251630
  •  go-up   go-down


55. Houtkooper RH, Cantó C, Wanders RJ, Auwerx J: The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev; 2010 Apr;31(2):194-223
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways.
  • A century after the identification of a coenzymatic activity for NAD(+), NAD(+) metabolism has come into the spotlight again due to the potential therapeutic relevance of a set of enzymes whose activity is tightly regulated by the balance between the oxidized and reduced forms of this metabolite.
  • In fact, the actions of NAD(+) have been extended from being an oxidoreductase cofactor for single enzymatic activities to acting as substrate for a wide range of proteins.
  • These include NAD(+)-dependent protein deacetylases, poly(ADP-ribose) polymerases, and transcription factors that affect a large array of cellular functions.
  • Through these effects, NAD(+) provides a direct link between the cellular redox status and the control of signaling and transcriptional events.
  • Of particular interest within the metabolic/endocrine arena are the recent results, which indicate that the regulation of these NAD(+)-dependent pathways may have a major contribution to oxidative metabolism and life span extension.
  • 1) the pathways that control NAD(+) production and cycling, as well as its cellular compartmentalization;.
  • 2) the signaling and transcriptional pathways controlled by NAD(+); and 3) novel data that show how modulation of NAD(+)-producing and -consuming pathways have a major physiological impact and hold promise for the prevention and treatment of metabolic disease.
  • [MeSH-major] Metabolic Diseases / metabolism. NAD / metabolism

  • MedlinePlus Health Information. consumer health - Metabolic Disorders.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Biochimie. 1995;77(5):394-8 [8527495.001]
  • [Cites] Nat Med. 2009 Feb;15(2):151-8 [19182797.001]
  • [Cites] J Biol Chem. 2007 Mar 2;282(9):6823-32 [17197703.001]
  • [Cites] Nature. 2003 Sep 11;425(6954):191-6 [12939617.001]
  • [Cites] Biochem J. 2007 May 15;404(1):1-13 [17447894.001]
  • [Cites] J Nutr. 1995 Jun;125(6):1455-61 [7782898.001]
  • [Cites] Mol Cell. 2003 Jul;12(1):51-62 [12887892.001]
  • [Cites] Curr Top Cell Regul. 1982;21:175-87 [6291854.001]
  • [Cites] Cell Biochem Funct. 2002 Dec;20(4):309-22 [12415565.001]
  • [Cites] Eur J Biochem. 1979 Nov 1;101(1):135-42 [228934.001]
  • [Cites] J Biol Chem. 1958 Aug;233(2):488-92 [13563526.001]
  • [Cites] Genes Dev. 1999 Oct 1;13(19):2570-80 [10521401.001]
  • [Cites] Structure. 2005 Sep;13(9):1385-96 [16154095.001]
  • [Cites] J Biol Chem. 1982 Nov 10;257(21):12872-7 [6813330.001]
  • [Cites] Cell. 2006 Jan 27;124(2):315-29 [16439206.001]
  • [Cites] Biochem Pharmacol. 1977 Dec 1;26(23):2251-8 [73376.001]
  • [Cites] J Biol Chem. 2008 Mar 28;283(13):8075-9 [18258590.001]
  • [Cites] Cell. 2006 Oct 20;127(2):397-408 [17055439.001]
  • [Cites] J Biol Chem. 2007 Aug 24;282(34):24574-82 [17604275.001]
  • [Cites] J Biol Chem. 1999 Jun 18;274(25):17860-8 [10364231.001]
  • [Cites] Mol Cell Biol. 2003 May;23(9):3173-85 [12697818.001]
  • [Cites] Annu Rev Nutr. 2008;28:115-30 [18429699.001]
  • [Cites] J Biol Chem. 2004 Sep 17;279(38):40122-9 [15269219.001]
  • [Cites] J Cell Biol. 2002 Aug 19;158(4):647-57 [12186850.001]
  • [Cites] FEBS Lett. 2001 Mar 9;492(1-2):95-100 [11248244.001]
  • [Cites] Cell Metab. 2006 Jan;3(1):35-45 [16399503.001]
  • [Cites] J Pharmacol Exp Ther. 2008 Mar;324(3):883-93 [18165311.001]
  • [Cites] PLoS Biol. 2006 Feb;4(2):e31 [16366736.001]
  • [Cites] Curr Biol. 2003 Apr 15;13(8):669-73 [12699624.001]
  • [Cites] J Cell Physiol. 1976 Jun;88(2):207-17 [178671.001]
  • [Cites] Science. 2009 May 1;324(5927):651-4 [19299583.001]
  • [Cites] Nature. 2005 Mar 3;434(7029):113-8 [15744310.001]
  • [Cites] Genes Dev. 2006 May 1;20(9):1075-80 [16618798.001]
  • [Cites] Proc Natl Acad Sci U S A. 1979 Aug;76(8):4084-6 [291064.001]
  • [Cites] Mol Cell Biol. 2006 Nov;26(21):8122-35 [16923962.001]
  • [Cites] Science. 2004 Mar 26;303(5666):2011-5 [14976264.001]
  • [Cites] Nature. 2008 Mar 27;452(7186):492-6 [18337721.001]
  • [Cites] Nature. 2004 Aug 5;430(7000):686-9 [15254550.001]
  • [Cites] FASEB J. 2007 Nov;21(13):3629-39 [17585054.001]
  • [Cites] Cell. 2008 Jul 25;134(2):329-40 [18662547.001]
  • [Cites] J Biol Chem. 2009 Jun 19;284(25):17110-9 [19416965.001]
  • [Cites] Science. 2006 Jun 23;312(5781):1798-802 [16794079.001]
  • [Cites] Cell. 2007 Sep 21;130(6):1095-107 [17889652.001]
  • [Cites] FASEB J. 1992 Aug;6(11):2977-89 [1322853.001]
  • [Cites] PLoS Med. 2007 Mar;4(3):e76 [17341128.001]
  • [Cites] Curr Med Chem. 2009;16(11):1372-90 [19355893.001]
  • [Cites] Biochem Biophys Res Commun. 2009 Jan 23;378(4):836-41 [19071085.001]
  • [Cites] Oncogene. 2007 Feb 15;26(7):945-57 [16909107.001]
  • [Cites] Nature. 2003 May 8;423(6936):181-5 [12736687.001]
  • [Cites] Nat Med. 2003 Mar;9(3):352-5 [12563315.001]
  • [Cites] J Biol Chem. 1972 Feb 10;247(3):778-83 [4333514.001]
  • [Cites] EMBO J. 1995 Jul 17;14(14):3480-6 [7628449.001]
  • [Cites] Anal Biochem. 2006 May 15;352(2):282-5 [16574057.001]
  • [Cites] Trends Biochem Sci. 2004 Mar;29(3):111-8 [15003268.001]
  • [Cites] Cell Metab. 2007 Nov;6(5):363-75 [17983582.001]
  • [Cites] Brain. 1992 Oct;115 ( Pt 5):1249-73 [1422788.001]
  • [Cites] Nature. 2007 Nov 29;450(7170):712-6 [18046409.001]
  • [Cites] J Biol Chem. 2007 Apr 13;282(15):10841-5 [17307730.001]
  • [Cites] Prog Neurobiol. 2007 Oct;83(3):174-91 [17822833.001]
  • [Cites] Cell Metab. 2008 Aug;8(2):157-68 [18599363.001]
  • [Cites] Nat Rev Mol Cell Biol. 2003 Aug;4(8):641-9 [12923526.001]
  • [Cites] J Neurosci. 2003 Apr 1;23(7):2833-9 [12684470.001]
  • [Cites] Nature. 2000 Feb 17;403(6771):795-800 [10693811.001]
  • [Cites] Nat Rev Cancer. 2009 Feb;9(2):123-8 [19132007.001]
  • [Cites] Cell. 2005 Feb 25;120(4):449-60 [15734678.001]
  • [Cites] Cell Metab. 2007 Jun;5(6):426-37 [17550778.001]
  • [Cites] Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10230-5 [16790548.001]
  • [Cites] Nature. 2001 Sep 13;413(6852):131-8 [11557972.001]
  • [Cites] J Biol Chem. 1998 Nov 13;273(46):30069-72 [9804757.001]
  • [Cites] J Biol Chem. 2005 Jun 3;280(22):21313-20 [15795229.001]
  • [Cites] Nature. 2006 Oct 19;443(7113):787-95 [17051205.001]
  • [Cites] Arch Biochem Biophys. 1955 Feb;54(2):558-9 [14350806.001]
  • [Cites] Biochem J. 1985 Sep 15;230(3):635-8 [3877502.001]
  • [Cites] J Biol Chem. 2006 Aug 4;281(31):21745-54 [16751189.001]
  • [Cites] Genomics. 1999 May 1;57(3):442-5 [10329013.001]
  • [Cites] J Biol Chem. 2002 Jun 21;277(25):23028-36 [11948190.001]
  • [Cites] Nature. 2002 Jul 18;418(6895):344-8 [12124627.001]
  • [Cites] J Microsc. 2008 Aug;231(2):299-316 [18778428.001]
  • [Cites] J Biochem. 1988 Jun;103(6):1054-9 [3139649.001]
  • [Cites] Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3059-64 [10077636.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12861-6 [17646659.001]
  • [Cites] Protein Sci. 2009 Mar;18(3):514-25 [19241369.001]
  • [Cites] J Biol Chem. 1996 Aug 9;271(32):19140-5 [8702590.001]
  • [Cites] Int J Mol Med. 2005 Aug;16(2):237-43 [16012755.001]
  • [Cites] Cell Cycle. 2006 Apr;5(8):873-7 [16628003.001]
  • [Cites] FEMS Microbiol Rev. 2001 Jan;25(1):15-37 [11152939.001]
  • [Cites] Curr Biol. 2004 Feb 17;14(4):326-30 [14972684.001]
  • [Cites] Nat Rev Cancer. 2009 Jun;9(6):445-52 [19461669.001]
  • [Cites] Nat Neurosci. 2001 Dec;4(12):1199-206 [11770485.001]
  • [Cites] J Neurosci. 2007 Mar 7;27(10):2606-16 [17344398.001]
  • [Cites] Toxicol Appl Pharmacol. 1999 Jul 1;158(1):71-80 [10387934.001]
  • [Cites] Science. 2009 May 1;324(5927):654-7 [19286518.001]
  • [Cites] Nature. 2001 Mar 8;410(6825):227-30 [11242085.001]
  • [Cites] Diabetes. 2006 Jul;55(7):2153-6 [16804088.001]
  • [Cites] Ann Med. 2007;39(5):335-45 [17701476.001]
  • [Cites] Life Sci. 2008 Jan 16;82(3-4):205-9 [18078960.001]
  • [Cites] Cell. 2009 May 1;137(3):560-70 [19410549.001]
  • [Cites] Biochim Biophys Acta. 2000 Jan 3;1500(1):119-24 [10564724.001]
  • [Cites] J Biol Chem. 2007 Nov 16;282(46):33583-92 [17715127.001]
  • [Cites] Epilepsia. 1988 Sep-Oct;29(5):523-9 [3409840.001]
  • [Cites] Annu Rev Biochem. 2006;75:435-65 [16756498.001]
  • [Cites] Diabetologia. 2007 Dec;50(12):2476-85 [17922105.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):829-33 [17213307.001]
  • [Cites] Radiat Res. 1985 Jan;101(1):4-15 [3155867.001]
  • [Cites] J Neurosci. 2009 Apr 29;29(17):5525-35 [19403820.001]
  • [Cites] Mol Endocrinol. 2008 Apr;22(4):1006-14 [18187602.001]
  • [Cites] Trends Endocrinol Metab. 2009 Apr;20(3):130-8 [19109034.001]
  • [Cites] Br J Nutr. 1988 Mar;59(2):279-87 [2965917.001]
  • [Cites] Am J Pathol. 1998 Feb;152(2):611-9 [9466588.001]
  • [Cites] J Immunol. 2000 Apr 1;164(7):3596-9 [10725715.001]
  • [Cites] Cell. 2004 May 14;117(4):495-502 [15137942.001]
  • [Cites] Biochem Biophys Res Commun. 2002 Oct 4;297(4):835-40 [12359228.001]
  • [Cites] Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13653-8 [12374852.001]
  • [Cites] FEBS J. 2005 Sep;272(18):4576-89 [16156780.001]
  • [Cites] Cancer Res. 2003 Nov 1;63(21):7436-42 [14612543.001]
  • [Cites] Cell. 2001 Oct 19;107(2):149-59 [11672523.001]
  • [Cites] Mol Aspects Med. 1983;6(2):101-97 [6371429.001]
  • [Cites] Genes Dev. 2006 May 15;20(10):1256-61 [16648462.001]
  • [Cites] FEBS Lett. 2003 Jun 5;544(1-3):74-8 [12782293.001]
  • [Cites] J Biol Chem. 2005 Apr 8;280(14):13560-7 [15653680.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9202-7 [12872005.001]
  • [Cites] J Biol Chem. 2009 Jul 24;284(30):20408-17 [19478080.001]
  • [Cites] AAPS J. 2006;8(4):E632-43 [17233528.001]
  • [Cites] Cell. 2008 Aug 8;134(3):405-15 [18674809.001]
  • [Cites] Cell Metab. 2005 Aug;2(2):105-17 [16098828.001]
  • [Cites] J Biol Chem. 2003 Mar 28;278(13):10914-21 [12547821.001]
  • [Cites] J Biol Chem. 2004 Dec 3;279(49):50754-63 [15381699.001]
  • [Cites] Yeast. 2002 Feb;19(3):215-24 [11816029.001]
  • [Cites] J Biol Chem. 2005 Dec 30;280(52):43121-30 [16207712.001]
  • [Cites] Trends Endocrinol Metab. 2006 Jul;17(5):186-91 [16684606.001]
  • [Cites] Cell Metab. 2006 Jun;3(6):429-38 [16753578.001]
  • [Cites] Mol Cell Biol. 2007 Dec;27(24):8807-14 [17923681.001]
  • [Cites] J Biol Chem. 1948 Dec;176(3):1475 [18098602.001]
  • [Cites] Exp Cell Res. 1985 Oct;160(2):419-26 [2931297.001]
  • [Cites] Biochemistry. 1998 Sep 22;37(38):13239-49 [9748331.001]
  • [Cites] J Neurosci. 2006 Aug 16;26(33):8484-91 [16914673.001]
  • [Cites] Cell Mol Life Sci. 2004 Jan;61(1):19-34 [14704851.001]
  • [Cites] Gene. 2002 Feb 6;284(1-2):23-9 [11891043.001]
  • [Cites] Cell Death Differ. 2002 Oct;9(10):1069-77 [12232795.001]
  • [Cites] Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10763-8 [8855254.001]
  • [Cites] Mol Biol Cell. 2005 Oct;16(10):4623-35 [16079181.001]
  • [Cites] Bioessays. 2003 Jul;25(7):683-90 [12815723.001]
  • [Cites] Lancet. 2004 Mar 20;363(9413):925-31 [15043959.001]
  • [Cites] Genes Dev. 2007 Apr 15;21(8):920-8 [17437997.001]
  • [Cites] Nat Rev Mol Cell Biol. 2007 Sep;8(9):681-91 [17684529.001]
  • [Cites] J Biol Chem. 2003 Apr 11;278(15):13503-11 [12574164.001]
  • [Cites] Genes Dev. 2000 May 1;14(9):1021-6 [10809662.001]
  • [Cites] Eur J Pharmacol. 1981 Jul 10;72(4):411-2 [6268428.001]
  • [Cites] J Biol Chem. 2006 Mar 10;281(10):6120-3 [16436388.001]
  • [Cites] Biochim Biophys Acta. 1978 Nov 1;543(4):576-82 [214144.001]
  • [Cites] Mol Pharmacol. 2005 Jan;67(1):273-9 [15486050.001]
  • [Cites] Biochimie. 1995;77(6):403-7 [7578422.001]
  • [Cites] Biochim Biophys Acta. 2006 May-Jun;1757(5-6):721-6 [16730324.001]
  • [Cites] Immunology. 2002 Dec;107(4):452-60 [12460190.001]
  • [Cites] Biochem Biophys Res Commun. 2003 Sep 26;309(3):558-66 [12963026.001]
  • [Cites] J Comp Neurol. 1990 May 1;295(1):71-82 [2341637.001]
  • [Cites] Genes Dev. 2008 Apr 1;22(7):931-44 [18381895.001]
  • [Cites] J Neurosci. 2008 May 7;28(19):4861-71 [18463239.001]
  • [Cites] Genomics. 2001 Apr 15;73(2):211-22 [11318611.001]
  • [Cites] Nat Rev Neurosci. 2005 Nov;6(11):889-98 [16224497.001]
  • [Cites] Annu Rev Biochem. 1960;29:669-708 [14409905.001]
  • [Cites] Biochemistry. 1990 Mar 13;29(10):2501-6 [2159322.001]
  • [Cites] Nat Med. 1999 Mar;5(3):314-9 [10086388.001]
  • [Cites] Cell. 2008 Jul 25;134(2):317-28 [18662546.001]
  • [Cites] Nature. 2009 Apr 23;458(7241):1056-60 [19262508.001]
  • [Cites] Biochem Biophys Res Commun. 2006 Mar 3;341(1):67-72 [16412381.001]
  • [Cites] Microbes Infect. 2003 Jan;5(1):49-58 [12593973.001]
  • [Cites] Proc Natl Acad Sci U S A. 1978 Aug;75(8):3998-4000 [279015.001]
  • [Cites] J Physiol Pharmacol. 2008 Dec;59 Suppl 9:201-12 [19261981.001]
  • [Cites] Biochem Biophys Res Commun. 1963 Apr 2;11:39-43 [14019961.001]
  • [Cites] Br J Nutr. 1982 Jul;48(1):119-27 [6213259.001]
  • [Cites] Can J Vet Res. 2003 Jul;67(3):229-31 [12889731.001]
  • [Cites] Microbiol Mol Biol Rev. 2006 Sep;70(3):789-829 [16959969.001]
  • [Cites] Cell. 2006 Sep 8;126(5):941-54 [16959573.001]
  • [Cites] Science. 2004 Aug 13;305(5686):1010-3 [15310905.001]
  • [Cites] Genes Dev. 2008 Jul 1;22(13):1753-7 [18550784.001]
  • [Cites] Nature. 1981 Nov 19;294(5838):284-6 [6272129.001]
  • [Cites] Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11377-82 [11027338.001]
  • [Cites] Science. 2005 Jan 21;307(5708):426-30 [15604363.001]
  • [Cites] Nat Rev Mol Cell Biol. 2005 Apr;6(4):298-305 [15768047.001]
  • [Cites] Brain Res. 1985 Jun 17;336(2):207-14 [3159462.001]
  • [Cites] J Biol Chem. 1962 Mar;237:929-35 [14452547.001]
  • [Cites] Science. 2000 Sep 22;289(5487):2126-8 [11000115.001]
  • [Cites] J Biol Chem. 2001 Jan 5;276(1):406-12 [11027696.001]
  • [Cites] Cell Metab. 2007 Aug;6(2):105-14 [17681146.001]
  • [Cites] Nat Rev Mol Cell Biol. 2006 Jul;7(7):517-28 [16829982.001]
  • [Cites] Cell Death Differ. 2007 Jan;14(1):116-27 [16645633.001]
  • [Cites] Mol Med. 2006 Nov-Dec;12(11-12):334-41 [17380201.001]
  • [Cites] Exp Gerontol. 2003 Nov-Dec;38(11-12):1353-64 [14698816.001]
  • [Cites] J Biol Chem. 2005 Oct 28;280(43):36334-41 [16118205.001]
  • [Cites] Cell Metab. 2008 Oct;8(4):333-41 [18840364.001]
  • [Cites] J Nutr. 2002 Jan;132(1):108-14 [11773516.001]
  • [Cites] Mol Cell. 2003 Feb;11(2):437-44 [12620231.001]
  • [Cites] Genes Dev. 2004 Jan 1;18(1):12-6 [14724176.001]
  • [Cites] J Biol Chem. 1993 Oct 25;268(30):22575-80 [8226768.001]
  • [Cites] J Biol Chem. 1965 Mar;240:1395-401 [14284754.001]
  • [Cites] Biochem Biophys Res Commun. 2006 Jul 14;345(4):1386-92 [16730329.001]
  • [Cites] J Biol Chem. 2008 Dec 12;283(50):34833-43 [18945671.001]
  • [Cites] Mol Endocrinol. 2006 Jul;20(7):1479-93 [16497729.001]
  • [Cites] Mol Med. 2006 Nov-Dec;12(11-12):317-23 [17380198.001]
  • [Cites] Nat Genet. 2005 Apr;37(4):349-50 [15793589.001]
  • [Cites] Cell Metab. 2007 Oct;6(4):307-19 [17908559.001]
  • [Cites] Diabetologia. 2000 Nov;43(11):1337-45 [11126400.001]
  • [Cites] Nature. 2004 Jun 17;429(6993):771-6 [15175761.001]
  • [Cites] Nature. 2003 May 29;423(6939):550-5 [12754525.001]
  • [Cites] Biochem J. 2001 Sep 1;358(Pt 2):399-406 [11513738.001]
  • [Cites] Biochem J. 2008 Apr 15;411(2):e11-3 [18363549.001]
  • [Cites] EMBO J. 2007 Apr 4;26(7):1913-23 [17347648.001]
  • [Cites] J Biol Chem. 2003 Aug 29;278(35):33056-9 [12777395.001]
  • [Cites] Dev Cell. 2008 May;14(5):661-73 [18477450.001]
  • [Cites] Am J Physiol. 1996 Oct;271(4 Pt 1):C1007-24 [8897805.001]
  • [Cites] Cell. 2006 Dec 15;127(6):1109-22 [17112576.001]
  • [Cites] Int J Dermatol. 2004 Jan;43(1):1-5 [14693013.001]
  • [Cites] J Biol Chem. 2007 Dec 28;282(52):37738-46 [17951580.001]
  • [Cites] Mol Cell Biol. 2008 Jan;28(2):814-24 [17991898.001]
  • [Cites] Biochem Biophys Res Commun. 2006 Oct 13;349(1):353-9 [16935261.001]
  • [Cites] Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15998-6003 [15520384.001]
  • [Cites] Genomics. 2005 Feb;85(2):258-63 [15676284.001]
  • [Cites] Anal Biochem. 2009 Nov 1;394(1):101-9 [19615966.001]
  • [Cites] J Clin Invest. 2005 Jun;115(6):1627-35 [15902306.001]
  • [Cites] Biochem J. 1999 Sep 1;342 ( Pt 2):249-68 [10455009.001]
  • [Cites] Cell Metab. 2008 Nov;8(5):347-58 [19046567.001]
  • [Cites] Nature. 2006 Nov 16;444(7117):337-42 [17086191.001]
  • [Cites] J Cell Physiol. 1975 Dec;86 Suppl 2(3 Pt 2):641-51 [172520.001]
  • [Cites] Science. 2007 Oct 26;318(5850):565 [17962537.001]
  • [Cites] Biochem J. 1988 Aug 15;254(1):1-10 [3052428.001]
  • [Cites] Circ Res. 2008 Mar 28;102(6):703-10 [18239138.001]
  • [Cites] Nature. 2001 Sep 13;413(6852):179-83 [11557984.001]
  • [Cites] Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14447-52 [18794531.001]
  • [Cites] Mol Cell Biol. 1994 Feb;14(2):1431-7 [8289818.001]
  • [Cites] Physiol Rev. 2008 Jul;88(3):841-86 [18626062.001]
  • [Cites] Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10224-9 [16788062.001]
  • [Cites] Hum Mol Genet. 2007 Oct 1;16(19):2261-71 [17616514.001]
  • [Cites] Genomics. 1995 Sep 20;29(2):390-6 [8666386.001]
  • [Cites] J Clin Invest. 2004 May;113(9):1318-27 [15124023.001]
  • [Cites] Cell. 2004 Oct 1;119(1):121-35 [15454086.001]
  • [Cites] Cell Metab. 2005 Sep;2(3):153-63 [16154098.001]
  • [Cites] Curr Opin Cell Biol. 2008 Jun;20(3):303-9 [18468877.001]
  • [Cites] Arch Biochem Biophys. 1977 Nov;184(1):222-36 [21628.001]
  • [Cites] Antimicrob Agents Chemother. 1996 Jun;40(6):1426-31 [8726014.001]
  • [Cites] J Biol Chem. 2002 Nov 22;277(47):45099-107 [12297502.001]
  • [Cites] FEBS Lett. 2001 Mar 9;492(1-2):4-8 [11248227.001]
  • (PMID = 20007326.001).
  • [ISSN] 1945-7189
  • [Journal-full-title] Endocrine reviews
  • [ISO-abbreviation] Endocr. Rev.
  • [Language] eng
  • [Grant] International / European Research Council / / 231138; United States / NIDDK NIH HHS / DK / P01 DK059820; United States / NIDDK NIH HHS / DK / DK59820
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0U46U6E8UK / NAD; EC 1.- / Oxidoreductases
  • [Number-of-references] 248
  • [Other-IDs] NLM/ PMC2852209
  •  go-up   go-down


56. Mori S, Kawai S, Shi F, Mikami B, Murata K: Molecular conversion of NAD kinase to NADH kinase through single amino acid residue substitution. J Biol Chem; 2005 Jun 24;280(25):24104-12
Gene Ontology. gene/protein/disease-specific - Gene Ontology annotations from this paper .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Molecular conversion of NAD kinase to NADH kinase through single amino acid residue substitution.
  • NAD kinase phosphorylates NAD+ to form NADP+ and is strictly specific to NAD+, whereas NADH kinase phosphorylates both NAD+ and NADH, thereby showing relaxed substrate specificity.
  • Based on their primary and tertiary structures, the difference in the substrate specificities between NAD and NADH kinases was proposed to be caused by one aligned residue: Gly or polar amino acid (Gln or Thr) in five NADH kinases and a charged amino acid (Arg) in two NAD kinases.
  • The substitution of Arg with Gly in the two NAD kinases relaxed the substrate specificity (i.e. converted the NAD kinases to NADH kinases).
  • The substitution of Arg in one NAD kinase with polar amino acids also relaxed the substrate specificity, whereas substitution with charged and hydrophobic amino acids did not show a similar result.
  • In contrast, the substitution of Gly with Arg in one NADH kinase failed to convert it to NAD kinase.
  • These results suggest that a charged or hydrophobic amino acid residue in the position of interest is crucial for strict specificity of NAD kinases to NAD+, whereas Gly or polar amino acid residue is not the sole determinant for the relaxed substrate specificity of NADH kinases.
  • The significance of the conservation of the residue at the position in 207 NAD kinase homologues is also discussed.

  • BioCyc. gene/protein/disease-specific - nadK .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15855156.001).
  • [ISSN] 0021-9258
  • [Journal-full-title] The Journal of biological chemistry
  • [ISO-abbreviation] J. Biol. Chem.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Amino Acids; EC 2.7.1.- / Phosphotransferases (Alcohol Group Acceptor); EC 2.7.1.23 / NAD kinase
  •  go-up   go-down


57. Sorci L, Blaby I, De Ingeniis J, Gerdes S, Raffaelli N, de Crécy Lagard V, Osterman A: Genomics-driven reconstruction of acinetobacter NAD metabolism: insights for antibacterial target selection. J Biol Chem; 2010 Dec 10;285(50):39490-9
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Genomics-driven reconstruction of acinetobacter NAD metabolism: insights for antibacterial target selection.
  • Enzymes involved in the last steps of NAD biogenesis, nicotinate mononucleotide adenylyltransferase (NadD) and NAD synthetase (NadE), are conserved and essential in most bacterial species and are established targets for antibacterial drug development.
  • Our genomics-based reconstruction of NAD metabolism in the emerging pathogen Acinetobacter baumannii revealed unique features suggesting an alternative targeting strategy.
  • We combined bioinformatics with genetic and biochemical techniques to elucidate this and other important features of Acinetobacter NAD metabolism using a model (nonpathogenic) strain Acinetobacter baylyi sp. ADP1.
  • Thus, a comparative kinetic characterization of PncA, PncB, and NadV enzymes allowed us to suggest distinct physiological roles for the two alternative, deamidating and nondeamidating, routes of nicotinamide salvage/recycling.
  • The role of the NiaP transporter in both nicotinate and nicotinamide salvage was confirmed.
  • The NadM enzyme was shown to possess dual substrate specificity toward both nicotinate and nicotinamide mononucleotide substrates, which is consistent with its essential role in all three routes of NAD biogenesis, de novo synthesis as well as the two salvage pathways.
  • In contrast, nadE, encoding a glutamine-dependent NAD synthetase, proved to be dispensable when the nondeamidating salvage pathway functioned as the only route of NAD biogenesis.
  • [MeSH-major] Acinetobacter baumannii / metabolism. Anti-Bacterial Agents / pharmacology. Genomics. NAD / chemistry
  • [MeSH-minor] Cloning, Molecular. Computational Biology / methods. Escherichia coli / metabolism. Humans. Kinetics. Models, Chemical. Models, Genetic. Mutation. Nicotinamide-Nucleotide Adenylyltransferase / metabolism. Phenotype. Reverse Transcriptase Polymerase Chain Reaction

  • MedlinePlus Health Information. consumer health - Antibiotics.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Nucleic Acids Res. 2004;32(19):5766-79 [15514110.001]
  • [Cites] Chem Biol. 2009 Aug 28;16(8):849-61 [19716475.001]
  • [Cites] Biochemistry. 1994 Nov 22;33(46):13662-7 [7947774.001]
  • [Cites] FEBS Lett. 1994 Dec 5;355(3):233-6 [7988679.001]
  • [Cites] J Bacteriol. 1997 Dec;179(24):7718-23 [9401030.001]
  • [Cites] Biochemistry. 1998 Mar 24;37(12):4189-99 [9521741.001]
  • [Cites] Microbiol Mol Biol Rev. 2009 Sep;73(3):529-41, Table of Contents [19721089.001]
  • [Cites] Curr Opin Microbiol. 2009 Oct;12(5):568-76 [19709925.001]
  • [Cites] Angew Chem Int Ed Engl. 2009;48(48):9176-9 [19859929.001]
  • [Cites] Nucleic Acids Res. 2010 Jan;38(Database issue):D111-8 [19884135.001]
  • [Cites] Nucleic Acids Res. 2010 Jan;38(Database issue):D396-400 [19906701.001]
  • [Cites] Mol Microbiol. 2010 Apr;76(2):365-77 [20199601.001]
  • [Cites] J Comb Chem. 2009 Jul-Aug;11(4):617-25 [19408950.001]
  • [Cites] J Med Chem. 2010 Jul 22;53(14):5229-39 [20578699.001]
  • [Cites] Appl Environ Microbiol. 2010 Aug;76(16):5488-95 [20601509.001]
  • [Cites] Mol Syst Biol. 2010 Sep 7;6:408 [20823846.001]
  • [Cites] J Bacteriol. 1998 Nov;180(22):5809-14 [9811635.001]
  • [Cites] FEBS Lett. 1999 Feb 12;444(2-3):222-6 [10050763.001]
  • [Cites] Nucleic Acids Res. 2005;33(17):5691-702 [16214803.001]
  • [Cites] J Biol Chem. 2005 Oct 28;280(43):36334-41 [16118205.001]
  • [Cites] Cell Mol Life Sci. 2006 Jan;63(2):123-43 [16378245.001]
  • [Cites] J Bacteriol. 2006 Apr;188(8):3012-23 [16585762.001]
  • [Cites] Nat Struct Mol Biol. 2006 Jul;13(7):582-8 [16783377.001]
  • [Cites] J Bacteriol. 2006 Oct;188(19):6719-27 [16980474.001]
  • [Cites] Prog Drug Res. 2007;64:131, 133-70 [17195474.001]
  • [Cites] Biochemistry. 2007 Apr 24;46(16):4912-22 [17402747.001]
  • [Cites] J Bacteriol. 2001 Jan;183(1):292-300 [11114929.001]
  • [Cites] Microbiology. 2002 Jan;148(Pt 1):325-32 [11782525.001]
  • [Cites] Proteins. 2002 Jul 1;48(1):1-14 [12012333.001]
  • [Cites] J Bacteriol. 2002 Aug;184(16):4555-72 [12142426.001]
  • [Cites] Eur J Immunol. 2002 Nov;32(11):3225-34 [12555668.001]
  • [Cites] J Biol Chem. 2003 Aug 29;278(35):33049-55 [12771147.001]
  • [Cites] Appl Environ Microbiol. 2003 Oct;69(10):5892-7 [14532041.001]
  • [Cites] J Antimicrob Chemother. 2007 Jun;59(6):1210-5 [17324960.001]
  • [Cites] J Med Chem. 2007 May 31;50(11):2612-21 [17489580.001]
  • [Cites] Nat Rev Microbiol. 2007 Dec;5(12):939-51 [18007677.001]
  • [Cites] Structure. 2008 Feb;16(2):196-209 [18275811.001]
  • [Cites] Mol Syst Biol. 2008;4:174 [18319726.001]
  • [Cites] Nucleic Acids Res. 2008 Apr;36(6):2047-59 [18276643.001]
  • [Cites] Nucleic Acids Res. 2008 Apr;36(6):2032-46 [18276644.001]
  • [Cites] J Biol Chem. 2008 Jul 11;283(28):19329-41 [18490451.001]
  • [Cites] Biochemistry. 2008 Oct 21;47(42):11086-96 [18823127.001]
  • [Cites] Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3083-8 [19204287.001]
  • [Cites] Bioorg Med Chem Lett. 2009 Apr 1;19(7):2001-5 [19249205.001]
  • [Cites] Nat Struct Mol Biol. 2009 Apr;16(4):421-9 [19270703.001]
  • [Cites] Curr Med Chem. 2009;16(11):1372-90 [19355893.001]
  • [Cites] Nucleic Acids Res. 2004;32(19):5780-90 [15514111.001]
  • (PMID = 20926389.001).
  • [ISSN] 1083-351X
  • [Journal-full-title] The Journal of biological chemistry
  • [ISO-abbreviation] J. Biol. Chem.
  • [Language] eng
  • [Grant] United States / NIAID NIH HHS / AI / R01 AI066244
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Anti-Bacterial Agents; 0U46U6E8UK / NAD; EC 2.7.7.1 / Nicotinamide-Nucleotide Adenylyltransferase; EC 2.7.7.18 / nicotinic acid mononucleotide adenylyltransferase
  • [Other-IDs] NLM/ PMC2998121
  •  go-up   go-down


58. Sporty J, Lin SJ, Kato M, Ognibene T, Stewart B, Turteltaub K, Bench G: Quantitation of NAD+ biosynthesis from the salvage pathway in Saccharomyces cerevisiae. Yeast; 2009 Jul;26(7):363-9
Saccharomyces Genome Database. Saccharomyces Genome Database .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Quantitation of NAD+ biosynthesis from the salvage pathway in Saccharomyces cerevisiae.
  • Nicotinamide adenine dinucleotide (NAD+) is synthesized via two major pathways in prokaryotic and eukaryotic systems: the de novo biosynthesis pathway from tryptophan precursors, or the salvage biosynthesis pathway from either extracellular nicotinic acid or various intracellular NAD+ decomposition products.
  • NAD+ biosynthesis via the salvage pathway has been linked to an increase in yeast replicative lifespan under calorie restriction (CR).
  • However, the relative contribution of each pathway to NAD+ biosynthesis under both normal and CR conditions is not known.
  • Here, we have performed lifespan, NAD+ and NADH (the reduced form of NAD+) analyses on BY4742 wild-type, NAD+ salvage pathway knockout (npt1Delta) and NAD+ de novo pathway knockout (qpt1Delta) yeast strains cultured in media containing either 2% glucose (normal growth) or 0.5% glucose (CR).
  • We have utilized 14C labelled nicotinic acid in the culture media combined with HPLC speciation and both UV and 14C detection to quantitate the total amounts of NAD+ and NADH and the amounts derived from the salvage pathway.
  • We observed that wild-type and qpt1Delta yeast exclusively utilized extracellular nicotinic acid for NAD+ and NADH biosynthesis under both the 2% and 0.5% glucose growth conditions, suggesting that the de novo pathway plays little role if a functional salvage pathway is present.
  • We also observed that NAD+ concentrations decreased in all three strains under CR.
  • However, unlike the wild-type strain, NADH concentrations did not decrease and NAD+: NADH ratios did not increase under CR for either knockout strain.

  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. GLUCOSE .
  • Hazardous Substances Data Bank. NICOTINIC ACID .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19399913.001).
  • [ISSN] 1097-0061
  • [Journal-full-title] Yeast (Chichester, England)
  • [ISO-abbreviation] Yeast
  • [Language] ENG
  • [Grant] United States / NCRR NIH HHS / RR / P41 RR013461; United States / NIGMS NIH HHS / GM / P41 GM103483; United States / NCRR NIH HHS / RR / RR013461-11; United States / NCRR NIH HHS / RR / P41 RR013461-11; United States / NIA NIH HHS / AG / R01 AG024351
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Carbon Radioisotopes; 0 / Culture Media; 0U46U6E8UK / NAD; 2679MF687A / Niacin; EC 2.4.2.- / Pentosyltransferases; EC 2.4.2.19 / nicotinate-nucleotide diphosphorylase (carboxylating); EC 6.3.4.21 / nicotinate phosphoribosyltransferase; IY9XDZ35W2 / Glucose
  • [Other-IDs] NLM/ NIHMS170938; NLM/ PMC4409826
  •  go-up   go-down


59. Martins AG, Constantin J, Bracht F, Kelmer-Bracht AM, Bracht A: The action of extracellular NAD+ on gluconeogenesis in the perfused rat liver. Mol Cell Biochem; 2006 Jun;286(1-2):115-24
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The action of extracellular NAD+ on gluconeogenesis in the perfused rat liver.
  • In the rat liver NAD+ infusion produces increases in portal perfusion pressure and glycogenolysis and transient inhibition of oxygen consumption.
  • NAD+ infusion into the portal vein (antegrade perfusion) produced a concentration-dependent (25-100 microM) transient inhibition of oxygen uptake and gluconeogenesis.
  • NAD+ infusion into the hepatic vein (retrograde perfusion) produced only transient stimulations.
  • During Ca2+-free perfusion the action of NAD+ was restricted to small transient stimulations.
  • Inhibitors of eicosanoid synthesis with different specificities (indo-methacin, nordihydroguaiaretic acid, bromophenacyl bromide) either inhibited or changed the action of NAD+.
  • The action of NAD+ on gluconeogenesis is probably mediated by eicosanoids synthesized in non-parenchymal cells.
  • As in the fed state, in the fasted condition extracellular NAD+ is also able to exert two opposite effects, inhibition and stimulation.
  • [MeSH-major] Gluconeogenesis / drug effects. Liver / drug effects. NAD / pharmacology

  • Hazardous Substances Data Bank. LACTIC ACID .
  • Hazardous Substances Data Bank. GLUCOSE .
  • Hazardous Substances Data Bank. INDOMETHACIN .
  • Hazardous Substances Data Bank. CALCIUM, ELEMENTAL .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16652226.001).
  • [ISSN] 0300-8177
  • [Journal-full-title] Molecular and cellular biochemistry
  • [ISO-abbreviation] Mol. Cell. Biochem.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Acetophenones; 0 / Antioxidants; 0 / Enzyme Inhibitors; 0U46U6E8UK / NAD; 33X04XA5AT / Lactic Acid; 7BO8G1BYQU / Masoprocol; EC 3.1.1.- / Phospholipases A; IY9XDZ35W2 / Glucose; PN0FRW1G4Z / 4-bromophenacyl bromide; SY7Q814VUP / Calcium; XXE1CET956 / Indomethacin
  •  go-up   go-down


60. Hara N, Yamada K, Shibata T, Osago H, Hashimoto T, Tsuchiya M: Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells. J Biol Chem; 2007 Aug 24;282(34):24574-82
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells.
  • NAD plays critical roles in various biological processes through the function of SIRT1.
  • Although classical studies in mammals showed that nicotinic acid (NA) is a better precursor than nicotinamide (Nam) in elevating tissue NAD levels, molecular details of NAD synthesis from NA remain largely unknown.
  • We here identified NA phosphoribosyltransferase (NAPRT) in humans and provided direct evidence of tight link between NAPRT and the increase in cellular NAD levels.
  • The enzyme was abundantly expressed in the small intestine, liver, and kidney in mice and mediated [(14)C]NAD synthesis from [(14)C]NA in human cells.
  • In cells expressing endogenous NAPRT, the addition of NA but not Nam almost doubled cellular NAD contents and decreased cytotoxicity by H(2)O(2).
  • These results indicate that NAPRT is essential for NA to increase cellular NAD levels and, thus, to prevent oxidative stress of the cells.
  • Kinetic analyses revealed that NAPRT, but not Nam phosphoribosyltransferase (NamPRT, also known as pre-B-cell colony-enhancing factor or visfatin), is insensitive to the physiological concentration of NAD.
  • Together, we conclude that NA elevates cellular NAD levels through NAPRT function and, thus, protects the cells against stress, partly due to lack of feedback inhibition of NAPRT but not NamPRT by NAD.
  • The ability of NA to increase cellular NAD contents may account for some of the clinically observed effects of the vitamin and further implies a novel application of the vitamin to treat diseases such as those associated with the depletion of cellular NAD pools.
  • [MeSH-major] NAD / metabolism. Niacin / metabolism. Pentosyltransferases / metabolism

  • Gene Ontology. gene/protein/disease-specific - Gene Ontology annotations from this paper .
  • Hazardous Substances Data Bank. NICOTINIC ACID .
  • SciCrunch. HGNC: Data: Gene Annotation .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17604275.001).
  • [ISSN] 0021-9258
  • [Journal-full-title] The Journal of biological chemistry
  • [ISO-abbreviation] J. Biol. Chem.
  • [Language] eng
  • [Databank-accession-numbers] GENBANK/ AB242230
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / RNA, Small Interfering; 0U46U6E8UK / NAD; 2679MF687A / Niacin; EC 2.4.2.- / Pentosyltransferases; EC 6.3.4.21 / nicotinate phosphoribosyltransferase
  •  go-up   go-down


61. Díaz S, Pérez-Pomares F, Pire C, Ferrer J, Bonete MJ: Gene cloning, heterologous overexpression and optimized refolding of the NAD-glutamate dehydrogenase from Haloferax mediterranei. Extremophiles; 2006 Apr;10(2):105-15
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Gene cloning, heterologous overexpression and optimized refolding of the NAD-glutamate dehydrogenase from Haloferax mediterranei.
  • The NAD-dependent glutamate dehydrogenase (GDH) gene from the halophilic archaeon Haloferax mediterranei has been cloned.
  • The analysis of the nucleotide sequence revealed an open reading frame of 1323 bp that encodes a NAD-GDH.
  • The expression of this gene in Escherichia coli, the refolding and further characterization, yielded a fully active NAD-GDH with the same features than those found for the wild-type enzyme.
  • This halophilic NAD-GDH showed a highly dependence on salts for both stability and activity, being essential for the refolding of the recombinant enzyme.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Bacteriol. 1995 Apr;177(7):1844-9 [7896710.001]
  • [Cites] FEBS Lett. 1998 Aug 28;434(1-2):13-6 [9738442.001]
  • [Cites] FEMS Microbiol Rev. 1996 May;18(2-3):105-17 [8639325.001]
  • [Cites] FEMS Microbiol Lett. 2002 May 21;211(1):37-41 [12052548.001]
  • [Cites] Extremophiles. 2004 Oct;8(5):377-84 [15221656.001]
  • [Cites] J Bacteriol. 1996 Jun;178(11):3044-8 [8655478.001]
  • [Cites] Eur J Biochem. 1992 Jul 15;207(2):533-40 [1633808.001]
  • [Cites] Extremophiles. 2003 Aug;7(4):299-306 [12910390.001]
  • [Cites] FEBS Lett. 1996 Apr 1;383(3):227-9 [8925901.001]
  • [Cites] J Biol Chem. 1974 Dec 25;249(24):7922-8 [4372225.001]
  • [Cites] FEMS Microbiol Lett. 2001 Jun 25;200(2):221-7 [11425479.001]
  • [Cites] FEMS Microbiol Lett. 1996 Jul 15;141(1):59-63 [9064251.001]
  • [Cites] FEMS Microbiol Lett. 2003 Sep 12;226(1):181-6 [13129625.001]
  • [Cites] Can J Microbiol. 1994 Nov;40(11):922-9 [7804904.001]
  • [Cites] Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7 [271968.001]
  • [Cites] FEMS Microbiol Lett. 1995 Dec 1;134(1):85-90 [8593959.001]
  • [Cites] Arch Biochem Biophys. 2003 Mar 1;411(1):56-62 [12590923.001]
  • [Cites] Syst Appl Microbiol. 1983;4(3):369-81 [23194735.001]
  • [Cites] Curr Opin Biotechnol. 2001 Apr;12(2):202-7 [11287238.001]
  • [Cites] Proteins. 1992 Jan;12(1):75-86 [1553382.001]
  • [Cites] Methods Enzymol. 1990;185:60-89 [2199796.001]
  • [Cites] Biotechnol Bioeng. 1999 Jul 5;64(1):38-45 [10397837.001]
  • [Cites] Eur J Biochem. 1992 May 15;206(1):151-9 [1587267.001]
  • [Cites] Biochim Biophys Acta. 2003 Sep 8;1623(1):47-51 [12957717.001]
  • [Cites] J Mol Biol. 1997 Apr 11;267(4):916-32 [9135121.001]
  • [Cites] Science. 1995 Mar 3;267(5202):1344-6 [17812611.001]
  • [Cites] Biochim Biophys Acta. 1999 Feb 2;1426(3):513-25 [10076069.001]
  • [Cites] Anal Biochem. 1976 May 7;72:248-54 [942051.001]
  • [Cites] J Biol Chem. 1998 Apr 10;273(15):9023-30 [9535890.001]
  • [Cites] FEMS Microbiol Lett. 2001 Nov 13;204(2):381-5 [11731152.001]
  • [Cites] Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [7984417.001]
  • [Cites] Eur J Biochem. 1993 Feb 1;211(3):549-54 [8436115.001]
  • (PMID = 16200391.001).
  • [ISSN] 1431-0651
  • [Journal-full-title] Extremophiles : life under extreme conditions
  • [ISO-abbreviation] Extremophiles
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Archaeal Proteins; 0 / Recombinant Proteins; EC 1.4.1.2 / Glutamate Dehydrogenase
  •  go-up   go-down


62. Christensen KE, Mirza IA, Berghuis AM, Mackenzie RE: Magnesium and phosphate ions enable NAD binding to methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase. J Biol Chem; 2005 Oct 7;280(40):34316-23
Saccharomyces Genome Database. Saccharomyces Genome Database .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Magnesium and phosphate ions enable NAD binding to methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase.
  • The mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase (NMDMC) is believed to have evolved from a trifunctional NADP-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase-synthetase.
  • The model supports the hypothesis that the absolutely required Pi can bind in close proximity to the 2'-hydroxyl of NAD through interactions with Arg166 and Arg198.
  • Mutants of Asp133 suggest that the magnesium ion interacts with both Pi and the aspartate side chain and plays a role in positioning Pi and NAD.
  • NMDMC uses Pi and magnesium to adapt an NADP binding site for NAD binding.
  • [MeSH-major] Aminohydrolases / chemistry. Aminohydrolases / metabolism. Magnesium / physiology. Methylenetetrahydrofolate Dehydrogenase (NADP) / chemistry. Methylenetetrahydrofolate Dehydrogenase (NADP) / metabolism. Multienzyme Complexes / chemistry. Multienzyme Complexes / metabolism. NAD / metabolism. Phosphates / physiology

  • Hazardous Substances Data Bank. (L)-ARGININE .
  • Hazardous Substances Data Bank. MAGNESIUM, ELEMENTAL .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16100107.001).
  • [ISSN] 0021-9258
  • [Journal-full-title] The Journal of biological chemistry
  • [ISO-abbreviation] J. Biol. Chem.
  • [Language] eng
  • [Databank-accession-numbers] PDB/ 1ZN4
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Coenzymes; 0 / Ions; 0 / Multienzyme Complexes; 0 / Phosphates; 0 / methylene tetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase; 0U46U6E8UK / NAD; 94ZLA3W45F / Arginine; EC 1.5.1.5 / Methylenetetrahydrofolate Dehydrogenase (NADP); EC 3.5.4.- / Aminohydrolases; I38ZP9992A / Magnesium
  •  go-up   go-down


63. Tronconi MA, Gerrard Wheeler MC, Maurino VG, Drincovich MF, Andreo CS: NAD-malic enzymes of Arabidopsis thaliana display distinct kinetic mechanisms that support differences in physiological control. Biochem J; 2010 Sep 1;430(2):295-303
The Arabidopsis Information Resource. Linked Gene Data (subscription/membership/fee required).

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] NAD-malic enzymes of Arabidopsis thaliana display distinct kinetic mechanisms that support differences in physiological control.
  • The Arabidopsis thaliana genome contains two genes encoding NAD-MEs [NAD-dependent malic enzymes; NAD-ME1 (TAIR accession number At4G13560) and NAD-ME2 (TAIR accession number At4G00570)].
  • In the present work, the kinetic mechanisms of NAD-ME1 and -ME2 homodimers and NAD-MEH (NAD-ME heterodimer) were studied as an approach to understand the contribution of these enzymes to plant physiology.
  • Product-inhibition and substrate-analogue analyses indicated that NAD-ME2 follows a sequential ordered Bi-Ter mechanism, NAD being the leading substrate followed by L-malate.
  • On the other hand, NAD-ME1 and NAD-MEH can bind both substrates randomly.
  • However, NAD-ME1 shows a preferred route that involves the addition of NAD first.
  • As a consequence of the kinetic mechanism, NAD-ME1 showed a partial inhibition by L-malate at low NAD concentrations.
  • The analysis of a protein chimaeric for NAD-ME1 and -ME2 indicated that the first 176 amino acids are associated with the differences observed in the kinetic mechanisms of the enzymes.
  • Furthermore, NAD-ME1, -ME2 and -MEH catalyse the reverse reaction (pyruvate reductive carboxylation) with very low catalytic activity, supporting the notion that these isoforms act only in L-malate oxidation in plant mitochondria.
  • The different kinetic mechanism of each NAD-ME entity suggests that, for a metabolic condition in which the mitochondrial NAD level is low and the L-malate level is high, the activity of NAD-ME2 and/or -MEH would be preferred over that of NAD-ME1.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20528775.001).
  • [ISSN] 1470-8728
  • [Journal-full-title] The Biochemical journal
  • [ISO-abbreviation] Biochem. J.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Arabidopsis Proteins; EC 1.1.1.37 / Malate Dehydrogenase; EC 1.1.1.38 / malate dehydrogenase-(oxaloacetate-decarboxylating) (NAD+)
  •  go-up   go-down


64. Cai AL, Zipfel GJ, Sheline CT: Zinc neurotoxicity is dependent on intracellular NAD levels and the sirtuin pathway. Eur J Neurosci; 2006 Oct;24(8):2169-76
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Zinc neurotoxicity is dependent on intracellular NAD levels and the sirtuin pathway.
  • We previously demonstrated that toxicity of extracellular Zn(2+) depended on entry, elevation in intracellular free Zn(2+) ([Zn(2+)](i)), a reduction in NAD(+) and ATP levels, and dysfunction of glycolysis and cellular metabolism.
  • We suggested that PARP-1 activation alone can not explain this loss of neuronal NAD(+).
  • NAD(+) was recently demonstrated to permeate neurons and glia, and we have now shown that exogenous NAD(+) can reduce Zn(2+) neurotoxicity, and 3-acetylpyridine, which generates inactive NAD(+), potentiated Zn(2+) neurotoxicity.
  • Sirtinol and 2-hydroxynaphthaldehyde, inhibitors of the sirtuin pathway (SIRT proteins are NAD(+)-catabolic protein deacetylases), attenuated both acute and chronic Zn(2+) neurotoxicity.
  • Resveratrol and fisetin (sirtuin activators) potentiated NAD(+) loss and Zn(2+) neurotoxicities.
  • Furthermore, neuronal cultures derived from the Wld(s) mouse, which overexpress the NAD(+) synthetic enzyme nicotinamide mononucleotide adenyl transferase (NMNAT-1), had reduced sensitivity to Zn(2+) neurotoxicity.
  • Finally, nicotinamide was demonstrated to attenuate CA1 neuronal death after 10 min of global ischemia in rat even if administered 1 h after the insult.
  • Together with previous data, these results further implicate NAD(+) levels in Zn(2+) neurotoxicity.

  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. RESVERATROL .
  • Hazardous Substances Data Bank. ZINC, ELEMENTAL .
  • Hazardous Substances Data Bank. NICOTINAMIDE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17042794.001).
  • [ISSN] 0953-816X
  • [Journal-full-title] The European journal of neuroscience
  • [ISO-abbreviation] Eur. J. Neurosci.
  • [Language] ENG
  • [Grant] United States / NIDDK NIH HHS / DK / R01 DK073446; United States / NINDS NIH HHS / NS / R01 NS030337; United States / NIDDK NIH HHS / DK / DK 073446; United States / NINDS NIH HHS / NS / NS 030337
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] France
  • [Chemical-registry-number] 0 / 2-hydroxynaphthaldehyde; 0 / Aldehydes; 0 / Antioxidants; 0 / Flavonoids; 0 / Ion Channels; 0 / Naphthalenes; 0 / Neurotoxins; 0 / Pyridines; 0 / Stilbenes; 00QT8FX306 / 3-acetylpyridine; 0U46U6E8UK / NAD; 25X51I8RD4 / Niacinamide; EC 3.5.1.- / Sirtuins; J41CSQ7QDS / Zinc; OO2ABO9578 / fisetin; Q369O8926L / resveratrol
  •  go-up   go-down


65. Belenky P, Racette FG, Bogan KL, McClure JM, Smith JS, Brenner C: Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell; 2007 May 4;129(3):473-84
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+.
  • Although NAD(+) biosynthesis is required for Sir2 functions and replicative lifespan in yeast, alterations in NAD(+) precursors have been reported to accelerate aging but not to extend lifespan.
  • In eukaryotes, nicotinamide riboside is a newly discovered NAD(+) precursor that is converted to nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2.
  • In this study, we discovered that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends lifespan without calorie restriction.
  • The mechanism of action of nicotinamide riboside is totally dependent on increased net NAD(+) synthesis through two pathways, the Nrk1 pathway and the Urh1/Pnp1/Meu1 pathway, which is Nrk1 independent.
  • Additionally, the two nicotinamide riboside salvage pathways contribute to NAD(+) metabolism in the absence of nicotinamide-riboside supplementation.
  • Thus, like calorie restriction in the mouse, nicotinamide riboside elevates NAD(+) and increases Sir2 function.
  • [MeSH-major] Histone Deacetylases / metabolism. N-Glycosyl Hydrolases / metabolism. NAD / metabolism. Niacinamide / analogs & derivatives. Phosphotransferases (Alcohol Group Acceptor) / metabolism. Purine-Nucleoside Phosphorylase / metabolism. Saccharomyces cerevisiae / metabolism. Saccharomyces cerevisiae Proteins / metabolism. Silent Information Regulator Proteins, Saccharomyces cerevisiae / metabolism. Sirtuins / metabolism

  • COS Scholar Universe. author profiles.
  • Gene Ontology. gene/protein/disease-specific - Gene Ontology annotations from this paper .
  • Hazardous Substances Data Bank. NICOTINIC ACID .
  • Hazardous Substances Data Bank. NICOTINAMIDE .
  • Saccharomyces Genome Database. Saccharomyces Genome Database .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentIn] Cell. 2007 May 4;129(3):453-4 [17482537.001]
  • (PMID = 17482543.001).
  • [ISSN] 0092-8674
  • [Journal-full-title] Cell
  • [ISO-abbreviation] Cell
  • [Language] eng
  • [Grant] United States / NIGMS NIH HHS / GM / GM75240
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Saccharomyces cerevisiae Proteins; 0 / Silent Information Regulator Proteins, Saccharomyces cerevisiae; 0U46U6E8UK / NAD; 1341-23-7 / nicotinamide-beta-riboside; 25X51I8RD4 / Niacinamide; 2679MF687A / Niacin; EC 2.4.2.1 / Purine-Nucleoside Phosphorylase; EC 2.4.2.28 / 5'-methylthioadenosine phosphorylase; EC 2.7.1.- / NRK1 protein, S cerevisiae; EC 2.7.1.- / Phosphotransferases (Alcohol Group Acceptor); EC 3.2.2.- / N-Glycosyl Hydrolases; EC 3.2.2.3 / URH1 protein, S cerevisiae; EC 3.5.1.- / SIR2 protein, S cerevisiae; EC 3.5.1.- / Sirtuin 2; EC 3.5.1.- / Sirtuins; EC 3.5.1.19 / Nicotinamidase; EC 3.5.1.98 / Histone Deacetylases
  •  go-up   go-down


66. Kawai S, Fukuda C, Mukai T, Murata K: MJ0917 in archaeon Methanococcus jannaschii is a novel NADP phosphatase/NAD kinase. J Biol Chem; 2005 Nov 25;280(47):39200-7
antibodies-online. View related products from antibodies-online.com (subscription/membership/fee required).

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] MJ0917 in archaeon Methanococcus jannaschii is a novel NADP phosphatase/NAD kinase.
  • NAD kinase phosphorylates NAD(+) to form NADP(+).
  • Conversely, NADP phosphatase, which has not yet been identified, dephosphorylates NADP(+) to produce NAD(+).
  • Among the NAD kinase homologs, the primary structure of MJ0917 of hyperthermophilic archaeal Methanococcus jannaschii is unique.
  • MJ0917 possesses an NAD kinase homologous region in its C-terminal half and an inositol-1-phosphatase homologous region in its N-terminal half.
  • In this study, MJ0917 was biochemically shown to possess both NAD kinase and phosphatase activities toward NADP(+), NADPH, and fructose 1,6-bisphosphate, but not toward inositol 1-phosphate.
  • With regard to the phosphatase activity, kinetic values indicated that NADP(+) is the preferred substrate and that MJ0917 would function as a novel NADP phosphatase/NAD kinase showing conflicting dual activities, viz. synthesis and degradation of an essential NADP(+).
  • Furthermore, in vitro analysis of MJ0917 showed that, although MJ0917 could supply NADP(+), it prevented excess accumulation of NADP(+); thus, it has the ability to maintain a high NAD(+)/NADP(+) ratio, whereas 5'-AMP would decrease this ratio.

  • Gene Ontology. gene/protein/disease-specific - Gene Ontology annotations from this paper .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16192277.001).
  • [ISSN] 0021-9258
  • [Journal-full-title] The Journal of biological chemistry
  • [ISO-abbreviation] J. Biol. Chem.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Archaeal Proteins; 0 / Enzyme Inhibitors; 0 / Recombinant Proteins; EC 2.7.1.- / Phosphotransferases (Alcohol Group Acceptor); EC 2.7.1.23 / NAD kinase; EC 3.1.3.- / NADP phosphatase; EC 3.1.3.- / Nucleotidases
  •  go-up   go-down


67. Mani-Telang P, Sutrias-Grau M, Williams G, Arnosti DN: Role of NAD binding and catalytic residues in the C-terminal binding protein corepressor. FEBS Lett; 2007 Nov 13;581(27):5241-6
FlyBase. FlyBase .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Role of NAD binding and catalytic residues in the C-terminal binding protein corepressor.
  • These proteins are homologous to prokaryotic D-2-hydroxyacid dehydrogenases, possessing an NAD/NADH binding fold and conserved active site residues.
  • When expressed in Drosophila, a catalytic site mutant retains biological activity, however, we find that an NAD binding mutant lacks biological activity.
  • The NAD mutant, similar to a dimerization mutant, is expressed at low levels, indicating that binding of NAD/NADH may affect CtBP stability.
  • These data support the idea that the ancestral dehydrogenase activity is not required for CtBP function, and NAD binding may play a regulatory, rather than catalytic, role.
  • [MeSH-major] Alcohol Oxidoreductases / chemistry. Alcohol Oxidoreductases / metabolism. DNA-Binding Proteins / chemistry. DNA-Binding Proteins / metabolism. NAD / metabolism

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17964573.001).
  • [ISSN] 0014-5793
  • [Journal-full-title] FEBS letters
  • [ISO-abbreviation] FEBS Lett.
  • [Language] eng
  • [Grant] United States / NIGMS NIH HHS / GM / GM56976
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / DNA, Complementary; 0 / DNA-Binding Proteins; 0 / Drosophila Proteins; 0 / Recombinant Proteins; 0 / Repressor Proteins; 0U46U6E8UK / NAD; EC 1.1.- / Alcohol Oxidoreductases; EC 1.1.1.- / C-terminal binding protein
  •  go-up   go-down


68. Meier TI, Yan D, Peery RB, McAllister KA, Zook C, Peng SB, Zhao G: Identification and characterization of an inhibitor specific to bacterial NAD+-dependent DNA ligases. FEBS J; 2008 Nov;275(21):5258-71
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Identification and characterization of an inhibitor specific to bacterial NAD+-dependent DNA ligases.
  • The bacterial DNA ligases involved in DNA replication require NAD(+) for activity, but eukaryotic and viral DNA ligases require ATP.
  • In this study, we cloned and expressed the ligA gene from Streptococcus pneumoniae, and characterized this ligA-encoded NAD(+)-dependent DNA ligase.
  • We then screened small molecule chemical libraries using a biochemical assay and identified a new small molecule with a structure of 2,4-diamino-7-dimethylamino-pyrimido[4,5-d]pyrimidine.
  • We show that this small molecule is a specific inhibitor of bacterial NAD(+)-dependent DNA ligases.
  • Biochemical studies show that this molecule inhibits NAD(+)-dependent DNA ligases, but not ATP-dependent enzymes.
  • The molecule inhibits NAD(+)-dependent DNA ligases competitively with respect to NAD(+) and specifically inhibits enzyme adenylation, but not DNA adenylation or ligation.
  • Together, this study shows that this small molecule inhibitor identified is specific to bacterial NAD(+)-dependent DNA ligases, exhibits a broad spectrum of antibacterial activities, and has the potential to be developed into an antibacterial agent.

  • MedlinePlus Health Information. consumer health - Antibiotics.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18795946.001).
  • [ISSN] 1742-4658
  • [Journal-full-title] The FEBS journal
  • [ISO-abbreviation] FEBS J.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Anti-Bacterial Agents; 0 / Bacterial Proteins; 0 / Enzyme Inhibitors; 0 / Pyrimidines; 0 / Small Molecule Libraries; EC 6.5.1.- / DNA Ligases; EC 6.5.1.2 / DNA ligase (NAD)
  •  go-up   go-down


69. Magni G, Orsomando G, Raffelli N, Ruggieri S: Enzymology of mammalian NAD metabolism in health and disease. Front Biosci; 2008;13:6135-54
Hazardous Substances Data Bank. NICOTINAMIDE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Enzymology of mammalian NAD metabolism in health and disease.
  • Mounting evidence attests to the paramount importance of the non-redox NAD functions.
  • Indeed, NAD homeostasis is related to the free radicals-mediated production of reactive oxygen species responsible for irreversible cellular damage in infectious disease, diabetes, inflammatory syndromes, neurodegeneration and cancer.
  • Because the cellular redox status depends on both the absolute concentration of pyridine dinucleotides and their respective ratios of oxidized and reduced forms (i.e., NAD/NADH and NADP/NADPH), it is conceivable that an altered regulation of the synthesis and degradation of NAD impairs the cell redox state and likely contributes to the mechanisms underlying the pathogenesis of the above mentioned diseases.
  • Taking into account the recent appearance in the literature of comprehensive reviews covering different aspects of the significance of NAD metabolism, with particular attention to the enzymes involved in NAD cleavage, this monograph includes the most recent results on NAD biosynthesis in mammals and humans.
  • Due to recent findings on nicotinamide riboside as a nutrient, its inclusion under "niacins" is proposed.
  • Here, the enzymes involved in the de novo and reutilization pathways are overviewed.
  • [MeSH-major] Amide Synthases / metabolism. NAD / metabolism. NADP / metabolism. Nicotinamide-Nucleotide Adenylyltransferase / metabolism. Phosphotransferases (Alcohol Group Acceptor) / metabolism

  • Hazardous Substances Data Bank. NICOTINIC ACID .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18508649.001).
  • [ISSN] 1093-9946
  • [Journal-full-title] Frontiers in bioscience : a journal and virtual library
  • [ISO-abbreviation] Front. Biosci.
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0U46U6E8UK / NAD; 25X51I8RD4 / Niacinamide; 2679MF687A / Niacin; 53-59-8 / NADP; EC 2.7.1.- / Phosphotransferases (Alcohol Group Acceptor); EC 2.7.1.23 / NAD kinase; EC 2.7.7.1 / Nicotinamide-Nucleotide Adenylyltransferase; EC 6.3.1.- / Amide Synthases; EC 6.3.1.5 / NAD+ synthase
  • [Number-of-references] 218
  •  go-up   go-down


70. Jiang H, Kim JH, Frizzell KM, Kraus WL, Lin H: Clickable NAD analogues for labeling substrate proteins of poly(ADP-ribose) polymerases. J Am Chem Soc; 2010 Jul 14;132(27):9363-72
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Clickable NAD analogues for labeling substrate proteins of poly(ADP-ribose) polymerases.
  • Poly(ADP-ribose) polymerases (PARPs) catalyze the transfer of multiple adenine diphosphate ribose (ADP-ribose) units from nicotinamide adenine dinucleotide (NAD) to substrate proteins.
  • To better understand the functions of PARPs at a molecular level, it is necessary to know what substrate proteins PARPs modify.
  • Here we report clickable NAD analogues that can be used to label PARP substrate proteins.
  • The clickable NAD analogues have a terminal alkyne group which allows the conjugation of fluorescent or affinity tags to the substrate proteins.
  • These results demonstrate that the clickable NAD analogue is useful for labeling, in-gel detection, isolation, and identification of the substrate proteins of PARPs and will help to understand the biological functions of PARPs.
  • [MeSH-major] Fluorescent Dyes. NAD / analogs & derivatives. Poly(ADP-ribose) Polymerases / metabolism. Proteins / chemistry

  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Biol Chem. 1984 Jun 10;259(11):6841-6 [6725273.001]
  • [Cites] Proc Natl Acad Sci U S A. 1982 Jun;79(11):3423-7 [6808510.001]
  • [Cites] Biochemistry. 1989 May 2;28(9):4054-60 [2473778.001]
  • [Cites] J Cell Sci. 1992 Aug;102 ( Pt 4):663-70 [1429884.001]
  • [Cites] Biochem J. 1997 May 15;324 ( Pt 1):249-53 [9164864.001]
  • [Cites] Science. 1998 Nov 20;282(5393):1484-7 [9822378.001]
  • [Cites] Cancer Res. 1998 Nov 15;58(22):5075-8 [9823314.001]
  • [Cites] Cancer Res. 1999 May 1;59(9):2190-4 [10232607.001]
  • [Cites] Biochem J. 1999 Sep 1;342 ( Pt 2):249-68 [10455009.001]
  • [Cites] Nature. 2004 Dec 2;432(7017):645-9 [15577915.001]
  • [Cites] Cell. 2004 Dec 17;119(6):803-14 [15607977.001]
  • [Cites] Biochem J. 2005 Oct 15;391(Pt 2):177-84 [16076287.001]
  • [Cites] Trends Mol Med. 2005 Oct;11(10):456-63 [16154385.001]
  • [Cites] Nat Cell Biol. 2005 Nov;7(11):1133-9 [16244666.001]
  • [Cites] Science. 2006 Jun 23;312(5781):1798-802 [16794079.001]
  • [Cites] Nat Rev Mol Cell Biol. 2006 Jul;7(7):517-28 [16829982.001]
  • [Cites] Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18314-9 [17116881.001]
  • [Cites] Angew Chem Int Ed Engl. 2007;46(12):2066-9 [17299820.001]
  • [Cites] Nat Protoc. 2007;2(6):1414-25 [17545978.001]
  • [Cites] Nat Struct Mol Biol. 2007 Jun;14(6):548-55 [17529993.001]
  • [Cites] Nat Cell Biol. 2007 Oct;9(10):1175-83 [17891139.001]
  • [Cites] Front Biosci. 2008;13:3046-82 [17981777.001]
  • [Cites] Org Biomol Chem. 2007 Aug 21;5(16):2541-54 [18019526.001]
  • [Cites] J Neurochem. 2008 Mar;104(6):1700-11 [17996029.001]
  • [Cites] Curr Opin Cell Biol. 2008 Jun;20(3):294-302 [18450439.001]
  • [Cites] Nucleic Acids Res. 2008 Dec;36(22):6959-76 [18981049.001]
  • [Cites] J Am Chem Soc. 2009 Feb 11;131(5):1658-9 [19191692.001]
  • [Cites] Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4243-8 [19246377.001]
  • [Cites] Biochemistry. 2009 Apr 7;48(13):2878-90 [19220062.001]
  • [Cites] J Biol Chem. 2009 Nov 13;284(46):31616-24 [19762472.001]
  • [Cites] J Biol Chem. 2009 Dec 4;284(49):33926-38 [19812418.001]
  • [Cites] Gynecol Oncol. 2010 May;117(2):177-82 [19942270.001]
  • [Cites] Annu Rev Plant Biol. 2010;61:491-516 [20192741.001]
  • [Cites] J Biol Chem. 2000 Feb 4;275(5):3305-12 [10652318.001]
  • [Cites] Curr Biol. 2000 Oct 19;10(20):1299-302 [11069113.001]
  • [Cites] Exp Gerontol. 2000 Oct;35(8):989-1002 [11121685.001]
  • [Cites] Neoplasia. 2001 May-Jun;3(3):179-88 [11494111.001]
  • [Cites] Bioessays. 2001 Sep;23(9):795-806 [11536292.001]
  • [Cites] J Biol Chem. 2001 Sep 28;276(39):36425-30 [11477085.001]
  • [Cites] Science. 2002 Jul 12;297(5579):259-63 [12114629.001]
  • [Cites] Angew Chem Int Ed Engl. 2002 Jul 15;41(14):2596-9 [12203546.001]
  • [Cites] Pharmacol Rev. 2002 Sep;54(3):375-429 [12223530.001]
  • [Cites] Science. 2003 Jan 24;299(5606):560-2 [12543974.001]
  • [Cites] J Am Chem Soc. 2003 Mar 19;125(11):3192-3 [12630856.001]
  • [Cites] Mol Cell Biol. 2003 Apr;23(7):2451-62 [12640128.001]
  • [Cites] Nature. 2003 Oct 23;425(6960):859-64 [14574415.001]
  • [Cites] Science. 2004 Apr 2;304(5667):97-100 [15064417.001]
  • [Cites] Trends Biochem Sci. 2004 May;29(5):227-32 [15130558.001]
  • [Cites] Bioessays. 2004 Aug;26(8):882-93 [15273990.001]
  • [Cites] J Biol Chem. 1981 May 10;256(9):4135-7 [6260786.001]
  • [Cites] J Biol Chem. 1981 Sep 25;256(18):9483-9 [6270088.001]
  • [Cites] J Biol Chem. 1986 May 25;261(15):7011-7 [3084493.001]
  • (PMID = 20560583.001).
  • [ISSN] 1520-5126
  • [Journal-full-title] Journal of the American Chemical Society
  • [ISO-abbreviation] J. Am. Chem. Soc.
  • [Language] eng
  • [Grant] United States / NIDDK NIH HHS / DK / R01 DK069710; United States / NIDDK NIH HHS / DK / R01 DK069710; United States / NIDDK NIH HHS / DK / R01 DK069710-01; United States / NIGMS NIH HHS / GM / R01 GM086703; United States / NIGMS NIH HHS / GM / R01 GM086703; United States / NIGMS NIH HHS / GM / R01 GM086703-02
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Fluorescent Dyes; 0 / Proteins; 0U46U6E8UK / NAD; EC 2.4.2.30 / Poly(ADP-ribose) Polymerases; EC 2.4.2.30 / Tankyrases; EC 2.4.4.30 / TNKS protein, human
  • [Other-IDs] NLM/ NIHMS215542; NLM/ PMC2903221
  •  go-up   go-down


71. Takahashi H, Takahara K, Hashida SN, Hirabayashi T, Fujimori T, Kawai-Yamada M, Yamaya T, Yanagisawa S, Uchimiya H: Pleiotropic modulation of carbon and nitrogen metabolism in Arabidopsis plants overexpressing the NAD kinase2 gene. Plant Physiol; 2009 Sep;151(1):100-13
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Pleiotropic modulation of carbon and nitrogen metabolism in Arabidopsis plants overexpressing the NAD kinase2 gene.
  • Nicotinamide nucleotides (NAD and NADP) are important cofactors in many metabolic processes in living organisms.
  • In this study, we analyzed transgenic Arabidopsis (Arabidopsis thaliana) plants that overexpress NAD kinase2 (NADK2), an enzyme that catalyzes the synthesis of NADP from NAD in chloroplasts, to investigate the impacts of altering NADP level on plant metabolism.
  • Importantly, since neither up-regulation nor down-regulation of NADK2 activity affected the sum amount of NAD and NADP or the redox state, the absolute level of NADP and/or the NADP/NAD ratio likely plays a key role in regulating plant metabolism.

  • Hazardous Substances Data Bank. CARBON .
  • Hazardous Substances Data Bank. Nitrogen, Elemental .
  • The Arabidopsis Information Resource. Linked Gene Data (subscription/membership/fee required).
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Biochem Biophys Res Commun. 2000 Sep 16;276(1):57-63 [11006082.001]
  • [Cites] EMBO J. 1997 Mar 17;16(6):1137-44 [9135130.001]
  • [Cites] Plant Physiol. 2001 Jan;125(1):61-4 [11154297.001]
  • [Cites] Curr Opin Plant Biol. 2001 Jun;4(3):247-53 [11312136.001]
  • [Cites] Plant Physiol. 2001 Jun;126(2):731-41 [11402201.001]
  • [Cites] FEMS Microbiol Lett. 2001 Jun 25;200(2):181-4 [11425472.001]
  • [Cites] Eur J Biochem. 2001 Aug;268(15):4359-65 [11488932.001]
  • [Cites] Nat Biotechnol. 2001 Oct;19(10):965-9 [11581664.001]
  • [Cites] Biochem Biophys Res Commun. 2001 Oct 19;288(1):69-74 [11594753.001]
  • [Cites] Phytochemistry. 2002 Mar;59(5):473-8 [11853741.001]
  • [Cites] J Exp Bot. 2002 Apr;53(370):905-16 [11912233.001]
  • [Cites] J Biol Chem. 2002 Apr 12;277(15):12697-702 [11815615.001]
  • [Cites] Trends Plant Sci. 2002 May;7(5):193-5 [11992820.001]
  • [Cites] J Exp Bot. 2003 Jan;54(382):585-93 [12508069.001]
  • [Cites] EMBO J. 2003 May 1;22(9):2015-24 [12727869.001]
  • [Cites] Plant J. 2004 Mar;37(6):914-39 [14996223.001]
  • [Cites] J Plant Res. 2004 Feb;117(1):27-36 [14661076.001]
  • [Cites] J Biol Chem. 2004 Apr 16;279(16):16598-605 [14757761.001]
  • [Cites] Trends Plant Sci. 2004 Feb;9(2):70-5 [15102372.001]
  • [Cites] Proc Natl Acad Sci U S A. 2004 May 18;101(20):7833-8 [15136740.001]
  • [Cites] Biochemistry. 2004 Jun 15;43(23):7610-7 [15182203.001]
  • [Cites] Biochem Biophys Res Commun. 1970;39(6):1140-4 [5513250.001]
  • [Cites] Arch Biochem Biophys. 1980 Apr 1;200(2):575-82 [7436424.001]
  • [Cites] Plant J. 1998 Apr;14(2):147-57 [9628012.001]
  • [Cites] Plant J. 1998 Dec;16(6):735-43 [10069079.001]
  • [Cites] Biochem J. 2005 Jan 1;385(Pt 1):217-23 [15347288.001]
  • [Cites] Mol Genet Genomics. 2005 Mar;273(1):10-9 [15711971.001]
  • [Cites] Plant J. 2005 May;42(4):504-13 [15860009.001]
  • [Cites] Appl Environ Microbiol. 2005 Aug;71(8):4352-8 [16085824.001]
  • [Cites] Photosynth Res. 2005;83(2):191-217 [16143852.001]
  • [Cites] Plant Mol Biol. 2005 Nov;59(4):553-64 [16244906.001]
  • [Cites] Plant Physiol. 2006 Mar;140(3):1085-94 [16461378.001]
  • [Cites] Plant J. 2006 Sep;47(5):665-74 [16856986.001]
  • [Cites] Microbiol Mol Biol Rev. 2006 Sep;70(3):789-829 [16959969.001]
  • [Cites] Ann Bot. 2006 Oct;98(4):819-25 [16849376.001]
  • [Cites] Plant Cell Physiol. 2006 Dec;47(12):1678-82 [17082216.001]
  • [Cites] J Exp Bot. 2007;58(9):2319-27 [17350935.001]
  • [Cites] J Exp Bot. 2007;58(9):2339-58 [17578865.001]
  • [Cites] Front Biosci. 2008;13:3046-82 [17981777.001]
  • [Cites] Sci STKE. 2007 Dec 4;2007(415):pe68 [18056913.001]
  • [Cites] Ann Bot. 2009 Apr;103(6):819-24 [19201765.001]
  • [Cites] J Lipid Res. 1983 Jan;24(1):20-7 [6833878.001]
  • [Cites] Acta Biochim Pol. 1990;37(3):385-9 [1965088.001]
  • [Cites] Plant J. 1993 Feb;3(2):315-24 [8220446.001]
  • [Cites] Plant Physiol. 1994 Oct;106(2):477-84 [7991680.001]
  • [Cites] Planta. 2000 Sep;211(4):510-8 [11030550.001]
  • (PMID = 19587098.001).
  • [ISSN] 0032-0889
  • [Journal-full-title] Plant physiology
  • [ISO-abbreviation] Plant Physiol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Amino Acids; 0 / Arabidopsis Proteins; 53-59-8 / NADP; 7440-44-0 / Carbon; EC 1.4.1.13 / Glutamate Synthase; EC 2.7.1.- / Phosphotransferases (Alcohol Group Acceptor); EC 2.7.1.23 / NADK2 protein, Arabidopsis; EC 4.1.1.39 / Ribulose-Bisphosphate Carboxylase; EC 6.3.1.2 / Glutamate-Ammonia Ligase; N762921K75 / Nitrogen
  • [Other-IDs] NLM/ PMC2735975
  •  go-up   go-down


72. Patel H, Di Pietro E, Mejia N, MacKenzie RE: NAD- and NADP-dependent mitochondrially targeted methylenetetrahydrofolate dehydrogenase-cyclohydrolases can rescue mthfd2 null fibroblasts. Arch Biochem Biophys; 2005 Oct 1;442(1):133-9
Hazardous Substances Data Bank. LEUCOVORIN .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] NAD- and NADP-dependent mitochondrially targeted methylenetetrahydrofolate dehydrogenase-cyclohydrolases can rescue mthfd2 null fibroblasts.
  • Mouse fibroblasts in which the mthfd2 gene encoding mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase (NMDMC) was previously inactivated were infected with retroviral expression constructs of dehydrogenase/cyclohydrolase cDNA.
  • Expression of the NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase enzyme in mitochondria corrected the glycine auxotrophy of the null mutant cells.
  • The expression of the NADP-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase-synthetase in the mitochondria also reversed the glycine requirement of the null cells demonstrating that the use of the NAD cofactor is not absolutely essential to maintain the flux of one-carbon metabolites.
  • [MeSH-major] Fibroblasts / enzymology. Methylenetetrahydrofolate Dehydrogenase (NADP) / metabolism. Mitochondria / enzymology. NAD / metabolism. NADP / metabolism

  • Hazardous Substances Data Bank. GLYCINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16150419.001).
  • [ISSN] 0003-9861
  • [Journal-full-title] Archives of biochemistry and biophysics
  • [ISO-abbreviation] Arch. Biochem. Biophys.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Carbon Radioisotopes; 0 / DNA, Complementary; 0U46U6E8UK / NAD; 2800-34-2 / 10-formyltetrahydropteroylglutamic acid; 53-59-8 / NADP; EC 1.5.1.5 / Methylenetetrahydrofolate Dehydrogenase (NADP); EC 3.5.4.- / Aminohydrolases; Q573I9DVLP / Leucovorin; TE7660XO1C / Glycine
  •  go-up   go-down


73. Young GS, Choleris E, Lund FE, Kirkland JB: Decreased cADPR and increased NAD+ in the Cd38-/- mouse. Biochem Biophys Res Commun; 2006 Jul 21;346(1):188-92
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Decreased cADPR and increased NAD+ in the Cd38-/- mouse.
  • CD38 is a type II glycoprotein that catalyzes the formation of cyclic ADP-ribose (cADPR), an intracellular calcium signalling molecule, from nicotinamide adenine dinucleotide (NAD(+)).
  • We also report significant increases in brain, lung, and kidney NAD(+) in the Cd38(-/-) mouse, and provide the first experimental demonstration of the proximate relationship between CD38 and NAD(+).
  • [MeSH-major] Antigens, CD38 / deficiency. Cyclic ADP-Ribose / metabolism. Membrane Glycoproteins / deficiency. NAD / metabolism

  • COS Scholar Universe. author profiles.
  • KOMP Repository. gene/protein/disease-specific - KOMP Repository (subscription/membership/fee required).
  • Mouse Genome Informatics (MGI). Mouse Genome Informatics (MGI) .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16750163.001).
  • [ISSN] 0006-291X
  • [Journal-full-title] Biochemical and biophysical research communications
  • [ISO-abbreviation] Biochem. Biophys. Res. Commun.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Membrane Glycoproteins; 0U46U6E8UK / NAD; 119340-53-3 / Cyclic ADP-Ribose; EC 3.2.2.5 / Antigens, CD38; EC 3.2.2.5 / Cd38 protein, mouse
  •  go-up   go-down


74. Boshoff HI, Xu X, Tahlan K, Dowd CS, Pethe K, Camacho LR, Park TH, Yun CS, Schnappinger D, Ehrt S, Williams KJ, Barry CE 3rd: Biosynthesis and recycling of nicotinamide cofactors in mycobacterium tuberculosis. An essential role for NAD in nonreplicating bacilli. J Biol Chem; 2008 Jul 11;283(28):19329-41
Faculty of 1000. commentaries/discussion - See the articles recommended by F1000Prime's Faculty of more than 8,000 leading experts in Biology and Medicine. (subscription/membership/fee required).

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Biosynthesis and recycling of nicotinamide cofactors in mycobacterium tuberculosis. An essential role for NAD in nonreplicating bacilli.
  • Despite the presence of genes that apparently encode NAD salvage-specific enzymes in its genome, it has been previously thought that Mycobacterium tuberculosis can only synthesize NAD de novo.
  • Transcriptional analysis of the de novo synthesis and putative salvage pathway genes revealed an up-regulation of the salvage pathway genes in vivo and in vitro under conditions of hypoxia.
  • [14C]Nicotinamide incorporation assays in M. tuberculosis isolated directly from the lungs of infected mice or from infected macrophages revealed that incorporation of exogenous nicotinamide was very efficient in in vivo-adapted cells, in contrast to cells grown aerobically in vitro.
  • Mutants in the de novo pathway died upon removal of exogenous nicotinamide during active replication in vitro.
  • Cell death is induced by both cofactor starvation and disruption of cellular redox homeostasis as electron transport is impaired by limiting NAD.
  • Inhibitors of NAD synthetase, an essential enzyme common to both recycling and de novo synthesis pathways, displayed the same bactericidal effect as sudden NAD starvation of the de novo pathway mutant in both actively growing and nonreplicating M. tuberculosis.
  • These studies demonstrate the plasticity of the organism in maintaining NAD levels and establish that the two enzymes of the universal pathway are attractive chemotherapeutic targets for active as well as latent tuberculosis.

  • COS Scholar Universe. author profiles.
  • Gene Ontology. gene/protein/disease-specific - Gene Ontology annotations from this paper .
  • BindingDB. BindingDB .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Assay Drug Dev Technol. 2005 Oct;3(5):533-41 [16305310.001]
  • [Cites] Curr Opin Chem Biol. 2005 Oct;9(5):431-40 [16122969.001]
  • [Cites] Infect Immun. 2008 Jun;76(6):2333-40 [18347040.001]
  • [Cites] Biochemistry. 2000 Jul 18;39(28):8266-75 [10889035.001]
  • [Cites] Microbiology. 2000 Aug;146 ( Pt 8):1969-75 [10931901.001]
  • [Cites] Vitam Horm. 2001;61:103-19 [11153263.001]
  • [Cites] Bioessays. 2001 Jun;23(6):543-8 [11385634.001]
  • [Cites] Mol Microbiol. 2001 Jun;40(6):1241-8 [11442824.001]
  • [Cites] Mol Microbiol. 2002 Feb;43(3):717-31 [11929527.001]
  • [Cites] Nature. 2002 May 9;417(6885):141-7 [12000953.001]
  • [Cites] Metab Eng. 2002 Apr;4(2):182-92 [12009797.001]
  • [Cites] J Bacteriol. 2002 Aug;184(16):4555-72 [12142426.001]
  • [Cites] Protein Expr Purif. 2002 Aug;25(3):547-57 [12182838.001]
  • [Cites] J Biol Chem. 2002 Sep 6;277(36):33291-9 [12068016.001]
  • [Cites] Infect Immun. 2002 Nov;70(11):5946-54 [12379669.001]
  • [Cites] Mol Microbiol. 2003 Apr;48(1):77-84 [12657046.001]
  • [Cites] J Exp Med. 2003 Sep 1;198(5):693-704 [12953091.001]
  • [Cites] J Exp Med. 2003 Sep 1;198(5):705-13 [12953092.001]
  • [Cites] Infect Immun. 2003 Nov;71(11):6124-31 [14573627.001]
  • [Cites] Tuberculosis (Edinb). 2004;84(1-2):29-44 [14670344.001]
  • [Cites] Chem Biol. 2003 Dec;10(12):1195-204 [14700627.001]
  • [Cites] Front Biosci. 2004 May 1;9:1577-86 [14977569.001]
  • [Cites] Biochemistry. 2004 Jun 15;43(23):7610-7 [15182203.001]
  • [Cites] J Biol Chem. 2004 Sep 17;279(38):40174-84 [15247240.001]
  • [Cites] J Biol Chem. 2004 Sep 24;279(39):40980-6 [15269221.001]
  • [Cites] Curr Opin Microbiol. 2004 Oct;7(5):460-5 [15451500.001]
  • [Cites] Arch Biochem Biophys. 1966 Feb;113(2):376-82 [4287397.001]
  • [Cites] Am J Clin Pathol. 1968 Nov;50(5):582-6 [4972420.001]
  • [Cites] Microbiology. 2003 Apr;149(Pt 4):983-90 [12686640.001]
  • [Cites] Cell. 2003 Apr 18;113(2):183-93 [12705867.001]
  • [Cites] J Med Chem. 2003 Jul 17;46(15):3371-81 [12852767.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10026-31 [12897239.001]
  • [Cites] J Bacteriol. 1972 May;110(2):600-3 [4336690.001]
  • [Cites] Microbiol Rev. 1980 Mar;44(1):83-105 [6997723.001]
  • [Cites] J Biol Chem. 1981 Aug 25;256(16):8491-7 [7021549.001]
  • [Cites] CRC Crit Rev Biochem. 1985;17(4):313-451 [3157549.001]
  • [Cites] J Biol Chem. 1993 Dec 5;268(34):26004-10 [7503993.001]
  • [Cites] Nat Med. 1996 Jun;2(6):662-7 [8640557.001]
  • [Cites] J Infect Dis. 1996 Nov;174(5):1085-90 [8896513.001]
  • [Cites] Adv Exp Med Biol. 1997;419:381-8 [9193680.001]
  • [Cites] Nature. 1998 Jun 11;393(6685):537-44 [9634230.001]
  • [Cites] Structure. 1998 Dec 15;6(12):1587-99 [9862811.001]
  • [Cites] J Bacteriol. 1999 Apr;181(7):2044-9 [10094680.001]
  • [Cites] Am Rev Tuberc. 1957 Apr;75(4):529-37 [13411410.001]
  • [Cites] Am Rev Tuberc. 1958 Apr;77(4):669-74 [13521262.001]
  • [Cites] J Biol Chem. 1958 Aug;233(2):488-92 [13563526.001]
  • [Cites] Nature. 2004 Dec 2;432(7017):622-5 [15577910.001]
  • [Cites] Nat Rev Microbiol. 2005 Jan;3(1):70-80 [15608701.001]
  • [Cites] J Antimicrob Chemother. 2005 May;55(5):674-9 [15814606.001]
  • [Cites] J Biol Chem. 2005 May 6;280(18):18326-35 [15753098.001]
  • [Cites] Infect Immun. 2005 Jun;73(6):3492-501 [15908378.001]
  • [Cites] J Bacteriol. 2005 Jul;187(13):4410-20 [15968050.001]
  • [Cites] Structure. 2005 Sep;13(9):1385-96 [16154095.001]
  • [Cites] Curr Opin Drug Discov Devel. 2007 Mar;10(2):193-202 [17436555.001]
  • (PMID = 18490451.001).
  • [ISSN] 0021-9258
  • [Journal-full-title] The Journal of biological chemistry
  • [ISO-abbreviation] J. Biol. Chem.
  • [Language] ENG
  • [Grant] United States / Intramural NIH HHS / / ; United Kingdom / Wellcome Trust / /
  • [Publication-type] Journal Article; Research Support, N.I.H., Intramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0U46U6E8UK / NAD; EC 2.4.2.- / Pentosyltransferases; EC 6.3.4.21 / nicotinate phosphoribosyltransferase
  • [Other-IDs] NLM/ PMC2443648
  •  go-up   go-down


75. Teramoto H, Suda M, Inui M, Yukawa H: Regulation of the expression of genes involved in NAD de novo biosynthesis in Corynebacterium glutamicum. Appl Environ Microbiol; 2010 Aug;76(16):5488-95
Hazardous Substances Data Bank. NICOTINIC ACID .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Regulation of the expression of genes involved in NAD de novo biosynthesis in Corynebacterium glutamicum.
  • Three genes, nadA, nadB, and nadC, involved in NAD de novo biosynthesis are broadly conserved in the genomes of numerous bacterial species.
  • Mutant strains deficient in nadA, nadC, or nadS required exogenous nicotinate for growth, and the nicotinate auxotrophy was complemented by introduction of the corresponding gene in trans, indicating that each of these genes is essential for growth in the absence of an exogenous source of NAD biosynthesis.
  • These results suggest that NdnR acts as a transcriptional repressor of NAD de novo biosynthesis genes and plays an essential role in the regulation of the response to nicotinate.
  • [MeSH-major] Bacterial Proteins / metabolism. Biosynthetic Pathways / genetics. Corynebacterium glutamicum / physiology. Gene Expression Regulation, Bacterial. NAD / biosynthesis

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Biol Chem. 2000 Jun 30;275(26):20096-103 [10781607.001]
  • [Cites] Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9009-14 [10908675.001]
  • [Cites] J Biol Chem. 2003 Mar 7;278(10):8804-8 [12496312.001]
  • [Cites] Appl Microbiol Biotechnol. 2003 Aug;62(2-3):99-109 [12743753.001]
  • [Cites] J Biotechnol. 2003 Sep 4;104(1-3):5-25 [12948626.001]
  • [Cites] J Mol Microbiol Biotechnol. 2004;7(4):182-96 [15383716.001]
  • [Cites] Eur J Biochem. 1988 Aug 1;175(2):221-8 [2841129.001]
  • [Cites] Biol Chem Hoppe Seyler. 1990 Mar;371(3):239-48 [2187483.001]
  • [Cites] J Bacteriol. 1990 Aug;172(8):4187-96 [2198247.001]
  • [Cites] J Bacteriol. 1993 Jan;175(2):479-86 [8419294.001]
  • [Cites] J Bacteriol. 1993 Mar;175(5):1423-32 [8444804.001]
  • [Cites] Res Microbiol. 1993 Mar-Apr;144(3):181-5 [8210675.001]
  • [Cites] Arch Biochem Biophys. 1996 Jan 15;325(2):270-8 [8561507.001]
  • [Cites] J Bacteriol. 1999 Jan;181(2):648-55 [9882682.001]
  • [Cites] Adv Enzymol Relat Areas Mol Biol. 1999;73:135-82, xi [10218108.001]
  • [Cites] J Bacteriol. 2005 Apr;187(8):2774-82 [15805524.001]
  • [Cites] J Gen Appl Microbiol. 2004 Dec;50(6):331-43 [15965888.001]
  • [Cites] FEBS Lett. 2005 Jul 4;579(17):3737-43 [15967443.001]
  • [Cites] J Bioinform Comput Biol. 2005 Aug;3(4):1007-19 [16078372.001]
  • [Cites] J Mol Microbiol Biotechnol. 2004;8(4):243-54 [16179801.001]
  • [Cites] J Bacteriol. 2005 Oct;187(20):7155-60 [16199587.001]
  • [Cites] Appl Microbiol Biotechnol. 2005 Sep;68(4):475-80 [15672268.001]
  • [Cites] Appl Environ Microbiol. 2006 May;72(5):3750-5 [16672528.001]
  • [Cites] Microbiology. 2007 Apr;153(Pt 4):1042-58 [17379713.001]
  • [Cites] Microbiology. 2007 Aug;153(Pt 8):2491-504 [17660414.001]
  • [Cites] Appl Microbiol Biotechnol. 2008 Mar;78(3):449-54 [18188553.001]
  • [Cites] Nucleic Acids Res. 2008 Apr;36(6):2047-59 [18276643.001]
  • [Cites] Nucleic Acids Res. 2008 Apr;36(6):2032-46 [18276644.001]
  • [Cites] FEBS Lett. 2008 Aug 20;582(19):2937-44 [18674537.001]
  • [Cites] Appl Environ Microbiol. 2008 Sep;74(17):5290-6 [18586971.001]
  • [Cites] Appl Microbiol Biotechnol. 2008 Dec;81(3):459-64 [18777022.001]
  • [Cites] Microbiol Mol Biol Rev. 2009 Sep;73(3):529-41, Table of Contents [19721089.001]
  • (PMID = 20601509.001).
  • [ISSN] 1098-5336
  • [Journal-full-title] Applied and environmental microbiology
  • [ISO-abbreviation] Appl. Environ. Microbiol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Bacterial Proteins; 0 / Repressor Proteins; 0U46U6E8UK / NAD; 2679MF687A / Niacin; EC 3.2.1.23 / beta-Galactosidase
  • [Other-IDs] NLM/ PMC2918977
  •  go-up   go-down


76. Garten A, Petzold S, Körner A, Imai S, Kiess W: Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol Metab; 2009 Apr;20(3):130-8
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Nampt: linking NAD biology, metabolism and cancer.
  • Nicotinamide phosphoribosyltransferase (Nampt) converts nicotinamide to nicotinamide mononucleotide (NMN), a key nicotinamide adenine dinucleotide (NAD) intermediate.
  • Previously identified as a cytokine pre-B-cell colony-enhancing factor and controversially claimed as an insulin-mimetic hormone visfatin, Nampt has recently drawn much attention in several fields, including NAD biology, metabolism and inflammation.
  • As a NAD biosynthetic enzyme, Nampt regulates the activity of NAD-consuming enzymes such as sirtuins and influences a variety of metabolic and stress responses.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] PLoS One. 2008;3(5):e2267 [18493620.001]
  • [Cites] Front Biosci. 2008;13:5187-94 [