[X] Close
You are about to erase all the values you have customized, search history, page format, etc.
Click here to RESET all values       Click here to GO BACK without resetting any value
Items 1 to 100 of about 2777
1. Ritch PS, Carroll SL, Sontheimer H: Neuregulin-1 enhances survival of human astrocytic glioma cells. Glia; 2005 Aug 15;51(3):217-28
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Neuregulin-1 enhances survival of human astrocytic glioma cells.
  • Malignant astrocytic gliomas, referred to as astrocytomas, represent the most commonly diagnosed adult primary brain tumor.
  • Tumor expansion into the healthy surrounding brain tissue produces severe and often fatal consequences.
  • In this study, we examine the potential for the neuregulin-1/erbB receptor signaling cascade to contribute to this process by modulating glioma cell growth.
  • Using antibodies specific for the erbB receptors, we demonstrate the expression patterns for the erbB2, erbB3, and erbB4 receptors in human glioma biopsy samples.
  • We then verify receptor expression in a panel of human glioma cell lines.
  • Next, we investigate the status of the erbB2 and erbB3 receptors in the human glioma cell lines and find that they are constitutively tyrosine-phosphorylated and heterodimerized.
  • Furthermore, we show that exogenous activation of erbB2 and erbB3 receptors in U251 glioma cells by recombinant Nrg-1beta results in enhanced glioma cell growth under conditions of serum-deprivation.
  • Moreover, Nrg-1beta activates an inhibitor of apoptosis, Akt, implying a possible role for this kinase in mediating Nrg-1beta effects in gliomas.
  • This data suggests that glioma cells may use autocrine or paracrine neuregulin-1/erbB receptor signaling to enhance cell survival under conditions where growth would otherwise be limited.

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Oncogene. 1992 Sep;7(9):1859-66 [1354348.001]
  • [Cites] Neurosurgery. 1993 Jul;33(1):106-15 [7689190.001]
  • [Cites] Mol Cell Biol. 1994 Jan;14(1):492-500 [8264617.001]
  • [Cites] Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1064-8 [8302832.001]
  • [Cites] Mol Cell Biol. 1994 Mar;14(3):1909-19 [7509448.001]
  • [Cites] Mol Cell Biol. 1994 Jun;14(6):3550-8 [7515147.001]
  • [Cites] Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9387-91 [7937775.001]
  • [Cites] Biochim Biophys Acta. 1994 Dec 30;1198(2-3):165-84 [7819273.001]
  • [Cites] Oncogene. 1995 Apr 6;10(7):1403-11 [7731691.001]
  • [Cites] J Cell Biol. 1995 Jul;130(1):127-35 [7540614.001]
  • [Cites] J Biol Chem. 1995 Aug 11;270(32):19188-96 [7642587.001]
  • [Cites] Neuron. 1996 Aug;17(2):229-43 [8780647.001]
  • [Cites] Mol Cell Neurosci. 1996 Apr;7(4):247-62 [8793861.001]
  • [Cites] EMBO J. 1997 Apr 1;16(7):1647-55 [9130710.001]
  • [Cites] Nature. 1997 May 29;387(6632):509-12 [9168114.001]
  • [Cites] Nature. 1997 May 29;387(6632):512-6 [9168115.001]
  • [Cites] Mol Cell Biol. 1997 Jul;17(7):4007-14 [9199335.001]
  • [Cites] Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9562-7 [9275162.001]
  • [Cites] J Neurochem. 1997 Nov;69(5):1859-63 [9349528.001]
  • [Cites] J Neurosci Res. 1997 Dec 1;50(5):755-68 [9418963.001]
  • [Cites] J Neurooncol. 1997 Dec;35(3):193-209 [9440020.001]
  • [Cites] J Neurooncol. 1997 Dec;35(3):223-48 [9440022.001]
  • [Cites] J Neurooncol. 1997 Dec;35(3):335-46 [9440030.001]
  • [Cites] Genes Dev. 1998 Jun 15;12(12):1825-36 [9637684.001]
  • [Cites] Biochem J. 1998 Aug 1;333 ( Pt 3):757-63 [9677338.001]
  • [Cites] Biochem J. 1998 Oct 1;335 ( Pt 1):1-13 [9742206.001]
  • [Cites] Can J Neurol Sci. 1998 Nov;25(4):267-81 [9827227.001]
  • [Cites] Genes Dev. 1998 Dec 1;12(23):3675-85 [9851974.001]
  • [Cites] Eur J Neurosci. 1999 Mar;11(3):769-80 [10103071.001]
  • [Cites] Mol Cell Neurosci. 1999 Feb;13(2):79-94 [10192767.001]
  • [Cites] Oncogene. 1999 Apr 29;18(17):2681-9 [10348342.001]
  • [Cites] EMBO J. 1994 Jun 15;13(12):2831-41 [8026468.001]
  • [Cites] Adv Cancer Res. 2000;77:25-79 [10549355.001]
  • [Cites] Glia. 2000 Jan 15;29(2):104-11 [10625327.001]
  • [Cites] Toxicol Pathol. 2000 Jan-Feb;28(1):171-7 [10669005.001]
  • [Cites] Biochem J. 2000 Mar 15;346 Pt 3:561-76 [10698680.001]
  • [Cites] EMBO J. 2000 Jul 3;19(13):3159-67 [10880430.001]
  • [Cites] J Neurosci. 2000 Oct 15;20(20):7622-30 [11027222.001]
  • [Cites] Bioessays. 2000 Nov;22(11):987-96 [11056475.001]
  • [Cites] Brain Res Dev Brain Res. 2000 Nov 30;124(1-2):93-9 [11113516.001]
  • [Cites] Annu Rev Neurosci. 2001;24:385-428 [11283316.001]
  • [Cites] Neuro Oncol. 2000 Apr;2(2):96-102 [11303626.001]
  • [Cites] Mol Cell Neurosci. 2001 Apr;17(4):761-7 [11312610.001]
  • [Cites] J Biol Chem. 2001 Jan 26;276(4):2841-51 [11042203.001]
  • [Cites] J Biol Chem. 2001 Mar 9;276(10):7320-6 [11058599.001]
  • [Cites] Curr Opin Neurobiol. 2001 Jun;11(3):287-96 [11399426.001]
  • [Cites] J Neurooncol. 2001 Feb;51(3):245-64 [11407596.001]
  • [Cites] J Neurosci. 2001 Jul 1;21(13):4740-51 [11425901.001]
  • [Cites] Genes Dev. 2001 Aug 1;15(15):1913-25 [11485986.001]
  • [Cites] Curr Opin Neurol. 2001 Dec;14(6):683-8 [11723374.001]
  • [Cites] Fed Proc. 1983 Jun;42(9):2627-9 [6852276.001]
  • [Cites] Nature. 1985 Jan 10-18;313(5998):144-7 [2981413.001]
  • [Cites] Cell. 1985 Jul;41(3):697-706 [2860972.001]
  • [Cites] Science. 1985 Dec 6;230(4730):1132-9 [2999974.001]
  • [Cites] Cell. 1986 Jun 6;45(5):649-57 [2871941.001]
  • [Cites] Proc Natl Acad Sci U S A. 1987 Oct;84(19):6899-903 [3477813.001]
  • [Cites] Cancer Res. 1988 Jul 15;48(14):3910-8 [2454731.001]
  • [Cites] Science. 1989 May 12;244(4905):707-12 [2470152.001]
  • [Cites] Neurosurgery. 1989 Nov;25(5):681-94 [2685640.001]
  • [Cites] J Neurosurg. 1991 Aug;75(2):284-93 [1649272.001]
  • [Cites] Ann N Y Acad Sci. 1991;633:35-47 [1789559.001]
  • [Cites] Cell. 1992 Apr 3;69(1):205-16 [1348215.001]
  • [Cites] J Neurosci Res. 1992 Jan;31(1):175-87 [1377283.001]
  • (PMID = 15812817.001).
  • [ISSN] 0894-1491
  • [Journal-full-title] Glia
  • [ISO-abbreviation] Glia
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / P50 CA097247-010003; United States / NINDS NIH HHS / NS / R01 NS036692-05A1; United States / NCI NIH HHS / CA / CA097247-010003; United States / NCI NIH HHS / CA / P50 CA097247; United States / NCI NIH HHS / CA / P50CA97247; United States / NINDS NIH HHS / NS / NS036692-05A1; United States / NINDS NIH HHS / NS / R01 NS036692; United States / NINDS NIH HHS / NS / R01-NS36692; United States / NINDS NIH HHS / NS / R01 NS036692-06; United States / NINDS NIH HHS / NS / NS036692-06
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Neuregulin-1; 0 / Protein Subunits; 0 / Proto-Oncogene Proteins; 0 / Recombinant Fusion Proteins; EC 2.7.1.- / Phosphatidylinositol 3-Kinases; EC 2.7.10.1 / ERBB4 protein, human; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 2.7.10.1 / Receptor, ErbB-2; EC 2.7.10.1 / Receptor, ErbB-3; EC 2.7.10.1 / Receptor, ErbB-4; EC 2.7.11.1 / AKT1 protein, human; EC 2.7.11.1 / Protein-Serine-Threonine Kinases; EC 2.7.11.1 / Proto-Oncogene Proteins c-akt
  • [Other-IDs] NLM/ NIHMS25075; NLM/ PMC2548407
  •  go-up   go-down


2. Götze S, Wolter M, Reifenberger G, Müller O, Sievers S: Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas. Int J Cancer; 2010 Jun 1;126(11):2584-93
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas.
  • Recent studies suggested a role of Wnt signaling in gliomas, the most common primary brain tumors.
  • We investigated 70 gliomas of different malignancy grades for promoter hypermethylation in 8 genes encoding members of the secreted frizzled-related protein (SFRP1, SFRP2, SFRP4, SFRP5), dickkopf (DKK1, DKK3) and naked (NKD1, NKD2) families of Wnt pathway inhibitors.
  • While none of the tumors carried CTNNB1 mutations, we found frequent promoter hypermethylation of Wnt pathway inhibitor genes, with at least one of these genes being hypermethylated in 6 of 16 diffuse astrocytomas (38%), 4 of 14 anaplastic astrocytomas (29%), 7 of 10 secondary glioblastomas (70%) and 23 of 30 primary glioblastomas (77%).
  • Furthermore, SFRP1-hypermethylated gliomas showed significantly lower expression of the respective transcripts when compared with unmethylated tumors.
  • Taken together, our results suggest an important role of epigenetic silencing of Wnt pathway inhibitor genes in astrocytic gliomas, in particular, in glioblastomas, with distinct patterns of hypermethylated genes distinguishing primary from secondary glioblastomas.
  • [MeSH-major] Astrocytoma / genetics. DNA Methylation / genetics. Promoter Regions, Genetic. Wnt Proteins / genetics
  • [MeSH-minor] Carrier Proteins / genetics. Cell Line, Tumor. DNA Mutational Analysis. DNA, Neoplasm / genetics. DNA, Neoplasm / isolation & purification. Exons. Eye Proteins / genetics. Glioblastoma / genetics. Glioblastoma / secondary. Glioma / genetics. Glioma / pathology. Humans. Intercellular Signaling Peptides and Proteins / genetics. Membrane Proteins / genetics. Mutation. Polymerase Chain Reaction. Proto-Oncogene Proteins / genetics. beta Catenin / genetics

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19847810.001).
  • [ISSN] 1097-0215
  • [Journal-full-title] International journal of cancer
  • [ISO-abbreviation] Int. J. Cancer
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / CTNNB1 protein, human; 0 / Carrier Proteins; 0 / DNA, Neoplasm; 0 / Eye Proteins; 0 / Intercellular Signaling Peptides and Proteins; 0 / Membrane Proteins; 0 / NKD1 protein, human; 0 / NKD2 protein, human; 0 / Proto-Oncogene Proteins; 0 / SFRP1 protein, human; 0 / SFRP2 protein, human; 0 / SFRP4 protein, human; 0 / SFRP5 protein, human; 0 / Wnt Proteins; 0 / beta Catenin
  •  go-up   go-down


3. Liu L, Bäcklund LM, Nilsson BR, Grandér D, Ichimura K, Goike HM, Collins VP: Clinical significance of EGFR amplification and the aberrant EGFRvIII transcript in conventionally treated astrocytic gliomas. J Mol Med (Berl); 2005 Nov;83(11):917-26
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Clinical significance of EGFR amplification and the aberrant EGFRvIII transcript in conventionally treated astrocytic gliomas.
  • The aim of this study was to evaluate the clinical value of assessing epidermal growth factor receptor (EGFR) amplification and the common 5' rearrangement of EGFR resulting in the EGFRvIII transcript in astrocytic gliomas.
  • Amplification of EGFR was found in 41% (65/160) of glioblastomas (GBs) and 10% (4/41) of anaplastic astrocytomas (AAs).
  • There were no abnormalities of the EFGR or its transcript in grade II astrocytoma (AII).
  • We noted a tendency towards decreased survival with any EGFR abnormality in the 41 patients with AAs.
  • [MeSH-major] Astrocytoma / genetics. Central Nervous System Neoplasms / genetics. Gene Amplification. Glioblastoma / genetics. Glioma / genetics. Receptor, Epidermal Growth Factor / genetics

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):639-44 [12515857.001]
  • [Cites] J Clin Oncol. 2001 Sep 15;19(18 Suppl):41S-44S [11560970.001]
  • [Cites] Cancer Res. 2003 Oct 15;63(20):6962-70 [14583498.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2004 Mar 1;58(3):972-5 [14967458.001]
  • [Cites] J Neuropathol Exp Neurol. 2004 Jul;63(7):700-7 [15290895.001]
  • [Cites] Cancer Res. 2004 Oct 1;64(19):6892-9 [15466178.001]
  • [Cites] Biometrika. 1965 Dec;52(3):650-3 [5858975.001]
  • [Cites] Cancer Res. 1984 Mar;44(3):1002-7 [6318979.001]
  • [Cites] Proc Natl Acad Sci U S A. 1990 Jun;87(11):4207-11 [1693434.001]
  • [Cites] Proc Natl Acad Sci U S A. 1990 Nov;87(21):8602-6 [2236070.001]
  • [Cites] Cancer Res. 1991 Apr 15;51(8):2164-72 [2009534.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1992;22(1):225-30 [1309204.001]
  • [Cites] Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2965-9 [1557402.001]
  • [Cites] Proc Natl Acad Sci U S A. 1992 May 15;89(10):4309-13 [1584765.001]
  • [Cites] Cancer Res. 1994 Feb 15;54(4):1008-15 [8313355.001]
  • [Cites] Cancer Res. 1994 Jun 15;54(12):3127-30 [8205529.001]
  • [Cites] Oncogene. 1994 Aug;9(8):2313-20 [8036013.001]
  • [Cites] Crit Rev Oncol Hematol. 1995 Jul;19(3):183-232 [7612182.001]
  • [Cites] Cancer Res. 1995 Dec 1;55(23):5536-9 [7585629.001]
  • [Cites] Cancer Res. 1996 Sep 1;56(17):3859-61 [8752145.001]
  • [Cites] Oncogene. 1996 Sep 5;13(5):1065-72 [8806696.001]
  • [Cites] Clin Cancer Res. 1998 Jan;4(1):215-22 [9516974.001]
  • [Cites] Oncol Res. 1997;9(11-12):581-7 [9563005.001]
  • [Cites] J Neuropathol Exp Neurol. 1998 Jul;57(7):684-9 [9690672.001]
  • [Cites] Int J Oncol. 1998 Oct;13(4):717-24 [9735401.001]
  • [Cites] J Neuropathol Exp Neurol. 1998 Dec;57(12):1138-45 [9862636.001]
  • [Cites] Cancer Res. 2000 Mar 1;60(5):1383-7 [10728703.001]
  • [Cites] Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7503-8 [10852962.001]
  • [Cites] Cell. 2000 Oct 13;103(2):211-25 [11057895.001]
  • [Cites] Oncol Res. 2000;12(2):107-12 [11132923.001]
  • [Cites] Nat Rev Mol Cell Biol. 2001 Feb;2(2):127-37 [11252954.001]
  • [Cites] J Natl Cancer Inst. 2001 Aug 15;93(16):1246-56 [11504770.001]
  • [Cites] Clin Cancer Res. 2003 Sep 15;9(11):4151-8 [14519639.001]
  • (PMID = 16133418.001).
  • [ISSN] 0946-2716
  • [Journal-full-title] Journal of molecular medicine (Berlin, Germany)
  • [ISO-abbreviation] J. Mol. Med.
  • [Language] eng
  • [Grant] United Kingdom / Cancer Research UK / / A6618
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Biomarkers; 0 / epidermal growth factor receptor VIII; EC 2.7.10.1 / Receptor, Epidermal Growth Factor
  • [Other-IDs] NLM/ PMC2815848; NLM/ UKMS2690
  •  go-up   go-down


Advertisement
4. Zhou YH, Hess KR, Liu L, Linskey ME, Yung WK: Modeling prognosis for patients with malignant astrocytic gliomas: quantifying the expression of multiple genetic markers and clinical variables. Neuro Oncol; 2005 Oct;7(4):485-94
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Modeling prognosis for patients with malignant astrocytic gliomas: quantifying the expression of multiple genetic markers and clinical variables.
  • The disparate lengths of survival among patients with malignant astrocytic gliomas (anaplastic astrocytomas [AAs] and glioblastoma multiforme [GBM]) cannot be adequately accounted for by clinical variables (patient age, histology, and recurrent status).
  • We previously explicated the expression and prognostic value of PAX6, PTEN, VEGF, and EGFR in these glioma tissues and established a comprehensive prognostic model (Zhou et al., 2003).
  • This study attempts to improve that model by including four additional genetic markers, which exhibited a differential expression (P < 0.001) among tumor grades and between tumor and normal tissues.
  • This finding suggests that the expression of IGFBP2 is associated with pathways activated specifically in GBMs that result in enhancing invasiveness and angiogenesis.
  • [MeSH-major] Astrocytoma / genetics. Biomarkers, Tumor / analysis. Brain Neoplasms / genetics. Models, Statistical

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer Res. 2003 Oct 15;63(20):6962-70 [14583498.001]
  • [Cites] Cancer Res. 2003 Oct 15;63(20):6613-25 [14583454.001]
  • [Cites] Cancer. 1988 Nov 15;62(10):2152-65 [3179928.001]
  • [Cites] Genes Chromosomes Cancer. 1992 Jul;5(1):75-82 [1384665.001]
  • [Cites] Genes Chromosomes Cancer. 1992 Nov;5(4):357-74 [1283325.001]
  • [Cites] Brain Pathol. 1993 Jan;3(1):19-26 [8269081.001]
  • [Cites] J Natl Cancer Inst. 1994 Jun 1;86(11):829-35 [8182763.001]
  • [Cites] Nature. 1994 Jul 7;370(6484):61-5 [8015608.001]
  • [Cites] Hum Pathol. 1995 Aug;26(8):846-51 [7543440.001]
  • [Cites] J Neurooncol. 1995 Oct;26(1):11-6 [8583240.001]
  • [Cites] Acta Neuropathol. 1996 Jul;92(1):70-4 [8811128.001]
  • [Cites] J Neuropathol Exp Neurol. 1997 Mar;56(3):291-300 [9056543.001]
  • [Cites] J Neurooncol. 1997 Oct;35(1):13-28 [9266437.001]
  • [Cites] Cancer Res. 1997 Dec 1;57(23):5254-7 [9393744.001]
  • [Cites] Oncogene. 1998 Jan 15;16(2):257-63 [9464544.001]
  • [Cites] Brain Pathol. 1998 Oct;8(4):655-67 [9804374.001]
  • [Cites] Invasion Metastasis. 1997;17(5):221-39 [9876217.001]
  • [Cites] Cancer Res. 1999 Apr 15;59(8):1820-4 [10213484.001]
  • [Cites] Cancer Res. 1999 Sep 1;59(17):4228-32 [10485462.001]
  • [Cites] J Neurooncol. 2005 Feb;71(3):223-9 [15735909.001]
  • [Cites] Br J Neurosurg. 2000 Feb;14(1):28-32 [10884881.001]
  • [Cites] Cancer Res. 2000 Dec 1;60(23):6617-22 [11118044.001]
  • [Cites] Neuro Oncol. 2000 Jul;2(3):164-73 [11302337.001]
  • [Cites] J Natl Cancer Inst. 2001 Aug 15;93(16):1246-56 [11504770.001]
  • [Cites] Curr Opin Cell Biol. 2001 Oct;13(5):534-40 [11544020.001]
  • [Cites] Oncogene. 2001 Nov 1;20(50):7437-46 [11704875.001]
  • [Cites] Oncogene. 2001 Oct 11;20(46):6669-78 [11709701.001]
  • [Cites] Bioinformatics. 2002 Mar;18(3):405-12 [11934739.001]
  • [Cites] Virchows Arch. 2003 Apr;442(4):329-35 [12684767.001]
  • [Cites] Neurochem Res. 2003 Jun;28(6):925-31 [12718447.001]
  • [Cites] Cancer Res. 2003 Aug 1;63(15):4315-21 [12907597.001]
  • [Cites] Clin Cancer Res. 2003 Aug 15;9(9):3369-75 [12960124.001]
  • [Cites] Cancer Res. 2004 Feb 1;64(3):920-7 [14871821.001]
  • (PMID = 16212813.001).
  • [ISSN] 1522-8517
  • [Journal-full-title] Neuro-oncology
  • [ISO-abbreviation] Neuro-oncology
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Genetic Markers; 0 / Insulin-Like Growth Factor Binding Protein 2; 0 / Ribosomal Proteins; 0 / ribosomal protein S9; EC 3.4.24.24 / Matrix Metalloproteinase 2
  • [Other-IDs] NLM/ PMC1871729
  •  go-up   go-down


5. Lamoral-Theys D, Le Mercier M, Le Calvé B, Rynkowski MA, Bruyère C, Decaestecker C, Haibe-Kains B, Bontempi G, Dubois J, Lefranc F, Kiss R: Long-term temozolomide treatment induces marked amino metabolism modifications and an increase in TMZ sensitivity in Hs683 oligodendroglioma cells. Neoplasia; 2010 Jan;12(1):69-79
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Gliomas account for more than 50% of all primary brain tumors.
  • The worst prognosis is associated with gliomas of astrocytic origin, whereas gliomas with an oligodendroglial origin offer higher sensitivity to chemotherapy, especially when oligodendroglioma cells display 1p19q deletions.
  • Temozolomide (TMZ) provides therapeutic benefits and is commonly used with radiotherapy in highly malignant astrocytic tumors, including glioblastomas.
  • [MeSH-minor] Animals. Antineoplastic Agents, Alkylating / pharmacology. Apoptosis / drug effects. Blotting, Western. Cell Line, Tumor. Cell Proliferation / drug effects. Female. Gene Expression Regulation, Neoplastic / drug effects. Genomics / methods. HT29 Cells. Humans. Mice. Mice, Nude. Neoplasm Invasiveness. Neoplastic Stem Cells / drug effects. Neoplastic Stem Cells / metabolism. Neoplastic Stem Cells / pathology. Proteomics / methods. Reverse Transcriptase Polymerase Chain Reaction. Time Factors. Xenograft Model Antitumor Assays

  • Genetic Alliance. consumer health - Oligodendroglioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. DACARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neuropathol Exp Neurol. 2001 Sep;60(9):863-71 [11556543.001]
  • [Cites] Cancer Res. 2008 Jul 15;68(14):5706-15 [18632623.001]
  • [Cites] APMIS. 2008 Jul-Aug;116(7-8):615-28 [18834406.001]
  • [Cites] Neoplasia. 2008 Dec;10(12):1383-92 [19048117.001]
  • [Cites] Cancer Res. 2009 Jan 15;69(2):458-65 [19147558.001]
  • [Cites] J Neurooncol. 2009 Mar;92(1):57-63 [19011763.001]
  • [Cites] Neuro Oncol. 2009 Feb;11(1):69-79 [18772354.001]
  • [Cites] Oncologist. 2009 Feb;14(2):155-63 [19182242.001]
  • [Cites] Neoplasia. 2009 Apr;11(4):377-87 [19308292.001]
  • [Cites] Lancet Oncol. 2009 May;10(5):459-66 [19269895.001]
  • [Cites] Neoplasia. 2009 May;11(5):485-96 [19412433.001]
  • [Cites] Science. 2009 May 22;324(5930):1029-33 [19460998.001]
  • [Cites] Brain Pathol. 2010 Jan;20(1):39-49 [18947333.001]
  • [Cites] Oncol Res. 2007;16(9):405-13 [18074675.001]
  • [Cites] Mol Cancer. 2008;7:14 [18221502.001]
  • [Cites] PLoS One. 2008;3(4):e1936 [18398462.001]
  • [Cites] J Neuropathol Exp Neurol. 2008 May;67(5):456-69 [18431251.001]
  • [Cites] Glia. 2001 Dec;36(3):375-90 [11746774.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Jul;61(7):585-96 [12125737.001]
  • [Cites] Cancer. 2002 Aug 1;95(3):641-55 [12209758.001]
  • [Cites] Mol Cell. 2003 Mar;11(3):619-33 [12667446.001]
  • [Cites] Cancer Res. 2003 Apr 1;63(7):1684-95 [12670923.001]
  • [Cites] Genome Biol. 2003;4(10):R70 [14519205.001]
  • [Cites] Cell Death Differ. 2004 Apr;11(4):448-57 [14713959.001]
  • [Cites] Clin Cancer Res. 2004 Mar 15;10(6):1871-4 [15041700.001]
  • [Cites] J Neuropathol Exp Neurol. 1998 Aug;57(8):791-802 [9720494.001]
  • [Cites] FEBS Lett. 1999 Aug 27;457(2):255-61 [10471790.001]
  • [Cites] Adv Cancer Res. 2004;92:95-118 [15530558.001]
  • [Cites] FASEB J. 2005 Feb;19(2):240-2 [15545299.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):987-96 [15758009.001]
  • [Cites] Cancer Res. 2005 May 15;65(10):4101-17 [15899800.001]
  • [Cites] N Engl J Med. 2005 Aug 25;353(8):811-22 [16120861.001]
  • [Cites] Neoplasia. 2005 Oct;7(10):930-43 [16242076.001]
  • [Cites] Acta Neuropathol. 2006 May;111(5):475-82 [16598485.001]
  • [Cites] Oncol Rep. 2006 Jul;16(1):33-9 [16786120.001]
  • [Cites] Neoplasia. 2006 May;8(5):402-12 [16790089.001]
  • [Cites] Cancer Biol Ther. 2006 Jul;5(7):729-35 [16861922.001]
  • [Cites] Mol Cancer. 2006;5:67 [17140455.001]
  • [Cites] Oncogene. 2007 Jan 11;26(2):186-97 [16819506.001]
  • [Cites] Cell Death Differ. 2007 Mar;14(3):548-58 [16946731.001]
  • [Cites] Neoplasia. 2007 May;9(5):358-69 [17534441.001]
  • [Cites] Neuro Oncol. 2007 Jul;9(3):314-8 [17435180.001]
  • [Cites] PLoS One. 2007;2(6):e576 [17593975.001]
  • [Cites] J Clin Oncol. 2007 Sep 10;25(26):4127-36 [17827463.001]
  • [Cites] Neoplasia. 2007 Sep;9(9):766-76 [17898872.001]
  • [Cites] Pharmacol Res. 2007 Oct;56(4):275-87 [17897837.001]
  • [Cites] Cancer J. 2007 Sep-Oct;13(5):335-44 [17921733.001]
  • [Cites] Expert Rev Anticancer Ther. 2007 Nov;7(11):1581-90 [18020926.001]
  • [Cites] Annu Rev Pathol. 2006;1:97-117 [18039109.001]
  • [Cites] Toxicol Appl Pharmacol. 2008 Jun 1;229(2):172-83 [18313712.001]
  • [Cites] Biochem Pharmacol. 2008 Aug 1;76(3):303-11 [18573489.001]
  • [Cites] Exp Cell Res. 2008 Sep 10;314(15):2870-83 [18639545.001]
  • (PMID = 20072655.001).
  • [ISSN] 1476-5586
  • [Journal-full-title] Neoplasia (New York, N.Y.)
  • [ISO-abbreviation] Neoplasia
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Canada
  • [Chemical-registry-number] 0 / Amino Acids; 0 / Antineoplastic Agents, Alkylating; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide
  • [Other-IDs] NLM/ PMC2805885
  •  go-up   go-down


6. Pareés I, Alonso J, Rovira A, Martínez E, Montalban X: [Diffuse astrocytoma presenting as an optic-spinal syndrome]. Rev Neurol; 2009 Apr 1-15;48(7):354-6
Genetic Alliance. consumer health - Diffuse Astrocytoma.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Diffuse astrocytoma presenting as an optic-spinal syndrome].
  • [Transliterated title] Síndrome opticomedular como forma de presentación de un astrocitoma difuso.
  • INTRODUCTION: Spinal cord involvement is a rare presentation of grade II astrocytomas.
  • Nevertheless, differentiation from inflammatory demyelinating diseases of the central nervous system can be challenging in some clinical situations.
  • A patient with an optic-spinal syndrome due to a fibrillary astrocytoma is described.
  • CASE REPORT: A 32 years-old man was admitted to the hospital because of a subacute spinal cord syndrome.
  • A new MRI with spectroscopy revealed an infiltrative lesion involving the right frontal lobe, optic chiasm, internal capsule, brainstem and cervical spinal cord, which was suggestive of low-grade astrocytoma.
  • Brain biopsy confirmed the diagnosis of diffuse fibrillary astrocytoma.
  • Brain biopsy is often necessary for a definite diagnosis.
  • [MeSH-major] Astrocytoma. Demyelinating Diseases. Optic Neuritis. Spinal Cord / pathology

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19319816.001).
  • [ISSN] 1576-6578
  • [Journal-full-title] Revista de neurologia
  • [ISO-abbreviation] Rev Neurol
  • [Language] spa
  • [Publication-type] Case Reports; English Abstract; Journal Article
  • [Publication-country] Spain
  • [Chemical-registry-number] 0 / Oligoclonal Bands
  •  go-up   go-down


7. Uno M, Oba-Shinjo SM, Wakamatsu A, Huang N, Avancini Ferreira Alves V, Rosemberg S, Pires de Aguiar PH, Leite C, Miura F, Marino J R, Scaff M, Nagahashi-Marie SK: Association of TP53 mutation, p53 overexpression, and p53 codon 72 polymorphism with susceptibility to apoptosis in adult patients with diffuse astrocytomas. Int J Biol Markers; 2006 Jan - Mar;21(1):50-57

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Association of TP53 mutation, p53 overexpression, and p53 codon 72 polymorphism with susceptibility to apoptosis in adult patients with diffuse astrocytomas.
  • : Clarification of TP53 alterations is important to understand the mechanisms underlying the development of diffuse astrocytomas.
  • The aim of this study was to analyze the possible association of TP53 mutation, p53 overexpression, and p53 codon 72 polymorphism with susceptibility to apoptosis in adult Brazilian patients with diffuse astrocytomas.
  • We analyzed 56 surgical specimens of diffuse astrocytomas for alterations of TP53, using polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) direct sequencing. p53 and cleaved caspase 3 protein expression were assessed by immunohistochemistry.
  • We concluded that clarification of the TP53 alterations allows a better understanding of the mechanisms involved in the progression of diffuse astrocytomas, and the allele status at codon 72 was not associated with apoptosis in these tumors.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28207094.001).
  • [ISSN] 1724-6008
  • [Journal-full-title] The International journal of biological markers
  • [ISO-abbreviation] Int. J. Biol. Markers
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Italy
  •  go-up   go-down


8. Komotar RJ, Carson BS, Rao C, Chaffee S, Goldthwaite PT, Tihan T: Pilomyxoid Astrocytoma of the Spinal Cord: Report of Three Cases. Neurosurgery; 2005 Jan 01;56(1):E206-E210

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Pilomyxoid Astrocytoma of the Spinal Cord: Report of Three Cases.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28184642.001).
  • [ISSN] 1524-4040
  • [Journal-full-title] Neurosurgery
  • [ISO-abbreviation] Neurosurgery
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


9. Khattab AZ, Ahmed MI, Fouad MA, Essa WA: Significance of p53 and CD31 in astrogliomas. Med Oncol; 2009;26(1):86-92
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Significance of p53 and CD31 in astrogliomas.
  • BACKGROUND: Astrogliomas are the most common primary brain tumor.
  • Its progression is the result of activation of oncogenes, inactivation of tumor suppressor genes (TSGs), and expression of various growth factors.
  • The angiogenesis and p53 in astrogliomas play an important role in its grading, treatment strategies, and hence its clinical outcome.
  • OBJECTIVES: To analyze the frequency of presentation and the possible co-expression of p53 and angiogenesis marker (CD31) and their clinical implications in astrogliomas.
  • MATERIAL AND METHODS: This retrograde study included 45 cases with astrocytomas in the form of paraffin blocks.
  • Sections were stained with hematoxylin and eosin to determine the type and histological grade according to WHO (2007) classification of CNS tumors.
  • RESULTS: Both p53 and CD31 expressions were correlated well with the histopathological grades of different subtypes of astrogliomas with good discrimination between low and high grades.
  • Overall, a highly significant statistical correlation was observed between the grades of astrocytomas and the p53 and CD31 labeling indices.
  • Obviously, these observations demonstrate that the co-expression and increased levels of p53 and CD31 in astrogliomas are increasing as the tumor grade is increasing.
  • Thus, the two markers can be used as adjunct to the diagnosis and stratification of the high grade from the low-grade intrinsic brain astrogliomas.
  • [MeSH-major] Antigens, CD31 / biosynthesis. Astrocytoma / metabolism. Biomarkers, Tumor. Brain Neoplasms / metabolism. Tumor Suppressor Protein p53 / biosynthesis
  • [MeSH-minor] Adolescent. Adult. Aged. Child. Female. Humans. Immunohistochemistry. Infant. Male. Middle Aged. Neoplasm Staging

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18821037.001).
  • [ISSN] 1357-0560
  • [Journal-full-title] Medical oncology (Northwood, London, England)
  • [ISO-abbreviation] Med. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, CD31; 0 / Biomarkers, Tumor; 0 / Tumor Suppressor Protein p53
  •  go-up   go-down


10. Mizoguchi M, Betensky RA, Batchelor TT, Bernay DC, Louis DN, Nutt CL: Activation of STAT3, MAPK, and AKT in malignant astrocytic gliomas: correlation with EGFR status, tumor grade, and survival. J Neuropathol Exp Neurol; 2006 Dec;65(12):1181-8
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Activation of STAT3, MAPK, and AKT in malignant astrocytic gliomas: correlation with EGFR status, tumor grade, and survival.
  • Diffuse astrocytic gliomas are the most common human glial tumors with glioblastoma being the most malignant form.
  • In this study, we investigated the activation status of these 3 signaling molecules as well as wild-type (EGFRwt) and mutant (EGFRvIII) EGFR in 82 malignant astrocytic gliomas (55 glioblastomas and 27 anaplastic astrocytomas) using immunohistochemistry.
  • The distribution of these 3 activated molecules varied significantly with tumor grade; although activation of STAT3 was essentially identical between anaplastic astrocytomas and glioblastomas, an increase in the activation of MAPK and AKT appeared to correlate with the progression of anaplastic astrocytoma to glioblastoma.
  • Taken together, these findings begin to elucidate the interrelationship between these signaling pathways in astrocytic gliomas in vivo.
  • [MeSH-major] Astrocytoma / enzymology. Brain Neoplasms / enzymology. Glioblastoma / enzymology. Mitogen-Activated Protein Kinases / metabolism. Proto-Oncogene Proteins c-akt / metabolism. Receptor, Epidermal Growth Factor / biosynthesis. STAT3 Transcription Factor / metabolism
  • [MeSH-minor] Biomarkers, Tumor / analysis. Biomarkers, Tumor / metabolism. Diagnosis, Differential. Disease Progression. Enzyme Activation / genetics. Genetic Predisposition to Disease / genetics. Humans. Immunohistochemistry. Mutation / genetics. Predictive Value of Tests. Prognosis. Signal Transduction / physiology. Survival Rate / trends. Transcriptional Activation / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17146292.001).
  • [ISSN] 0022-3069
  • [Journal-full-title] Journal of neuropathology and experimental neurology
  • [ISO-abbreviation] J. Neuropathol. Exp. Neurol.
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / CA 57683; United States / NCI NIH HHS / CA / CA 95616
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / STAT3 Transcription Factor; 0 / STAT3 protein, human; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 2.7.11.1 / Proto-Oncogene Proteins c-akt; EC 2.7.11.24 / Mitogen-Activated Protein Kinases
  •  go-up   go-down


11. Xu GW, Mymryk JS, Cairncross JG: Inactivation of p53 sensitizes astrocytic glioma cells to BCNU and temozolomide, but not cisplatin. J Neurooncol; 2005 Sep;74(2):141-9
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Inactivation of p53 sensitizes astrocytic glioma cells to BCNU and temozolomide, but not cisplatin.
  • p53 inactivation sensitizes U87MG astrocytic glioma cells to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and temozolomide (TMZ), drugs used clinically to treat high-grade astrocytomas.
  • In this report, we examined the effect of p53 inactivation on the chemosensitivity of two additional human astrocytic glioma cell lines, D54 and A172, in order to assess whether sensitization is a general property of astrocytic tumor cells.
  • Sensitization to both BCNU and TMZ was associated with failure of p21(WAF1) induction, lack of a sustained G2 cell cycle arrest and significant tumor cell death.
  • These findings suggest that enhanced sensitivity to BCNU and TMZ is a general property of human astrocytic glioma cells in which p53 was disrupted.
  • In contrast, p53 inactivation rendered D54 and U87MG cells significantly more resistant to cis-dichlorodiamminoplatinum (CDDP), another chemotherapeutic to which high-grade astrocytomas sometimes respond.
  • These results indicate that p53 status influences the chemosensitivity of astrocytic glioma cells in a drug-type specific manner, a finding that may have implications for the selection of drug treatments for patients with astrocytic gliomas.
  • [MeSH-major] Antineoplastic Agents / therapeutic use. Astrocytoma / drug therapy. Carmustine / therapeutic use. Cisplatin / therapeutic use. Dacarbazine / analogs & derivatives. Gene Silencing. Tumor Suppressor Protein p53 / physiology
  • [MeSH-minor] Blotting, Western. Cell Cycle / drug effects. Cyclin-Dependent Kinase Inhibitor p21 / metabolism. Humans. Tumor Cells, Cultured. Tumor Stem Cell Assay

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Cancer Chemotherapy.
  • Hazardous Substances Data Bank. Carmustine .
  • Hazardous Substances Data Bank. CIS-DIAMINEDICHLOROPLATINUM .
  • Hazardous Substances Data Bank. DACARBAZINE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16193384.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / CDKN1A protein, human; 0 / Cyclin-Dependent Kinase Inhibitor p21; 0 / Tumor Suppressor Protein p53; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide; Q20Q21Q62J / Cisplatin; U68WG3173Y / Carmustine
  •  go-up   go-down


12. Katsetos CD, Reddy G, Dráberová E, Smejkalová B, Del Valle L, Ashraf Q, Tadevosyan A, Yelin K, Maraziotis T, Mishra OP, Mörk S, Legido A, Nissanov J, Baas PW, de Chadarévian JP, Dráber P: Altered cellular distribution and subcellular sorting of gamma-tubulin in diffuse astrocytic gliomas and human glioblastoma cell lines. J Neuropathol Exp Neurol; 2006 May;65(5):465-77
antibodies-online. View related products from antibodies-online.com (subscription/membership/fee required).

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Altered cellular distribution and subcellular sorting of gamma-tubulin in diffuse astrocytic gliomas and human glioblastoma cell lines.
  • Centrosome amplification is a pivotal mechanism underlying tumorigenesis but its role in gliomas is underinvestigated.
  • The present study specifically examines the expression and distribution of the centrosome-associated cytoskeletal protein gamma-tubulin in 56 primary diffuse astrocytic gliomas (grades II-IV) and in 4 human glioblastoma cell lines (U87MG, U118MG, U138MG, and T98G).
  • In tumors in adults (n = 46), varying degrees of localization were detected in all tumor grades, but immunoreactivity was significantly increased in high-grade anaplastic astrocytomas and glioblastomas multiforme as compared to low-grade diffuse astrocytomas (p = 0.0001).
  • A similar trend was noted in diffuse gliomas in children but the sample of cases was too small as to be statistically meaningful.
  • Our results indicate that overexpression and ectopic cellular distribution of gamma-tubulin in astrocytic gliomas may be significant in the context of centrosome protein amplification and may be linked to tumor progression and anaplastic potential.
  • [MeSH-minor] Antigens / metabolism. Blotting, Northern / methods. Cell Line, Tumor. Humans. Immunohistochemistry / methods

  • Genetic Alliance. consumer health - Glioblastoma.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16772870.001).
  • [ISSN] 0022-3069
  • [Journal-full-title] Journal of neuropathology and experimental neurology
  • [ISO-abbreviation] J. Neuropathol. Exp. Neurol.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens; 0 / Tubulin; 0 / pericentrin
  •  go-up   go-down


13. Tosoni A, Franceschi E, Ermani M, Bacci A, Volpin L, Lombardo L, Ravenna G, Pinna G, Poggi R, Brandes AA: MGMT methylation status as a prognostic factor in anaplastic astrocytomas. J Clin Oncol; 2009 May 20;27(15_suppl):2052

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] MGMT methylation status as a prognostic factor in anaplastic astrocytomas.
  • However, further data on the epigenetic feature are needed before its role in rare diseases such as anaplastic astrocytomas (AA) can be established.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27964674.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


14. Lin Y, Jiang T, Li G: MGMT expression in low-grade gliomas. J Clin Oncol; 2009 May 20;27(15_suppl):e13001

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] MGMT expression in low-grade gliomas.
  • : e13001 Background: To evaluate the expression of MGMT in low-grade gliomas, and explore the relationship between its expression and the histological type of the tumour and the corresponding MRI characteristics.
  • METHODS: We assessed 389 low-grade gliomas (182 astrocytomas, 145 oligoastrocytomas, 61 oligodendrocytomas) with immunohistochemistry staining.
  • We also recorded the preoperational MRI criteria such as tumor volume on T2 image, enhancing volume, tumor location, and relationship with ventricles.
  • RESULTS: The expression of MGMT in astrocytomas, oligoastrocytomas, and oligocytomas were 1.67 ± 0.78, 1.41 ± 0.86,1.44 ± 0.78, respectively.
  • Significant stronger expression of MGMT was observed in astrocytomas than oligoastrocytomas and oligodendrocytomas (t = 3.00, p = 0.03), but no significant difference was observed between the latter two (t = 0.28, p = 0.78).
  • MGMT expression level was significantly correlated with the enhancing volume of the tumor (r = -0.605, p = 0.002), but did not correlate with the total tumor volume (p = 0.504).
  • This suggest that MGMT may contribute to the tumor resistance to radiotherapy and chemotherapy in low-grade gliomas.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27962757.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


15. Lassman AB, Oligodendroglioma Study Group: Retrospective analysis of outcomes among more than 1,000 patients with newly diagnosed anaplastic oligodendroglial tumors. J Clin Oncol; 2009 May 20;27(15_suppl):2014

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • METHODS: We retrospectively identified adults with newly diagnosed anaplastic oligodendroglioma (AO) or oligo-astrocytoma (AOA) seen at 17 medical centers from 1981-2007 exclusive of phase III or bone marrow transplant trials.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27964586.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


16. Desjardins A, Reardon DA, Gururangan S, Peters K, Threatt S, Friedman A, Friedman H, Vredenburgh J: Phase I trial combining SCH 66336 to temozolomide (TMZ) for patients with grade 3 or 4 malignant gliomas (MG). J Clin Oncol; 2009 May 20;27(15_suppl):e13004

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Phase I trial combining SCH 66336 to temozolomide (TMZ) for patients with grade 3 or 4 malignant gliomas (MG).
  • METHODS: Eligibility included: adult patients with stable or recurrent MG (GBM, anaplastic astrocytoma [AA], anaplastic oligodendroglioma [AO]) previously treated with radiation therapy (RT) and with or without chemotherapy; interval of at least two weeks between prior RT, or four weeks between prior chemotherapy; Karnofsky ≥ 60%; and adequate hematologic, renal and liver function.
  • Radiographic evaluation reported: 2 partial responses, 14 stable disease for at least 4 cycles, and 11 disease progression after either the first or second cycle.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27962751.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


17. Karrasch M, Gillespie GY, Braz E, Liechty PG, Nabors LB, Lakeman AD, Palmer CA, Parker JN, Whitley RJ, Markert JM: Treatment of recurrent malignant glioma with G207, a genetically engineered herpes simplex virus-1, followed by irradiation: Phase I study results. J Clin Oncol; 2009 May 20;27(15_suppl):2042

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Treatment of recurrent malignant glioma with G207, a genetically engineered herpes simplex virus-1, followed by irradiation: Phase I study results.
  • Safety and efficacy of intracerebral inoculations of G207 to patients suffering from recurrent malignant gliomas have been demonstrated in previous clinical trials.
  • METHODS: In this phase I clinical trial, a total of 1 x 10<sup>9</sup> plaque forming units (pfu) G207 were administered by five stereotactic injections of 0.2 mL each into regions of recurrent malignant glioma defined by MRI, followed by focal radiation therapy 24 hours post injection.
  • Included patients suffered from inoperable pathologically proven recurrent glioblastoma multiforme (GBM) or anaplastic astrocytoma (AA) which was progressive despite radiotherapy or chemotherapy and failed external beam radiotherapy > 5 Gray prior to study enrolment.
  • The 2 patients with initial PR (1xGBM, 1xAA) were re-treated with G207/Irradiation at time point of tumor recurrence, showing PR one month after re-treatment again.
  • Within persistent areas of tumor, HSV staining was present by using a polyclonal antibody for HSV, indicating intratumoral G207 replication (proof of concept).

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27964649.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


18. Simonelli M, Banna G, Navarria P, Di Ieva A, Zucali P, De Vincenzo F, Gaetani P, Condorelli R, Rodriguez Y Baena R, Scorsetti M, Santoro A: Addition of temozolomide to radiotherapy for treatment of newly diagnosed anaplastic gliomas. J Clin Oncol; 2009 May 20;27(15_suppl):e13037

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Addition of temozolomide to radiotherapy for treatment of newly diagnosed anaplastic gliomas.
  • : e13037 Background: Anaplastic astrocytoma (AA), oligodendroglioma (AOD), and oligoastrocytoma (AOA) are rare tumors showing variable outcome due to their histological heterogeneity and different chemo- and radio-sensitivity.
  • Currently, the addition of chemotherapy to radiotherapy (RT) for newly diagnosed anaplastic gliomas is not sustained by available data.
  • We evaluated the addition of temozolomide (TMZ) to radiotherapy for newly diagnosed anaplastic gliomas in terms of tolerability, progression-free survival (PFS), and overall survival (OS).
  • METHODS: Since September 2004, following initial surgery, patients (pts) with histologically confirmed anaplastic glioma, Karnofsky Performance Status (KPS) ≥40, adequate organ function, no prior chemotherapy, were treated with RT to limited fields once daily at 2 Gy per fraction, 5 days a week, for a total of 60 Gy with concomitant TMZ (75 mg/m<sup>2</sup> for 7 days a week) followed by 6 cycles of maintenance TMZ at 200 mg/m<sup>2</sup> on days 1-5 every 28 days.
  • Nine pts (32%) underwent tumor complete resection, 10 partial resection (36%), and 9 (32%) tumor biopsy.
  • CONCLUSIONS: The addition of temozolomide to radiation therapy for newly diagnosed anaplastic gliomas is well tolerated and seems active; efficacy needs confirmation in a randomized clinical trial.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27962859.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


19. Abacioglu MU, Caglar HB, Yumuk PF, Akgun Z, Atasoy BM, Sengoz M: Efficacy of protracted dose-dense temozolomide (TMZ) in patients with progressive high-grade glioma. J Clin Oncol; 2009 May 20;27(15_suppl):e13018

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Efficacy of protracted dose-dense temozolomide (TMZ) in patients with progressive high-grade glioma.
  • : e13018 Background: The study was aimed to evaluate the efficacy of TMZ on a protracted dose-dense schedule after standard 5-day TMZ regimen in patients with progressive high-grade glioma.
  • METHODS: In this phase II prospective study, patients who had progression on standard 5-day TMZ for recurrence (group 1) or recurrence after concurrent radiotherapy+TMZ and ≥ 2 cycles of adjuvant TMZ (group 2) for high-grade glioma received TMZ 100 mg/m2× 21 q28 days until progression according to MacDonald's criteria.
  • The histopathology was glioblastoma in 18 and grade 3 glioma (anaplastic astrocytoma, anaplastic oligoastrocytoma or anaplastic oligodendroglioma) in 7.
  • The best response during treatment was partial response in 2 (8%), stable disease in 9 (36%), and progression in 9 (36%) out of 20 patients assessed.
  • CONCLUSIONS: Protracted dose-dense TMZ after 5-day schedule for recurrent or progressive disease has modest efficacy with tolerable toxicity.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27962826.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


20. Franceschi E, Tosoni A, Ermani M, Spagnolli F, La Torre L, Galzio RJ, Pozzati E, Talacchi A, Benevento F, Brandes AA: Impact of MGMT methylation status on 1p/19q intact anaplastic gliomas. J Clin Oncol; 2009 May 20;27(15_suppl):e13003

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Impact of MGMT methylation status on 1p/19q intact anaplastic gliomas.
  • : e13003 Background: Chromosomes 1p/19q codeletion has been recognized as a prognostic and predictive factor in patients (pts) with grade 3 gliomas.
  • Non-codeleted (intact) anaplastic oligodendroglioma showed a survival comparable to that usually observed in pts with anaplastic astrocytomas; MGMT methylation status, moreover, has been found to be a prognostic factor in glioblastoma and anaplastic gliomas (AG).
  • Histology was anaplastic oligodendroglioma in 17 pts, anaplastic oligoastrocytoma in 20 pts, and anaplastic astrocytoma in 30 pts; all these pts were 1p19q intact and received surgery, RT, and CT.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27962754.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


21. Witt H, Korshunov A, Remke M, Janzarik WG, Gnekow A, Scheurlen W, Kulozik AE, Lichter P, Pfister S: DNA methylation pattern of brain stem pilocytic astrocytomas in children. J Clin Oncol; 2009 May 20;27(15_suppl):10021

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] DNA methylation pattern of brain stem pilocytic astrocytomas in children.
  • : 10021 Background: Pilocytic astrocytoma (WHO grade I) comprises the most frequent brain tumor in childhood.
  • METHODS: To identify novel genes involved in astrocytoma pathogenesis, we performed a genome-wide DNA methylation analysis of 78 pilocytic astrocytoma samples from different tumor locations (diencephalic, cerebral, cerebellar, brain stem).
  • Two CpG sites were analyzed for each of a total of 14.000 promoters per sample.
  • Moreover, from 14 tumors clustering together with the brain stem tumors, 5 patients experienced disease recurrence (38%) as opposed to 20% in the remaining group.
  • Genes contained in the signature most interestingly included three homeobox family genes (HOXB1, HOXD3, and HOXD4), and NES, a tumor stem cell marker.
  • CONCLUSIONS: These data suggest that brain stem pilocytic astrocytomas display biologic features different from most tumors of other locations and share a methylation signature with tumors prone to disease recurrence from other locations.
  • We provide first evidence for a role of differentially methylated homeobox family genes in the pathogenesis of pilocytic astrocytoma.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27962622.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


22. Ochsenbein AF, Schubert AD, Vassella E, Mariani L: Quantitative analysis of 0&lt;sup&gt;6&lt;/sup&gt;-methylguanine-DNA methyltransferase (MGMT) promoter methylation in patients with low-grade gliomas. J Clin Oncol; 2009 May 20;27(15_suppl):2069

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Quantitative analysis of 0<sup>6</sup>-methylguanine-DNA methyltransferase (MGMT) promoter methylation in patients with low-grade gliomas.
  • : 2069 Background: Loss of heterozygosity (LOH) on the chromosomes 1p and 19q is associated with sensitivity to alkylating agents like temozolomide (TMZ) in patients with low-grade gliomas; whether methylation of the MGMT-promoter, a predictive factor in glioblastoma patients, also correlates with tumor response to TMZ in low-grade gliomas is unclear.
  • METHODS: We performed a retrospective analysis of patients with histologically verified low-grade gliomas (WHO Grade II) who were treated with TMZ for tumor progression at our hospital between November 1999 and November 2007.
  • Objective tumor response was assessed by MRI at 6-month intervals.
  • LOH of microsatellite markers on chromosomes 1p and 19q was determined by polymerase chain reaction (PCR) amplification of the matched pairs of blood and tumor DNA.
  • Seven patients had prior surgical resection of the tumor.
  • Histological classification revealed 10 oligodendrogliomas, 7 oligoastrocytomas, and 5 astrocytomas.
  • CONCLUSIONS: Quantitative methylation-specific PCR of the MGMT promoter correlates with radiological response to chemotherapy with temozolomide in WHO grade II gliomas.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27964685.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


23. Herndon J 2nd, Vredenburgh J, Reardon D, Desjardins A, Peters K, Gururangan S, Norfleet J, Friedman A, Bigner D, Friedman HS: Phase I trial of vendetanib and oral etoposide for recurrent malignant gliomas. J Clin Oncol; 2009 May 20;27(15_suppl):e13016

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Phase I trial of vendetanib and oral etoposide for recurrent malignant gliomas.
  • : e13016 Background: Recurrent malignant gliomas have a poor prognosis, with a median survival of 6-15 months, with grade 4 glioblastomas more aggressive than grade 3 anaplastic astrocytomas or oligodendrogliomas.
  • Vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) are critically important in glioma biology.
  • We report a phase I trial of vandetanib in combination with oral etoposide for recurrent malignant glioma.
  • METHODS: Patients with histologically documented recurrent grade 3 or grade 4 malignant glioma were eligible.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27962830.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


24. Merrell RT, Lachance DH, Anderson SK: Seizures in patients with glioma treated with phenytoin and levetiracetam. J Clin Oncol; 2009 May 20;27(15_suppl):e13020

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Seizures in patients with glioma treated with phenytoin and levetiracetam.
  • : e13020 Background: Seizures are common in patients with glioma.
  • We compare seizure outcomes and side effects in patients with glioma treated with phenytoin and levetiracetam monotherapy.
  • METHODS: Retrospective analysis of consecutive patients with glioma.
  • RESULTS: 76 patients (34 female) with pathologically proven glioma and seizures were identified, 25 treated with phenytoin and 51 with levetiracetam.
  • 64% had grade 4 astrocytoma.
  • When adjusting for age, gender, type of seizure, type of glioma, and dosage using univariate and multivariate models there were no differences between the treatment groups and none of these covariates were statistically significant for explaining the second seizure rates between treatment groups (all p values >0.05).
  • CONCLUSIONS: In this study, glioma patients treated with levetiracetam had similar seizure control as patients treated with phenytoin.
  • Levetiracetam is a safe, effective, and preferred alternative for seizure management in patients with glioma.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27962817.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


25. Rudnick JD, Phuphanich S, Chu R, Mazer M, Wang H, Serrano N, Francisco M, Black KL, Wheeler C, Yu J: A phase I trial of surgical resection with biodegradable carmustine (BCNU) wafer placement followed by vaccination with dendritic cells pulsed with tumor lysate for patients with malignant glioma. J Clin Oncol; 2009 May 20;27(15_suppl):2033

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] A phase I trial of surgical resection with biodegradable carmustine (BCNU) wafer placement followed by vaccination with dendritic cells pulsed with tumor lysate for patients with malignant glioma.
  • : 2033 Background: Our prior immunotherapy trials demonstrated efficacy in generating a tumor specific immune response in malignant glioma and the potential for high tumor-specific toxicity and sustained tumoricidal activity.
  • METHODS: We exploited this synergistic effect to maintain a cytotoxic environment around the tumor milieu.
  • Patients with high-grade glioma were eligible after maximal resection with biodegradable carmustine (BCNU) wafer placement.
  • Screening leukapheresis is used to isolate mononuclear cells which are differentiated into dendritic cells, pulsed with tumor lysate, and then 3 intradermal vaccines are administered at 2-week intervals.
  • The histology included 3 newly diagnosed glioblastoma multiforme (GBM), 8 recurrent GBM, 2 newly diagnosed anaplastic astrocytoma (AA), and 2 recurrent AA.
  • A stable disease interval of 13 to 90 weeks was observed for patients who received vaccine.
  • The 3 newly diagnosed GBM patients have stable disease (18 to 71 weeks).

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27964627.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


26. Potthast L, Chowdhary S, Pan E, Yu D, Zhu W, Brem S: The infiltrative, diffuse pattern of recurrence in patients with malignant gliomas treated with bevacizumab. J Clin Oncol; 2009 May 20;27(15_suppl):2057

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The infiltrative, diffuse pattern of recurrence in patients with malignant gliomas treated with bevacizumab.
  • : 2057 Background: There is no standard of care for recurrent gliomas; however, bevacizumab is often used as a salvage chemotherapy regimen.
  • A diffuse, infiltrative pattern of recurrence, as evidenced by MR imaging, was seen manifesting as multifocal disease or presumed CSF dissemination with subependymal spread.
  • METHODS: We conducted a retrospective analysis of 40 recurrent glioma patients followed at Moffitt Cancer Center from September 2006 through December 2008 treated with bevacizumab alone or in combination with irinotecan.
  • Histologies included glioblastoma (GB), anaplastic astrocytomas (AA), anaplastic oligodendrogliomas (AO), anaplastic oligoastrocytomas (AOA), and low-grade astrocytomas.
  • CONCLUSIONS: There appears to be an increase in a diffuse, infiltrative pattern of recurrence among recurrent glioma patients treated with bevacizumab as a salvage regimen.
  • It is unclear why the disparity among this subset of patients occurs, however, we hypothesize that this may once again highlight the distinct tumor biology among young glioma patients.
  • The impact of this observation on clinical decision making on whether to utilize bevacizumab in young recurrent glioma patients warrants further investigation.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27964663.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


27. Korkolopoulou P, Perdiki M, Thymara I, Boviatsis E, Agrogiannis G, Kotsiakis X, Angelidakis D, Rologis D, Diamantopoulou K, Thomas-Tsagli E, Kaklamanis L, Gatter K, Patsouris E: Expression of hypoxia-related tissue factors in astrocytic gliomas. A multivariate survival study with emphasis upon carbonic anhydrase IX. Hum Pathol; 2007 Apr;38(4):629-38

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of hypoxia-related tissue factors in astrocytic gliomas. A multivariate survival study with emphasis upon carbonic anhydrase IX.
  • In the present study, we examined the expression of this enzyme in diffuse gliomas of astrocytic origin in relation to vascular endothelial growth factor (VEGF) and HIF-1alpha expression, proliferation rate (as assessed with Ki-67 antigen), microvessel morphology, and survival.
  • We conclude that CAIX may be used as a prognostic indicator in diffuse astrocytomas to refine the information provided by grade.
  • Given the role of CAIX in the acidification of tumor environment and its up-regulation by hypoxia, it is thought that CAIX expression may be linked to resistance of tumor cells to radiotherapy by allowing them to acclimatize to a hypoxic and acidic microenvironment.
  • [MeSH-major] Antigens, Neoplasm / biosynthesis. Astrocytoma / metabolism. Astrocytoma / pathology. Carbonic Anhydrases / biosynthesis

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17367605.001).
  • [ISSN] 0046-8177
  • [Journal-full-title] Human pathology
  • [ISO-abbreviation] Hum. Pathol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, Neoplasm; 0 / HIF1A protein, human; 0 / Hypoxia-Inducible Factor 1, alpha Subunit; 0 / Ki-67 Antigen; 0 / VEGFA protein, human; 0 / Vascular Endothelial Growth Factor A; EC 4.2.1.1 / CA9 protein, human; EC 4.2.1.1 / Carbonic Anhydrases
  •  go-up   go-down


28. Elsir T, Eriksson A, Orrego A, Lindström MS, Nistér M: Expression of PROX1 Is a common feature of high-grade malignant astrocytic gliomas. J Neuropathol Exp Neurol; 2010 Feb;69(2):129-38
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of PROX1 Is a common feature of high-grade malignant astrocytic gliomas.
  • PROX1 is a prospero-related transcription factor that plays a critical role in the development of various organs including the mammalian lymphatic and central nervous systems; it controls cell proliferation and differentiation through different transcription pathwaysand has both oncogenic and tumor-suppressive functions.
  • We investigated PROX1 expression patterns in 56 human astrocytic gliomas of different grades using immunohistochemistry.
  • An average of 79% of cells in World Health Organization Grade IV (glioblastoma, n = 15) and 57% of cells in World Health Organization Grade III (anaplastic astrocytoma, n = 13) were strongly PROX1 positive; low-grade diffuse astrocytomas (Grade II, n = 13) had 21% of cells that were strongly positive; Grade I tumors (n = 15) had 1.5%; and non-neoplastic brain tissue (n = 15) had 3.7% of cells that were PROX1 positive.
  • Analyses of coexpression with proliferation markers suggest that PROX1+ cells have a marginally lower rate of proliferation than other tumor cells but are still mitotically active.
  • We conclude that PROX1 may constitute a useful tool for the diagnosis and grading ofastrocytic gliomas and for distinguishing Grade III and Grade IV tumors from Grade I and Grade II tumors.
  • [MeSH-major] Astrocytoma / metabolism. Astrocytoma / pathology. Brain Neoplasms / metabolism. Brain Neoplasms / pathology. Homeodomain Proteins / metabolism. Tumor Suppressor Proteins / metabolism
  • [MeSH-minor] Antigens, Nuclear / metabolism. Biomarkers / metabolism. Brain Diseases / metabolism. Cell Proliferation. Humans. Immunohistochemistry. Microtubule-Associated Proteins / metabolism. Microvessels / metabolism. Mitosis. Nerve Tissue Proteins / metabolism. Tubulin / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20084020.001).
  • [ISSN] 1554-6578
  • [Journal-full-title] Journal of neuropathology and experimental neurology
  • [ISO-abbreviation] J. Neuropathol. Exp. Neurol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, Nuclear; 0 / Biomarkers; 0 / Homeodomain Proteins; 0 / MAP2 protein, human; 0 / Microtubule-Associated Proteins; 0 / Nerve Tissue Proteins; 0 / Tubulin; 0 / Tumor Suppressor Proteins; 0 / neuronal nuclear antigen NeuN, human; 0 / prospero-related homeobox 1 protein
  •  go-up   go-down


29. Dong L, Pu PY, Wang H, Wang GX, Kang CS, Jiao DR: [Study on the expression of epidermal growth factor receptor and p53 in astrocytic gliomas: evidence for a distinct genetic pathway]. Zhonghua Bing Li Xue Za Zhi; 2006 Apr;35(4):232-6
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Study on the expression of epidermal growth factor receptor and p53 in astrocytic gliomas: evidence for a distinct genetic pathway].
  • OBJECTIVE: To study further the most important and frequent genetic alterations of p53 and epidermal growth factor receptor (EGFR) in astrocytic gliomas. METHODS:.
  • (1) EGFR expression was examined in samples collected from 37 astrocytic gliomas and 6 normal brain tissue using reverse transcriptase polymerase chain reaction and immunohistochemical staining. (2) p53 gene mutation and accumulation were detected simultaneously in the same specimens using PCR-SSCP, DNA sequencing and immunohistochemical staining.
  • RESULTS: The frequency of p53 mutation in diffuse astrocytomas, anaplastic astrocytomas, primary glioblastomas and secondary glioblastomas was 1/10, 4/19 (21.1%), 4/6 and 2/2, respectively and the frequency of EGFR overexpression was 5/10, 10/19 (52.6%), 5/6 and 2/2, respectively.
  • Both p53 accumulation and EGFR overexpression increased accompanied by a successive increase of degree of the glioma malignancy.
  • CONCLUSIONS: EGFR overexpression is not infrequently seen, however, p53 mutation is rarely seen in the low grade gliomas.
  • Consequently, EGFR overexpression and p53 gene mutation are not mutually exclusive in astrocytic gliomagenesis but synergistically to promote the glioma progression.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Receptor, Epidermal Growth Factor / genetics. Tumor Suppressor Protein p53 / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16776982.001).
  • [ISSN] 0529-5807
  • [Journal-full-title] Zhonghua bing li xue za zhi = Chinese journal of pathology
  • [ISO-abbreviation] Zhonghua Bing Li Xue Za Zhi
  • [Language] chi
  • [Publication-type] English Abstract; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] China
  • [Chemical-registry-number] 0 / RNA, Messenger; 0 / Tumor Suppressor Protein p53; EC 2.7.10.1 / Receptor, Epidermal Growth Factor
  •  go-up   go-down


30. Figarella-Branger D, Bouvier C: [Histological classification of human gliomas: state of art and controversies]. Bull Cancer; 2005 Apr;92(4):301-9
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Histological classification of human gliomas: state of art and controversies].
  • [Transliterated title] Classification anatomopathologique des gliomes: faits et controverses.
  • The histological classification of human gliomas remains in 2005 a challenge.
  • The aim is to define the histological type of glioma (astrocytic, oligodendrocytic or mixed) and the grade in order to classify the patients and give them an accurate treatment.
  • Although the standard remains the WHO classification, this classification suffered from lack of reproducibility among pathologists.
  • In particular this classification does not take into account the intrinsic morphological heterogeneity of infiltrative gliomas and does not discriminate the tumour cells from the residual brain parenchyma.
  • According to the WHO classification, infiltrative gliomas encompass astrocytic gliomas (diffuse astrocytomas grade II, anaplastic astrocytomas grade III and glioblastomas grade IV), oligodendroglial tumours (oligodendrogliomas grade II, anaplastic oligodendrogliomas grade III) and mixed gliomas (oligoastrocytomas grade II and anaplastic oligoastrocytomas grade III).
  • Circumscribed gliomas mainly corresponds to pilocytic astrocytomas (grade I).
  • In contrast, the Sainte Anne classification takes into account the macroscopic informations provided by imaging techniques and the tumour growth patterns.
  • Three distinct tumour growth patterns may be seen in gliomas, type I: tumor tissue only, type II: tumour tissue and isolated tumor cells permeating the brain parenchyma (ITC) and type III: ITCs only and no tumor tissue.
  • According to the Sainte Anne classification, gliomas are divided into astrocytic gliomas (pilocytic astrocytomas, structure type I, glioblastomas structure type II) and oligodendrogliomas and mixed oligoastrocytomas (grade A: lack of contrast enhancement and lack of endothelial hyperplasia, structure type III; and grade B: contrast enhancement or endothelial hyperplasia, structure type II and III).
  • In the future the glioma classification has to be unique and should take into account clinical data, neuroradiological and histological features and results of molecular biology.
  • [MeSH-major] Brain Neoplasms / pathology. Glioma / pathology
  • [MeSH-minor] Astrocytoma / pathology. Humans. Neoplasms, Complex and Mixed / classification. Neoplasms, Complex and Mixed / pathology. Oligodendroglioma / pathology. Reproducibility of Results. World Health Organization

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15888386.001).
  • [ISSN] 1769-6917
  • [Journal-full-title] Bulletin du cancer
  • [ISO-abbreviation] Bull Cancer
  • [Language] fre
  • [Publication-type] English Abstract; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] France
  •  go-up   go-down


31. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev; 2007 Nov 1;21(21):2683-710
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Malignant astrocytic glioma: genetics, biology, and paths to treatment.
  • Malignant astrocytic gliomas such as glioblastoma are the most common and lethal intracranial tumors.
  • This progress is fueling new opportunities for understanding the fundamental basis for development of this devastating disease and also novel therapies that, for the first time, portend meaningful clinical responses.
  • [MeSH-major] Astrocytoma / genetics. Astrocytoma / pathology. Astrocytoma / therapy. Brain Neoplasms / genetics. Brain Neoplasms / pathology. Brain Neoplasms / therapy
  • [MeSH-minor] Animals. Animals, Genetically Modified. Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Disease Models, Animal. Gene Regulatory Networks. Humans. Models, Biological. Necrosis / chemically induced. Neoplasm Invasiveness. Neoplasm Staging. Neovascularization, Pathologic / drug therapy

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • ClinicalTrials.gov. clinical trials - ClinicalTrials.gov .
  • Mouse Genome Informatics (MGI). Mouse Genome Informatics (MGI) .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17974913.001).
  • [ISSN] 0890-9369
  • [Journal-full-title] Genes & development
  • [ISO-abbreviation] Genes Dev.
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / CA099041; United States / NCI NIH HHS / CA / CA95616
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] United States
  • [Number-of-references] 306
  •  go-up   go-down


32. Aguilar Moliner I, Costa Orvay JA, Juma K, Costa Clara JM, Cruz Martínez O, Pou Fernández J: [Optic pathway astrocytoma: an unusual cause of failure to thrive in infants]. An Pediatr (Barc); 2007 Jun;66(6):622-4
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Optic pathway astrocytoma: an unusual cause of failure to thrive in infants].
  • [Transliterated title] Astrocitoma de vías ópticas: una causa infrecuente de retraso ponderal en el lactante.
  • We report a case of low-grade astrocytoma of the optic pathway in a 2-month-old child whose main symptoms at diagnosis were failure to thrive and anorexia.
  • Unfortunately, despite therapeutic efforts, the tumor showed local and metastatic progression refractory to chemotherapy.
  • [MeSH-major] Brain Neoplasms / diagnosis. Failure to Thrive / etiology. Optic Nerve Glioma / diagnosis

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17583627.001).
  • [ISSN] 1695-4033
  • [Journal-full-title] Anales de pediatría (Barcelona, Spain : 2003)
  • [ISO-abbreviation] An Pediatr (Barc)
  • [Language] spa
  • [Publication-type] Case Reports; English Abstract; Journal Article
  • [Publication-country] Spain
  •  go-up   go-down


33. Perdiki M, Korkolopoulou P, Thymara I, Agrogiannis G, Piperi C, Boviatsis E, Kotsiakis X, Angelidakis D, Diamantopoulou K, Thomas-Tsagli E, Patsouris E: Cyclooxygenase-2 expression in astrocytomas. Relationship with microvascular parameters, angiogenic factors expression and survival. Mol Cell Biochem; 2007 Jan;295(1-2):75-83

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Cyclooxygenase-2 expression in astrocytomas. Relationship with microvascular parameters, angiogenic factors expression and survival.
  • The role of the up-regulation of COX-2 in the formation and progression of gliomas has been dealt with in earlier reports, which describe increased levels of PGs within gliomas.
  • In the present study, we examined the expression of COX-2 in diffuse gliomas of astrocytic origin in relation to microvascular parameters, angiogenic factors and survival.
  • MATERIALS AND METHODS: A total of 83 cases of diffuse astrocytomas (grade II-IV) were analyzed by immunohistochemistry for the presence of COX-2.
  • CONCLUSION: These results implicate COX-2 in the angiogenesis and biological aggressiveness of diffuse astrocytomas, and suggest that it would be worthwhile to examine how the inhibition of COX-2 expression may influence astrocytoma patients' survival.
  • [MeSH-major] Angiogenesis Inducing Agents / metabolism. Astrocytoma / blood supply. Astrocytoma / enzymology. Cyclooxygenase 2 / metabolism. Glioma / blood supply. Glioma / enzymology. Membrane Proteins / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16868662.001).
  • [ISSN] 0300-8177
  • [Journal-full-title] Molecular and cellular biochemistry
  • [ISO-abbreviation] Mol. Cell. Biochem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Angiogenesis Inducing Agents; 0 / HIF1A protein, human; 0 / Hypoxia-Inducible Factor 1, alpha Subunit; 0 / Ki-67 Antigen; 0 / Membrane Proteins; 0 / Vascular Endothelial Growth Factor A; EC 1.14.99.1 / Cyclooxygenase 2; EC 1.14.99.1 / PTGS2 protein, human
  •  go-up   go-down


34. Giannopoulou E, Ravazoula P, Kalofonos H, Makatsoris T, Kardamakis D: Expression of HIF-1alpha and iNOS in astrocytic gliomas: a clinicopathological study. In Vivo; 2006 May-Jun;20(3):421-5

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of HIF-1alpha and iNOS in astrocytic gliomas: a clinicopathological study.
  • BACKGROUND: Hypoxia-inducible-factor-1 (HIF-1) is present at high levels in human tumors and plays a crucial role in tumor promotion by up-regulating several target genes.
  • PATIENTS AND METHODS: Sixty-three human astrocytic gliomas were analyzed by immunohistochemistry for HIF-1alpha and iNOS using formalin-fixed paraffin-embedded material.
  • RESULTS: HIF-1alpha was detected only in astrocytic gliomas grades III and IV, both in the nucleus and in the cytoplasm.
  • The iNOS expression was increased in astrocytic gliomas grades I, II and III and was statistically significantly decreased in astrocytic gliomas grade IV. iNOS was localized round the capillary vessels as well.
  • CONCLUSION: We believe that HIF-1alpha and iNOS expressions merit further investigations in order to understand the biology of astrocytic gliomas.
  • [MeSH-major] Astrocytoma / enzymology. Astrocytoma / metabolism. Biomarkers, Tumor / analysis. Hypoxia-Inducible Factor 1, alpha Subunit / metabolism. Nitric Oxide Synthase Type II / biosynthesis

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16724682.001).
  • [ISSN] 0258-851X
  • [Journal-full-title] In vivo (Athens, Greece)
  • [ISO-abbreviation] In Vivo
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / HIF1A protein, human; 0 / Hypoxia-Inducible Factor 1, alpha Subunit; EC 1.14.13.39 / Nitric Oxide Synthase Type II
  •  go-up   go-down


35. Xu P, Qiu M, Zhang Z, Kang C, Jiang R, Jia Z, Wang G, Jiang H, Pu P: The oncogenic roles of Notch1 in astrocytic gliomas in vitro and in vivo. J Neurooncol; 2010 Mar;97(1):41-51
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The oncogenic roles of Notch1 in astrocytic gliomas in vitro and in vivo.
  • Deregulation of Notch signaling has been implicated in some genetic diseases and tumorigenesis.
  • The function of Notch signaling in a variety of tumors can be either oncogenic or tumor-suppressive, depending on the cellular context.
  • In this study, Notch1 overexpression was observed in the majority of 45 astrocytic gliomas with different grades and in U251MG glioma cells.
  • Meanwhile, tumor growth was delayed in established subcutaneous gliomas in nude mice treated with Notch1 siRNA in vivo.
  • These results suggest that Notch1 plays an important oncogenic role in the development and progression of astrocytic gliomas.
  • [MeSH-major] Astrocytoma / genetics. Gene Expression Regulation, Neoplastic / physiology. Receptor, Notch1 / genetics
  • [MeSH-minor] Animals. Annexin A5 / metabolism. Apoptosis / drug effects. Apoptosis / physiology. Cell Cycle / drug effects. Cell Cycle / physiology. Cell Line, Tumor. Cell Proliferation / drug effects. Cyclin D1 / metabolism. Disease Models, Animal. Flow Cytometry / methods. Humans. In Situ Nick-End Labeling / methods. Matrix Metalloproteinase 9 / metabolism. Mice. Oncogene Protein v-akt / metabolism. Phosphatidylinositol 3-Kinases / metabolism. Proliferating Cell Nuclear Antigen / metabolism. Proto-Oncogene Proteins p21(ras) / metabolism. RNA, Small Interfering / pharmacology. RNA, Small Interfering / therapeutic use. Receptor, Epidermal Growth Factor / metabolism. Signal Transduction / drug effects. Signal Transduction / genetics. Transfection / methods

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19771395.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Annexin A5; 0 / Proliferating Cell Nuclear Antigen; 0 / RNA, Small Interfering; 0 / Receptor, Notch1; 136601-57-5 / Cyclin D1; EC 2.7.1.- / Phosphatidylinositol 3-Kinases; EC 2.7.10.1 / EGFR protein, human; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 2.7.11.1 / Oncogene Protein v-akt; EC 3.4.24.35 / Matrix Metalloproteinase 9; EC 3.6.5.2 / Proto-Oncogene Proteins p21(ras)
  •  go-up   go-down


36. Freitas MR, de Muzio SD, Pessoa RC, Stávale JN, Borges LR, Malheiros SM: [Diffuse bone marrow metastasis in cerebellar high-grade astrocytoma. A case report]. Rev Neurol; 2009 Mar 1-15;48(5):242-4
Genetic Alliance. consumer health - Diffuse Astrocytoma.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Diffuse bone marrow metastasis in cerebellar high-grade astrocytoma. A case report].
  • [Transliterated title] Metastasis difusa de la medula osea en un astrocitoma cerebeloso de alto grado. Un caso clinico.
  • INTRODUCTION: Cerebellar high-grade astrocytoma is uncommon.
  • Although more prone to present cerebrospinal fluid dissemination, the cerebellar location is not particularly related to the occurrence of extra-cranial metastases, which are also unusual in supratentorial malignant gliomas.
  • CASE REPORT: A 46 year-old man with cerebellar anaplastic astrocytoma who developed pancytopenia due to extensive bone marrow metastases.
  • CONCLUSION: Extraneural metastases of brain gliomas are rare and the spread to the bone marrow confers an extremely poor prognosis for these patients.
  • The expected improvement in glioma patients' survival due to the combination of more efficient therapies may lead to an increased incidence of this uncommon presentation, justifying a more rigorous follow-up of systemic manifestations.
  • [MeSH-major] Astrocytoma / pathology. Bone Marrow Neoplasms / secondary. Cerebellar Neoplasms / pathology

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19263392.001).
  • [ISSN] 1576-6578
  • [Journal-full-title] Revista de neurologia
  • [ISO-abbreviation] Rev Neurol
  • [Language] spa
  • [Publication-type] Case Reports; English Abstract; Journal Article
  • [Publication-country] Spain
  •  go-up   go-down


37. Haapasalo J, Hilvo M, Nordfors K, Haapasalo H, Parkkila S, Hyrskyluoto A, Rantala I, Waheed A, Sly WS, Pastorekova S, Pastorek J, Parkkila AK: Identification of an alternatively spliced isoform of carbonic anhydrase XII in diffusely infiltrating astrocytic gliomas. Neuro Oncol; 2008 Apr;10(2):131-8
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Identification of an alternatively spliced isoform of carbonic anhydrase XII in diffusely infiltrating astrocytic gliomas.
  • CA XII has been proposed to be involved in acidification of the extracellular milieu, creating an appropriate microenvironment for rapid tumor growth.
  • Because RNA sequence databases have indicated that two isoforms of CA XII might exist in human tissues, and because alternatively spliced protein forms have been linked to aggressive behavior of cancer cells, we designed a study to evaluate the presence of the two forms of CA XII in diffuse astrocytomas, a tumor type known for its aggressive and often noncurable behavior.
  • Reverse transcription PCR of tumor samples surprisingly revealed that CA XII present in diffuse astrocytomas is mainly encoded by a shorter mRNA variant.
  • We further showed by Western blotting that anti-CA XII antibody recognized both isoforms in the glioblastoma cell lines, and we then evaluated the expression of CA XII in astrocytomas using immunohistochemistry and correlated the results with various clinicopathological and molecular factors.
  • Of 370 diffusely infiltrating astrocytomas, 363 cases (98%) showed immunoreactions for CA XII.
  • From these results, we conclude that CA XII is commonly expressed in diffuse astrocytomas and that it might be used as a biomarker of poor prognosis.
  • The absence of 11 amino acids in the shorter isoform, which seems to be common in astrocytomas, may affect the normal quaternary structure and biological function of CA XII.
  • [MeSH-major] Astrocytoma / enzymology. Biomarkers, Tumor / analysis. Brain Neoplasms / enzymology. Carbonic Anhydrases / genetics. Carbonic Anhydrases / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Mol Biol. 2000 Feb 25;296(3):921-36 [10677292.001]
  • [Cites] Neuro Oncol. 2007 Jul;9(3):308-13 [17435181.001]
  • [Cites] Histochem Cell Biol. 2000 Sep;114(3):197-204 [11083462.001]
  • [Cites] J Histochem Cytochem. 2000 Dec;48(12):1601-8 [11101628.001]
  • [Cites] Cancer Res. 2000 Dec 15;60(24):7075-83 [11156414.001]
  • [Cites] Am J Pathol. 2001 Mar;158(3):905-19 [11238039.001]
  • [Cites] Bioorg Med Chem. 2001 Mar;9(3):703-14 [11310605.001]
  • [Cites] Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9545-50 [11493685.001]
  • [Cites] Br J Cancer. 2003 Apr 7;88(7):1065-70 [12671706.001]
  • [Cites] J Neurosurg. 2003 Sep;99(3):467-73 [12959431.001]
  • [Cites] Hum Pathol. 2003 Aug;34(8):756-63 [14506635.001]
  • [Cites] Virology. 1992 Apr;187(2):620-6 [1312272.001]
  • [Cites] Histochemistry. 1993 Jan;99(1):37-41 [8468192.001]
  • [Cites] Am J Pathol. 1993 May;142(5):1347-51 [7684193.001]
  • [Cites] Anal Quant Cytol Histol. 1994 Aug;16(4):261-8 [7524516.001]
  • [Cites] J Pathol. 1994 Dec;174(4):275-82 [7884589.001]
  • [Cites] Mol Hum Reprod. 2000 Jan;6(1):68-74 [10611263.001]
  • [Cites] Am J Pathol. 2000 Feb;156(2):577-84 [10666387.001]
  • [Cites] J Mol Biol. 2000 Feb 25;296(3):911-9 [10677291.001]
  • [Cites] Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7608-13 [9636197.001]
  • [Cites] Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12596-601 [9770531.001]
  • [Cites] J Neurooncol. 1998 Nov;40(2):151-60 [9892097.001]
  • [Cites] World J Gastroenterol. 2005 Jan 14;11(2):155-63 [15633208.001]
  • [Cites] Cancer. 2005 Mar 15;103(6):1234-44 [15666327.001]
  • [Cites] Surg Neurol. 2005 Oct;64(4):286-94; discussion 294 [16229087.001]
  • [Cites] Clin Cancer Res. 2006 Jan 15;12(2):473-7 [16428489.001]
  • [Cites] Bioessays. 2006 Apr;28(4):378-86 [16547952.001]
  • [Cites] Neurosurg Focus. 2006;20(4):E5 [16709036.001]
  • [Cites] J Cell Sci. 2006 Jul 1;119(Pt 13):2635-41 [16787944.001]
  • [Cites] Neuropathol Appl Neurobiol. 2006 Aug;32(4):441-50 [16866989.001]
  • [Cites] Curr Opin Oncol. 2006 Nov;18(6):644-7 [16988588.001]
  • [Cites] Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2220-4 [10688890.001]
  • (PMID = 18322268.001).
  • [ISSN] 1522-8517
  • [Journal-full-title] Neuro-oncology
  • [ISO-abbreviation] Neuro-oncology
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Isoenzymes; EC 4.2.1.1 / CA13 protein, human; EC 4.2.1.1 / Carbonic Anhydrases
  • [Other-IDs] NLM/ PMC2613815
  •  go-up   go-down


38. Shostak KO, Dmitrenko VV, Vudmaska MI, Naidenov VG, Beletskii AV, Malisheva TA, Semenova VM, Zozulya YP, Demotes-Mainard J, Kavsan VM: Patterns of expression of TSC-22 protein in astrocytic gliomas. Exp Oncol; 2005 Dec;27(4):314-8
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Patterns of expression of TSC-22 protein in astrocytic gliomas.
  • AIM: To evaluate expression patterns of protein product of putative tumor suppressor gene TSC-22 in human astrocytic tumors by immunohistochemical approach.
  • Immunohistochemical analysis of TSC-22 and GFAP expression with the use of anti-human-TSC-22- and anti-human-GFAP-antibodies was performed on histological slides of astrocytic tumors.
  • RESULTS: Immunohistochemical analysis has shown that the number of cells expressing TSC-22 was significantly lower in glioblastoma tissues than that in diffuse astrocytoma.
  • Double immunohistochemical staining of astrocytic tumors using anti-human-TSC-2- and anti-human-GFAP-antibodies showed that both TSC-22 and GFAP expression is co-localized in astrocytes.
  • In more aggressive forms of astrocytic tumors decreased expression of TSC-22 mRNA correlates with its lowered expression on protein level.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Gene Expression Regulation, Neoplastic. Repressor Proteins / biosynthesis
  • [MeSH-minor] Amino Acid Sequence. Astrocytes / metabolism. Base Sequence. Biomarkers, Tumor / analysis. Gene Expression Profiling. Glial Fibrillary Acidic Protein / biosynthesis. Humans. Immunohistochemistry. Microglia / metabolism. Molecular Sequence Data. Recombinant Proteins / biosynthesis. Recombinant Proteins / genetics

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16404353.001).
  • [ISSN] 1812-9269
  • [Journal-full-title] Experimental oncology
  • [ISO-abbreviation] Exp. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Ukraine
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Glial Fibrillary Acidic Protein; 0 / Recombinant Proteins; 0 / Repressor Proteins; 0 / TSC22D1 protein, human
  •  go-up   go-down


39. Fisher PG, Tihan T, Goldthwaite PT, Wharam MD, Carson BS, Weingart JD, Repka MX, Cohen KJ, Burger PC: Outcome analysis of childhood low-grade astrocytomas. Pediatr Blood Cancer; 2008 Aug;51(2):245-50
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Outcome analysis of childhood low-grade astrocytomas.
  • BACKGROUND: We aimed to determine the long-term natural history of low-grade astrocytomas (LGA) in children, with respect to pathology, and to evaluate influence of treatment on survival.
  • RESULTS: Two hundred seventy-eight children (160 males; mean age 9.1 years; tumor location: 77 cerebrum, 62 cerebellum, 51 hypothalamic, 30 thalamus, 9 ventricle, 40 brainstem, and 9 spine) were assessed.
  • Among 246 specimens reviewed, diagnoses were 135 pilocytic astrocytoma (PA), 27 diffuse astrocytoma (DA), 75 unclassifiable well-differentiated astrocytoma (NOS), and 9 subependymal giant cell astrocytoma.
  • Reviewed diagnoses were highly associated with OS (P < 0.0001), with 5-year OS for PA 96%, DA 48%, and NOS 86%; these differences remained significant when stratified by location or extent of resection.
  • Among patients with residual tumor after surgery, 5-year PFS was 48% with observation alone (n = 114), no different (P = 0.32) from that achieved with immediate irradiation (n = 86).
  • While tumor location and resection extent affect outcome, pathologic diagnosis when carefully interpreted significantly influences long-term survival.
  • [MeSH-major] Astrocytoma / mortality. Brain Neoplasms / mortality

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18386785.001).
  • [ISSN] 1545-5017
  • [Journal-full-title] Pediatric blood & cancer
  • [ISO-abbreviation] Pediatr Blood Cancer
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


40. Landriscina M, Schinzari G, Di Leonardo G, Quirino M, Cassano A, D'Argento E, Lauriola L, Scerrati M, Prudovsky I, Barone C: S100A13, a new marker of angiogenesis in human astrocytic gliomas. J Neurooncol; 2006 Dec;80(3):251-9
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] S100A13, a new marker of angiogenesis in human astrocytic gliomas.
  • Indeed, S100A13 is a copper binding protein able to enhance the export of FGF1 in response to stress in vitro and to induce the formation of a multiprotein aggregate responsible for FGF1 release.
  • We investigated the expression of S100A13 in human astrocytic gliomas in relation to tumour grading and vascularization.
  • A series of 26 astrocytic gliomas was studied to evaluate microvessel density and to assess FGF1, S100A13 and VEGF-A expression.
  • FGF1 was equally expressed in the vast majority of tumours, whereas S100A13 and VEGF-A were significantly up-regulated in high-grade vascularized gliomas.
  • These data suggest that the up-regulation of S100A13 and VEGF-A expression correlates with the activation of angiogenesis in high-grade human astrocytic gliomas.
  • [MeSH-major] Astrocytoma / blood supply. Biomarkers, Tumor / metabolism. Brain Neoplasms / blood supply. Neovascularization, Pathologic / metabolism. S100 Proteins / metabolism. Vascular Endothelial Growth Factor A / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16773219.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Grant] United States / NHLBI NIH HHS / HL / HL32348; United States / NHLBI NIH HHS / HL / HL35627; United States / NCRR NIH HHS / RR / RR1555
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / S100 Proteins; 0 / S100A13 protein, human; 0 / Vascular Endothelial Growth Factor A; 62031-54-3 / Fibroblast Growth Factors
  •  go-up   go-down


41. Azad S, Kudesia S, Chawla N, Azad R, Singhal M, Rai SM, Arora P: Pilomyxoid astrocytoma. Indian J Pathol Microbiol; 2010 Apr-Jun;53(2):294-6
MedlinePlus Health Information. consumer health - Childhood Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Pilomyxoid astrocytoma.
  • Pilomyxoid astrocytoma (PMA) is a recently described brain tumor.
  • PMA shares similar features with pilocytic astrocytoma (PA), the most common central nervous system (CNS) tumor in the pediatric population, yet displays subtle histologic differences.
  • The histological findings revealed a tumor composed of a monotonous population of loosely arranged cells with delicate piloid like processes, within a prominent myxoid background.
  • The tumor lacked biphasic appearance, Rosenthal fibers, eosinophilic granular bodies and calcification that are commonly observed in classical PA.
  • [MeSH-major] Astrocytoma / diagnosis. Astrocytoma / pathology. Brain Neoplasms / diagnosis. Brain Neoplasms / pathology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20551536.001).
  • [ISSN] 0974-5130
  • [Journal-full-title] Indian journal of pathology & microbiology
  • [ISO-abbreviation] Indian J Pathol Microbiol
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] India
  •  go-up   go-down


42. Misra A, Chattopadhyay P, Chosdol K, Sarkar C, Mahapatra AK, Sinha S: Clonal mutations in primary human glial tumors: evidence in support of the mutator hypothesis. BMC Cancer; 2007;7:190
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • BACKGROUND: A verifiable consequence of the mutator hypothesis is that even low grade neoplasms would accumulate a large number of mutations that do not influence the tumor phenotype (clonal mutations).
  • In this study, we have attempted to quantify the number of clonal mutations in primary human gliomas of astrocytic cell origin.
  • These alterations were identified in tumor tissue, microscopically confirmed to have over 70% neoplastic cells.
  • METHODS: Random Amplified Polymorphic DNA (RAPD) analysis was performed using a set of fifteen 10-mer primers of arbitrary but definite sequences in 17 WHO grade II astrocytomas (low grade diffuse astrocytoma or DA) and 16 WHO grade IV astrocytomas (Glioblastoma Multiforme or GBM).
  • The RAPD profile of the tumor tissue was compared with that of the leucocyte DNA of the same patient and alteration(s) scored.
  • CONCLUSION: This study demonstrates the presence of extensive clonal mutations in gliomas, more in lower grade.
  • This is consistent with our earlier work demonstrating that technique like RAPD analysis, unbiased for locus, is able to demonstrate more intra-tumor genetic heterogeneity in lower grade gliomas compared to higher grade.
  • [MeSH-minor] Cell Line, Tumor. Cloning, Molecular. DNA / metabolism. DNA Primers / chemistry. Data Interpretation, Statistical. Glioma / genetics. Humans. Leukocytes / metabolism. Models, Genetic. Models, Theoretical. Polymerase Chain Reaction. Polymorphism, Genetic. Reproducibility of Results

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15121-6 [10611348.001]
  • [Cites] J Neurooncol. 2007 Feb;81(3):249-55 [17019533.001]
  • [Cites] Cancer Genet Cytogenet. 2001 Feb;125(1):41-5 [11297766.001]
  • [Cites] Mutat Res. 2001 Jun 2;477(1-2):7-21 [11376682.001]
  • [Cites] Mutat Res. 2001 Dec 12;484(1-2):53-9 [11733071.001]
  • [Cites] Am J Pathol. 2002 Mar;160(3):755-8 [11891172.001]
  • [Cites] Cancer Res. 2003 Apr 1;63(7):1608-14 [12670912.001]
  • [Cites] J Neurooncol. 2004 Jan;66(1-2):111-6 [15015776.001]
  • [Cites] IUBMB Life. 2004 Feb;56(2):65-81 [15085930.001]
  • [Cites] Nat Rev Drug Discov. 2004 May;3(5):430-46 [15136790.001]
  • [Cites] Oral Oncol. 2004 Nov;40(10):1033-9 [15509495.001]
  • [Cites] Br J Cancer. 1987 Apr;55(4):353-6 [3580260.001]
  • [Cites] Nucleic Acids Res. 1990 Nov 25;18(22):6531-5 [1979162.001]
  • [Cites] Nucleic Acids Res. 1990 Dec 25;18(24):7213-8 [2259619.001]
  • [Cites] Cancer Res. 1991 Jun 15;51(12):3075-9 [2039987.001]
  • [Cites] Cancer Res. 1992 Jan 15;52(2):249-53 [1728397.001]
  • [Cites] Cancer Genet Cytogenet. 1992 Jul 1;61(1):53-60 [1353409.001]
  • [Cites] Nature. 1993 Jun 10;363(6429):558-61 [8505985.001]
  • [Cites] Nat Genet. 1994 Mar;6(3):273-81 [8012390.001]
  • [Cites] Cancer Res. 1995 Apr 1;55(7):1547-9 [7882363.001]
  • [Cites] Trends Genet. 1995 Jun;11(6):242-6 [7543710.001]
  • [Cites] Trends Genet. 1995 Oct;11(10):412-5 [7482768.001]
  • [Cites] Eur J Cancer. 1995 Oct;31A(11):1879-82 [8541117.001]
  • [Cites] Oncogene. 1996 Dec 5;13(11):2499-504 [8957095.001]
  • [Cites] Genes Chromosomes Cancer. 1997 Jan;18(1):19-29 [8993977.001]
  • [Cites] Indian J Biochem Biophys. 1996 Dec;33(6):455-7 [9219429.001]
  • [Cites] Oncogene. 1997 Aug 14;15(7):871-4 [9266974.001]
  • [Cites] J Clin Oncol. 1997 Oct;15(10):3230-40 [9336360.001]
  • [Cites] Cancer Res. 1997 Dec 15;57(24):5469-74 [9407952.001]
  • [Cites] Gene. 1998 Jan 5;206(1):45-8 [9461413.001]
  • [Cites] Carcinogenesis. 1998 Jan;19(1):233-5 [9472718.001]
  • [Cites] Semin Cancer Biol. 1998 Dec;8(6):421-9 [10191176.001]
  • [Cites] Semin Cancer Biol. 1998 Dec;8(6):431-8 [10191177.001]
  • [Cites] Nature. 2004 Nov 18;432(7015):338-41 [15549096.001]
  • [Cites] DNA Repair (Amst). 2006 Mar 7;5(3):294-302 [16359931.001]
  • [Cites] Br J Cancer. 2006 May 22;94(10):1485-91 [16641899.001]
  • [Cites] Breast Cancer Res Treat. 2006 May;97(1):107-10 [16319977.001]
  • [Cites] Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14140-5 [16966602.001]
  • [Cites] Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18238-42 [17108085.001]
  • [Cites] J Neurooncol. 2000 May;48(1):1-12 [11026691.001]
  • (PMID = 17925012.001).
  • [ISSN] 1471-2407
  • [Journal-full-title] BMC cancer
  • [ISO-abbreviation] BMC Cancer
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / DNA Primers; 9007-49-2 / DNA
  • [Other-IDs] NLM/ PMC2190769
  •  go-up   go-down


43. Rodríguez-Francia P, Sánchez-Tocino H, García-Cantera M, Martín-Castillo J: [Optic nerve pilocytic astrocytoma with retinal involvement]. Arch Soc Esp Oftalmol; 2005 Dec;80(12):733-6
Genetic Alliance. consumer health - Pilocytic astrocytoma.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Optic nerve pilocytic astrocytoma with retinal involvement].
  • [Transliterated title] Astrocitoma pilocítico de nervio óptico con afectación de retina.
  • INTRODUCTION: This is an atypical case of a pilocytic astrocytoma that involved the optic nerve (ON) and the retina.
  • CLINICAL CASE: The patient was a 30-year-old male, who had attended ONCE since his early childhood because of the suspicion of an intraocular tumor.
  • The ophthalmology exploration showed an ON and retinal coloboma in the right eye and microphthalmy, shutting of the pupil, retinal detachment and proof of an intraocular tumor in the left eye.
  • The MR revealed an ON tumor that involved the retina.
  • The histopathological study after enucleation was pilocytic astrocytoma.
  • [MeSH-major] Optic Nerve Glioma / secondary. Optic Nerve Neoplasms / pathology. Retinal Neoplasms / secondary

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16372218.001).
  • [ISSN] 0365-6691
  • [Journal-full-title] Archivos de la Sociedad Española de Oftalmología
  • [ISO-abbreviation] Arch Soc Esp Oftalmol
  • [Language] spa
  • [Publication-type] Case Reports; English Abstract; Journal Article
  • [Publication-country] Spain
  •  go-up   go-down


44. Kessler R, Bleichert F, Warnke JP, Eschrich K: 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is up-regulated in high-grade astrocytomas. J Neurooncol; 2008 Feb;86(3):257-64
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is up-regulated in high-grade astrocytomas.
  • We investigated the PFKFB3 expression in 40 human astrocytic gliomas and 20 non-neoplastic brain tissue specimens.
  • The PFKFB3 protein levels were markedly elevated in high-grade astrocytomas relative to low-grade astrocytomas and corresponding non-neoplastic brain tissue, whereas no significant increase of PFKFB3 mRNA was observed in high-grade astrocytomas when compared with control tissue.
  • The findings demonstrate that PFKFB3 up-regulation is a hallmark of high-grade astrocytomas offering an explanation for high glycolytic flux and lactate production in these tumors.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Gene Expression Regulation, Neoplastic / physiology. Phosphofructokinase-2 / metabolism. Up-Regulation / physiology


45. Belda-Iniesta C, de Castro Carpeño J, Casado Sáenz E, Cejas Guerrero P, Perona R, González Barón M: Molecular biology of malignant gliomas. Clin Transl Oncol; 2006 Sep;8(9):635-41

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Molecular biology of malignant gliomas.
  • Gliomas are the most common primary brain tumours.
  • In keeping with the degree of aggressiveness, gliomas are divided into four grades, with different biological behaviour.
  • Furthermore, as different gliomas share a predominant histological appearance, the final classification includes both, histological features and degree of malignancy.
  • For example, gliomas of astrocytic origin (astrocytomas) are classified into pilocytic astrocytoma (grade I), astrocytoma (grade II), anaplastic astrocytoma (grade III) and glioblastoma multiforme (GMB) (grade IV).
  • Each subtype has a specific prognosis that dictates the clinical management.
  • Obviously, prognosis and biological behaviour of malignant gliomas are closely related and supported by the different molecular background that possesses each type of glioma.
  • Furthermore, the ability that allows several low-grade gliomas to progress into more aggressive tumors has allowed cancer researchers to elucidate several pathways implicated in molecular biology of these devastating tumors.
  • In this review, we describe classical pathways involved in human malignant gliomas with special focus with recent advances, such as glioma stem-like cells and expression patterns from microarray studies.
  • [MeSH-major] Central Nervous System Neoplasms / genetics. Glioma / genetics

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17005465.001).
  • [ISSN] 1699-048X
  • [Journal-full-title] Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
  • [ISO-abbreviation] Clin Transl Oncol
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] Spain
  • [Number-of-references] 36
  •  go-up   go-down


46. Arjona D, Bello MJ, Rey JA: EGFR intragenic loss and gene amplification in astrocytic gliomas. Cancer Genet Cytogenet; 2006 Jan 1;164(1):39-43
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] EGFR intragenic loss and gene amplification in astrocytic gliomas.
  • We have studied EGFR gene amplification and allelic status of chromosome 7 in 68 tumors consisting of 34 WHO grade IV glioblastomas (26 primary and 8 secondary), 14 WHO grade III anaplastic astrocytomas, and 20 WHO grade II astrocytomas, by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP), quantitative PCR, and microsatellite analysis.
  • [MeSH-major] Astrocytoma / genetics. Gene Amplification. Genes, erbB-1. Loss of Heterozygosity

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16364761.001).
  • [ISSN] 0165-4608
  • [Journal-full-title] Cancer genetics and cytogenetics
  • [ISO-abbreviation] Cancer Genet. Cytogenet.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


47. Knizetova P, Darling JL, Bartek J: Vascular endothelial growth factor in astroglioma stem cell biology and response to therapy. J Cell Mol Med; 2008 Jan-Feb;12(1):111-25
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Vascular endothelial growth factor in astroglioma stem cell biology and response to therapy.
  • Malignant astrogliomas are among the most aggressive, highly vascular and infiltrating tumours bearing a dismal prognosis, mainly due to their resistance to current radiation treatment and chemotherapy.
  • Efforts to identify and target the mechanisms that underlie astroglioma resistance have recently focused on candidate cancer stem cells, their biological properties, interplay with their local microenvironment or 'niche', and their role in tumour progression and recurrence.
  • Both paracrine and autocrine regulation of astroglioma cell behaviour by locally produced cytokines such as the vascular endothelial growth factor (VEGF) are emerging as key factors that determine astroglioma cell fate.
  • Here, we review these recent rapid advances in astroglioma research, with emphasis on the significance of VEGF in astroglioma stem-like cell biology.
  • Furthermore, we highlight the unique DNA damage checkpoint properties of the CD133-marker-positive astroglioma stem-like cells, discuss their potential involvement in astroglioma radioresistance, and consider the implications of this new knowledge for designing combinatorial, more efficient therapeutic strategies.
  • [MeSH-major] Astrocytoma / metabolism. Astrocytoma / therapy. Brain Neoplasms / metabolism. Brain Neoplasms / therapy. Neoplastic Stem Cells / metabolism. Vascular Endothelial Growth Factor A / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18031298.001).
  • [ISSN] 1582-1838
  • [Journal-full-title] Journal of cellular and molecular medicine
  • [ISO-abbreviation] J. Cell. Mol. Med.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] Romania
  • [Chemical-registry-number] 0 / AC133 antigen; 0 / Antigens, CD; 0 / Glycoproteins; 0 / Peptides; 0 / Vascular Endothelial Growth Factor A
  • [Number-of-references] 129
  • [Other-IDs] NLM/ PMC3823475
  •  go-up   go-down


48. van den Boom J, Wolter M, Blaschke B, Knobbe CB, Reifenberger G: Identification of novel genes associated with astrocytoma progression using suppression subtractive hybridization and real-time reverse transcription-polymerase chain reaction. Int J Cancer; 2006 Nov 15;119(10):2330-8
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Identification of novel genes associated with astrocytoma progression using suppression subtractive hybridization and real-time reverse transcription-polymerase chain reaction.
  • To identify novel genes involved in glioma progression we performed suppression subtractive hybridization combined with cDNA array analysis on 4 patients with primary low-grade gliomas of World Health Organization (WHO) grade II that recurred as secondary glioblastomas (WHO grade IV).
  • Eight genes showing differential expression between primary and recurrent tumors in 3 of the 4 patients were selected for further analysis using real-time reverse transcription-PCR on a series of 10 pairs of primary low-grade and recurrent high-grade gliomas as well as 42 astrocytic gliomas of different WHO grades.
  • These analyses revealed that 5 genes, i.e., AMOG (ATP1B2, 17p13.1), APOD (3q26.2-qter), DMXL1 (5q23.1) DRR1 (TU3A, 3p14.2) and PSD3 (KIAA09428/HCA67/EFA6R, 8p22), were expressed at significantly lower levels in secondary glioblastomas as compared to diffuse astrocytomas of WHO grade II.
  • In addition, AMOG, DRR1 and PSD3 transcript levels were significantly lower in primary glioblastomas than in diffuse astrocytomas.
  • Treatment of glioma cell lines with 5-aza-2'-deoxycytidine and trichostatin A resulted in increased expression of AMOG and APOD transcripts.
  • Sequencing of sodium bisulfite-modified DNA demonstrated AMOG promoter hypermethylation in the glioma cell lines and 1 primary anaplastic astrocytoma with low AMOG expression.
  • Taken together, we identified interesting novel candidate genes that likely contribute to glioma progression and provide first evidence for a role of epigenetic silencing of AMOG in malignant glioma cells.
  • [MeSH-major] Adenosine Triphosphatases / genetics. Astrocytoma / genetics. Brain Neoplasms / genetics. Cation Transport Proteins / genetics. Cell Adhesion Molecules, Neuronal / genetics. Gene Silencing. Nucleic Acid Hybridization. Reverse Transcriptase Polymerase Chain Reaction
  • [MeSH-minor] Antimetabolites, Antineoplastic / pharmacology. Apolipoproteins / genetics. Apolipoproteins D. Azacitidine / analogs & derivatives. Azacitidine / pharmacology. Biomarkers, Tumor / genetics. DNA Methylation. Disease Progression. Gene Expression Profiling. Gene Expression Regulation, Neoplastic. Genes, Tumor Suppressor. Glycoproteins / genetics. Histone Deacetylases / genetics. Humans. Hydroxamic Acids / pharmacology. Membrane Transport Proteins / genetics. Nerve Tissue Proteins / genetics. Nuclear Proteins / genetics. Oligonucleotide Array Sequence Analysis. Protein Synthesis Inhibitors / pharmacology. Proteins / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. AZACITIDINE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16865689.001).
  • [ISSN] 0020-7136
  • [Journal-full-title] International journal of cancer
  • [ISO-abbreviation] Int. J. Cancer
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / APOD protein, human; 0 / ATP1B2 protein, human; 0 / Antimetabolites, Antineoplastic; 0 / Apolipoproteins; 0 / Apolipoproteins D; 0 / Biomarkers, Tumor; 0 / Cation Transport Proteins; 0 / Cell Adhesion Molecules, Neuronal; 0 / DMXL1 protein, human; 0 / FAM107A protein, human; 0 / Glycoproteins; 0 / Hydroxamic Acids; 0 / Membrane Transport Proteins; 0 / Nerve Tissue Proteins; 0 / Nuclear Proteins; 0 / PSD protein, human; 0 / Protein Synthesis Inhibitors; 0 / Proteins; 3X2S926L3Z / trichostatin A; 776B62CQ27 / decitabine; EC 3.5.1.98 / Histone Deacetylases; EC 3.5.1.98 / histone deacetylase 3; EC 3.6.1.- / Adenosine Triphosphatases; M801H13NRU / Azacitidine
  •  go-up   go-down


49. Zscharnack K, Kessler R, Bleichert F, Warnke JP, Eschrich K: The PFKFB3 splice variant UBI2K4 is downregulated in high-grade astrocytomas and impedes the growth of U87 glioblastoma cells. Neuropathol Appl Neurobiol; 2009 Dec;35(6):566-78
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The PFKFB3 splice variant UBI2K4 is downregulated in high-grade astrocytomas and impedes the growth of U87 glioblastoma cells.
  • Here, we studied the role of the PFKFB3 splice variants in human astrocytic gliomas.
  • METHODS: We analysed the PFKFB3 splice variants in 48 astrocytic gliomas by RT-PCR and real-time PCR.
  • RESULTS: UBI2K5 and UBI2K6 are the predominant splice variants in rapidly proliferating high-grade astrocytomas while the expression of UBI2K3 and UBI2K4 is mainly restricted to low-grade astrocytomas and nonneoplastic brain tissue.
  • The UBI2K4 mRNA level is downregulated in astrocytic gliomas with increasing malignancy grade.
  • CONCLUSIONS: Our results demonstrate that the splice variant UBI2K4 impedes the tumour cell growth and might serve as a tumour suppressor in astrocytic tumours.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Glioblastoma / metabolism. Phosphofructokinase-2 / metabolism
  • [MeSH-minor] Brain / metabolism. Cell Count. Cell Line, Tumor. Cell Proliferation. Cell Survival. Down-Regulation. Humans. Neoplasm Staging. Polymerase Chain Reaction. Protein Isoforms / genetics. Protein Isoforms / metabolism. RNA, Messenger / metabolism. Reverse Transcriptase Polymerase Chain Reaction. Time Factors. Transfection

  • Genetic Alliance. consumer health - Glioblastoma.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19490427.001).
  • [ISSN] 1365-2990
  • [Journal-full-title] Neuropathology and applied neurobiology
  • [ISO-abbreviation] Neuropathol. Appl. Neurobiol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Protein Isoforms; 0 / RNA, Messenger; EC 2.7.1.105 / PFKFB3 protein, human; EC 2.7.1.105 / Phosphofructokinase-2
  •  go-up   go-down


50. Takata K, Gasparetto EL, Leite Cda C, Lucato LT, Reed UC, Matushita H, Aguiar PH, Rosemberg S: [Subependymal giant cell astrocytoma in patients with tuberous sclerosis: magnetic resonance imaging findings in ten cases]. Arq Neuropsiquiatr; 2007 Jun;65(2A):313-6
MedlinePlus Health Information. consumer health - Tuberous Sclerosis.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Subependymal giant cell astrocytoma in patients with tuberous sclerosis: magnetic resonance imaging findings in ten cases].
  • [Transliterated title] Astrocitoma subependimário de células gigantes em pacientes com esclerose tuberosa: achados em ressonância magnética de dez casos.
  • OBJECTIVE: To report the magnetic resonance imaging (MRI) findings in 10 patients with subependimal giant cell astrocytoma (SGCA) and tuberous sclerosis (TS).
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Cerebral Ventricles / pathology. Tuberous Sclerosis / pathology


51. Bongiorni L, Arroyo HA, Lubienicki F: [Subependymal nodules-sudependymal giant cell astrocytoma complex in children with tuberous sclerosis]. Medicina (B Aires); 2009;69(1 Pt 1):8-14
MedlinePlus Health Information. consumer health - Tuberous Sclerosis.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Subependymal nodules-sudependymal giant cell astrocytoma complex in children with tuberous sclerosis].
  • [Transliterated title] Complejo nódulo subependimario-astrocitoma subependimario gigantocelular en niños con esclerosis tuberosa.
  • The object of this paper is to describe the imaging and clinical characteristics of subependymal nodule (SN) - subependymal giant cell astrocytoma (SGCA) complex in tuberous sclerosis and analyze its evolution in order to attempt early detection and the prevention of intracranial hypertension.
  • Six patients presented visual deficit and in these, the average diameter of the tumor was 31.5 mm, a high value when compared to 18.7 mm in the patients without visual deficit.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Cerebral Ventricles / pathology. Tuberous Sclerosis / pathology


52. Li H, Wang Q, Gao F, Zhu F, Wang X, Zhou C, Liu C, Chen Y, Ma C, Sun W, Zhang L: Reduced expression of PDCD5 is associated with high-grade astrocytic gliomas. Oncol Rep; 2008 Sep;20(3):573-9
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Reduced expression of PDCD5 is associated with high-grade astrocytic gliomas.
  • However, the expression level of PDCD5 in human gliomas has not been investigated.
  • In the present study, we examined the expression of PDCD5 in 88 human glioma samples at both mRNA and protein levels by RT-PCR, Western blotting and immunohistochemistry.
  • We found that 53.3% (16/30) of the glioma samples had a reduced expression of PDCD5 mRNA and 70.5% (62/88) had a reduced expression of the PDCD5 protein as compared to normal brain tissue.
  • Furthermore, we studied the correlation of the expression level of PDCD5 with the clinicopathological grade and survival of patients with astrocytomas.
  • Although longitudinal studies of a cohort of patients with astrocytoma revealed that PDCD5 expression was not able to predict clinical outcome (p>0.05), a decreased expression of PDCD5 correlated significantly with high-grade astrocytomas (p<0.001).
  • In conclusion, our data suggest that reduced PDCD5 expression may contribute to the pathogenesis of human gliomas.
  • [MeSH-major] Apoptosis Regulatory Proteins / metabolism. Astrocytoma / metabolism. Brain Neoplasms / metabolism. Neoplasm Proteins / metabolism
  • [MeSH-minor] Adult. Blotting, Western. Female. Humans. Immunoenzyme Techniques. Male. Neoplasm Staging. Prognosis. RNA, Messenger. Reverse Transcriptase Polymerase Chain Reaction. Survival Rate. Tumor Cells, Cultured

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18695908.001).
  • [ISSN] 1021-335X
  • [Journal-full-title] Oncology reports
  • [ISO-abbreviation] Oncol. Rep.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / Apoptosis Regulatory Proteins; 0 / Neoplasm Proteins; 0 / PDCD5 protein, human; 0 / RNA, Messenger
  •  go-up   go-down


53. Waha A, Güntner S, Huang TH, Yan PS, Arslan B, Pietsch T, Wiestler OD, Waha A: Epigenetic silencing of the protocadherin family member PCDH-gamma-A11 in astrocytomas. Neoplasia; 2005 Mar;7(3):193-9
Hazardous Substances Data Bank. AZACITIDINE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Epigenetic silencing of the protocadherin family member PCDH-gamma-A11 in astrocytomas.
  • In a microarray-based methylation analysis of astrocytomas [World Health Organization (WHO) grade II], we identified a CpG island within the first exon of the protocadherin-gamma subfamily A11 (PCDH-gamma-A11) gene that showed hypermethylation compared to normal brain tissue.
  • Bisulfite sequencing and combined bisulfite restriction analysis (COBRA) was performed to screen low- and high-grade astrocytomas for the methylation status of this CpG island.
  • Hypermethylation was detected in 30 of 34 (88%) astrocytomas (WHO grades II and III), 20 of 23 (87%) glioblastomas (WHO grade IV), and 8 of 8 (100%) glioma cell lines.
  • There was a highly significant correlation (P = .00028) between PCDH-gamma-A11 hypermethylation and decreased transcription as determined by competitive reverse transcription polymerase chain reaction in WHO grades II and III astrocytomas.
  • After treatment of glioma cell lines with a demethylating agent, transcription of PCDH-gamma-A11 was restored.
  • In summary, we have identified PCDH-gamma-A11 as a new target silenced epigenetically in astrocytic gliomas.
  • The inactivation of this cell-cell contact molecule might be involved in the invasive growth of astrocytoma cells into normal brain parenchyma.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Nat Genet. 2000 Feb;24(2):132-8 [10655057.001]
  • [Cites] J Pathol. 1999 Apr;187(5):530-4 [10398117.001]
  • [Cites] Brain Tumor Pathol. 2000;17(2):49-56 [11210171.001]
  • [Cites] Genome Res. 2001 Mar;11(3):389-404 [11230163.001]
  • [Cites] Brain Pathol. 2001 Apr;11(2):159-68 [11303791.001]
  • [Cites] Cancer Res. 2001 Dec 1;61(23):8375-80 [11731411.001]
  • [Cites] Cancer Res. 2002 Jun 15;62(12):3382-6 [12067979.001]
  • [Cites] Cancer Res. 2002 Jul 1;62(13):3794-7 [12097291.001]
  • [Cites] Carcinogenesis. 2002 Jul;23(7):1139-48 [12117771.001]
  • [Cites] Mol Cell. 2002 Jul;10(1):21-33 [12150904.001]
  • [Cites] Genes Dev. 2002 Aug 1;16(15):1890-905 [12154121.001]
  • [Cites] Curr Opin Cell Biol. 2002 Oct;14(5):557-62 [12231349.001]
  • [Cites] Br J Cancer. 2003 Jan 13;88(1):109-14 [12556968.001]
  • [Cites] Genes Cells. 2003 Jan;8(1):1-8 [12558794.001]
  • [Cites] Int J Cancer. 2003 Aug 10;106(1):52-9 [12794756.001]
  • [Cites] J Neurosci. 2003 Jun 15;23(12):5096-104 [12832533.001]
  • [Cites] Cancer Res. 2003 Nov 15;63(22):7600-5 [14633674.001]
  • [Cites] Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1827-31 [1542678.001]
  • [Cites] Breast Cancer Res Treat. 1993;24(3):175-84 [8435473.001]
  • [Cites] Curr Opin Cell Biol. 1993 Oct;5(5):806-11 [8240824.001]
  • [Cites] Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7416-9 [7543680.001]
  • [Cites] Cancer Detect Prev. 1995;19(5):451-64 [7585733.001]
  • [Cites] Brain Pathol. 1998 Jan;8(1):13-8 [9458162.001]
  • [Cites] Hum Mol Genet. 1999 Mar;8(3):459-70 [9949205.001]
  • [Cites] J Neuropathol Exp Neurol. 2000 Jun;59(6):544-58 [10850867.001]
  • (PMID = 15799819.001).
  • [ISSN] 1522-8002
  • [Journal-full-title] Neoplasia (New York, N.Y.)
  • [ISO-abbreviation] Neoplasia
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / R01 CA069065; United States / NCI NIH HHS / CA / R29 CA069065; United States / NCI NIH HHS / CA / CA-69065; United States / NCI NIH HHS / CA / CA-86701
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Cadherins; 0 / PCDH11X protein, human; 0 / Sulfites; 776B62CQ27 / decitabine; M801H13NRU / Azacitidine
  • [Other-IDs] NLM/ PMC1501138
  •  go-up   go-down


54. Faria AV, Azevedo GC, Zanardi VA, Ghizoni E, Queiroz LS: Dissemination patterns of pilocytic astrocytoma. Clin Neurol Neurosurg; 2006 Sep;108(6):568-72
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Dissemination patterns of pilocytic astrocytoma.
  • Two patients with multifocal pilocytic astrocytoma diagnosed by magnetic resonance imaging (MRI) and confirmed by histopathological examination are reported.
  • They presented distinct sites and mechanisms of metastasis: to distant ventricles through the cerebral spinal fluid (CSF) in patient 1 and to contralateral parenchyma, possibly through white matter tracts, in patient 2, a pathway not so far reported in pilocytic astrocytoma.
  • Early detection of multifocal pilocytic astrocytoma by MRI may change treatment strategies and improve prognosis.
  • [MeSH-major] Astrocytoma / secondary. Brain Neoplasms / pathology


55. Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M, Westphal M, Schackert G, Meyermann R, Pietsch T, Reifenberger G, Weller M, Loeffler M, von Deimling A: Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol; 2010 Dec;120(6):707-18
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas.
  • WHO grading of human brain tumors extends beyond a strictly histological grading system by providing a basis predictive for the clinical behavior of the respective neoplasm.
  • For example, patients with glioblastoma WHO grade IV usually show a less favorable clinical course and receive more aggressive first-line treatment than patients with anaplastic astrocytoma WHO grade III.
  • Here we provide evidence that the IDH1 status is more prognostic for overall survival than standard histological criteria that differentiate high-grade astrocytomas.
  • We sequenced the isocitrate dehydrogenase 1 gene (IDH1) at codon 132 in 382 patients with anaplastic astrocytoma and glioblastoma from the NOA-04 trial and from a prospective translational cohort study of the German Glioma Network.
  • Patients with anaplastic astrocytomas carried IDH1 mutations in 60%, and patients with glioblastomas in 7.2%.
  • The sequence from more favorable to poorer outcome was (1) anaplastic astrocytoma with IDH1 mutation, (2) glioblastoma with IDH1 mutation, (3) anaplastic astrocytoma without IDH1 mutation and (4) glioblastoma without IDH1 mutation (p < 0.0001).
  • In this combined set of anaplastic astrocytomas and glioblastomas both, IDH1 mutation and IDH1 expression status were of greater prognostic relevance than histological diagnosis according to the current WHO classification system.
  • We propose to complement the current WHO classification and grading of high-grade astrocytic gliomas by the IDH1 mutation status and to use this combined histological and molecular classification in future clinical trials.
  • [MeSH-major] Brain Neoplasms / genetics. Glioblastoma / genetics. Glioma / classification. Glioma / genetics. Isocitrate Dehydrogenase / genetics. Mutation / genetics
  • [MeSH-minor] Adolescent. Adult. Age Factors. Aged. Aged, 80 and over. Astrocytoma / diagnosis. Astrocytoma / genetics. Astrocytoma / pathology. Cohort Studies. Female. Humans. Male. Middle Aged. Prognosis. Prospective Studies. Young Adult


56. Pascual-Castroviejo I, Pascual-Pascual SI, Velázquez-Fragua R, Viaño J, Carceller F, Hernández-Moneo JL, Gutiérrez-Molina M, Morales C: [Subependymal giant cell astrocytoma in tuberous sclerosis complex. A presentation of eight paediatric patients]. Neurologia; 2010 Jun;25(5):314-21
MedlinePlus Health Information. consumer health - Tuberous Sclerosis.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Subependymal giant cell astrocytoma in tuberous sclerosis complex. A presentation of eight paediatric patients].
  • [Transliterated title] Astrocitoma subependimario de células gigantes en el complejo de esclerosis tuberosa. Presentación de ocho pacientes infantiles.
  • OBJECTIVE: Presentation of 8 patients with subependymal giant-cell astrocytomas (SGCA) associated with tuberous sclerosis complex (TSC).
  • [MeSH-major] Astrocytoma / etiology. Astrocytoma / pathology. Brain Neoplasms / etiology. Brain Neoplasms / pathology. Tuberous Sclerosis


57. Shapiro WR, Carpenter SP, Roberts K, Shan JS: (131)I-chTNT-1/B mAb: tumour necrosis therapy for malignant astrocytic glioma. Expert Opin Biol Ther; 2006 May;6(5):539-45
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] (131)I-chTNT-1/B mAb: tumour necrosis therapy for malignant astrocytic glioma.
  • Treatment of malignant glioma is therapeutically challenging.
  • Despite improvements in neurosurgery, radiotherapy and chemotherapy, few patients diagnosed with anaplastic astrocytoma (AA) or glioblastoma multiforme (GBM) (WHO grades 3 and 4, respectively) will live beyond 2 years.
  • Most malignant gliomas cannot be completely resected or irradiated due to their ability to infiltrate diffusely into normal brain tissue.
  • Brain tissue is protected from the systemic circulation via the blood-brain barrier (BBB), which impedes entry of water-soluble chemotherapeutic agents into the tumour at therapeutic concentrations. (131)I-chTNT-1/B mAb (Cotara) employs an innovative strategy to treat the invasive portion of the tumour and the core lesion. (131)I-chTNT-1/B mAb is a genetically engineered, radiolabelled, chimeric monoclonal antibody specific for a universal intracellular antigen (i.e., DNA/histone H1 complex) exposed in the necrotic core of malignant gliomas.
  • [MeSH-major] Antibodies, Monoclonal / therapeutic use. Antigens, Neoplasm / immunology. Antineoplastic Agents / therapeutic use. Astrocytoma / radiotherapy. Iodine Radioisotopes / therapeutic use

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Cancer Chemotherapy.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16610983.001).
  • [ISSN] 1744-7682
  • [Journal-full-title] Expert opinion on biological therapy
  • [ISO-abbreviation] Expert Opin Biol Ther
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Antibodies, Monoclonal; 0 / Antigens, Neoplasm; 0 / Antineoplastic Agents; 0 / Histones; 0 / Iodine Radioisotopes; 9007-49-2 / DNA
  •  go-up   go-down


58. Eckerich C, Zapf S, Ulbricht U, Müller S, Fillbrandt R, Westphal M, Lamszus K: Contactin is expressed in human astrocytic gliomas and mediates repulsive effects. Glia; 2006 Jan 1;53(1):1-12
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Contactin is expressed in human astrocytic gliomas and mediates repulsive effects.
  • Analyzing different types of astrocytic tumors, we detected an association between increasing malignancy grade and contactin expression.
  • Functionally, contactin had repellent effects on glioma cells in vitro, as demonstrated by adhesion and migration assays.
  • Our findings suggest that contactin has repellent effects on glioma cells to which it is presented as a ligand, but it does not alter the proliferative or adhesive capacities of cells that overexpress the molecule.
  • The repulsive properties of contactin may be a key factor in glioma disaggregation, and may contribute to the diffuse infiltration pattern characteristic of glioma cells in human brain.
  • [MeSH-major] Astrocytes / metabolism. Astrocytoma / metabolism. Biomarkers, Tumor / metabolism. Brain Neoplasms / metabolism. Cell Adhesion Molecules, Neuronal / metabolism
  • [MeSH-minor] Cell Adhesion / physiology. Cell Aggregation / physiology. Cell Communication / physiology. Cell Line, Tumor. Cell Movement / physiology. Cell Proliferation. Contactins. Extracellular Matrix Proteins / metabolism. Gene Expression Regulation, Neoplastic / physiology. Glial Fibrillary Acidic Protein / metabolism. Humans. Ligands. Neoplasm Invasiveness. Protein Tyrosine Phosphatases / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2005 Wiley-Liss, Inc.
  • (PMID = 16078236.001).
  • [ISSN] 0894-1491
  • [Journal-full-title] Glia
  • [ISO-abbreviation] Glia
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Cell Adhesion Molecules, Neuronal; 0 / Contactins; 0 / Extracellular Matrix Proteins; 0 / Glial Fibrillary Acidic Protein; 0 / Ligands; EC 3.1.3.48 / Protein Tyrosine Phosphatases
  •  go-up   go-down


59. Arjona D, Bello MJ, Alonso ME, Isla A, De Campos JM, Vaquero J, Sarasa JL, Gutierrez M, Rey JA: Real-time quantitative PCR analysis of regions involved in gene amplification reveals gene overdose in low-grade astrocytic gliomas. Diagn Mol Pathol; 2005 Dec;14(4):224-9

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Real-time quantitative PCR analysis of regions involved in gene amplification reveals gene overdose in low-grade astrocytic gliomas.
  • We have studied gene amplification of genes located in 1q32 (GAC1, ELF3, MDM4, and ren1), 4q11 (PDGFR-alpha), and in 12q13-14 (MDM2 and CDK4) using quantitative real-time PCR in a group of 86 tumors consisting of 44 WHO grade IV glioblastomas (GBM) (34 primary and 10 secondary tumors), 21 WHO grade III anaplastic astrocytomas (AA), and 21 WHO grade II astrocytomas (AII).
  • GAC1 (51%) and MDM4 (27%) were the most frequently amplified genes within the 1q32 amplicon, and their higher amplification frequency was statistically significant (P<0.05, chi) in the low-grade astrocytomas.
  • The present study shows that gene amplification in the studied regions is already present in low-grade astrocytic tumors and that amplification of some genes may represent another molecular marker to differentiate primary from secondary GBM.
  • [MeSH-major] Astrocytoma / genetics. Gene Amplification. Gene Dosage. Proto-Oncogenes / genetics
  • [MeSH-minor] Biomarkers, Tumor / analysis. Humans. Polymerase Chain Reaction

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16319692.001).
  • [ISSN] 1052-9551
  • [Journal-full-title] Diagnostic molecular pathology : the American journal of surgical pathology, part B
  • [ISO-abbreviation] Diagn. Mol. Pathol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor
  •  go-up   go-down


60. Khan MA, Hashmi S: Low-grade astrocytoma causing calvarial scalloping. Pediatr Neurosurg; 2007;43(2):155-7
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Low-grade astrocytoma causing calvarial scalloping.
  • Gliomas are tumors of the white matter.
  • Only 1 case of low-grade astrocytoma causing calvarial erosion has been reported in the literature of the CT era.
  • We report the first case of a low-grade astrocytoma causing calvarial erosion in an adolescent.
  • [MeSH-major] Astrocytoma / diagnosis. Astrocytoma / surgery. Brain Neoplasms / diagnosis. Brain Neoplasms / surgery. Osteolysis / pathology. Osteolysis / surgery. Parietal Lobe / pathology. Parietal Lobe / surgery. Skull / pathology. Skull / surgery

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright (c) 2007 S. Karger AG, Basel.
  • (PMID = 17337932.001).
  • [ISSN] 1016-2291
  • [Journal-full-title] Pediatric neurosurgery
  • [ISO-abbreviation] Pediatr Neurosurg
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Switzerland
  •  go-up   go-down


61. Arjona D, Bello MJ, Alonso ME, Aminoso C, Isla A, De Campos JM, Sarasa JL, Gutierrez M, Villalobo A, Rey JA: Molecular analysis of the EGFR gene in astrocytic gliomas: mRNA expression, quantitative-PCR analysis of non-homogeneous gene amplification and DNA sequence alterations. Neuropathol Appl Neurobiol; 2005 Aug;31(4):384-94
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Molecular analysis of the EGFR gene in astrocytic gliomas: mRNA expression, quantitative-PCR analysis of non-homogeneous gene amplification and DNA sequence alterations.
  • This report investigates the presence of mutations, amplification and/or over-expression of the EGFR gene in 86 glial tumours including 44 glioblastomas, 21 anaplastic astrocytomas, and 21 WHO grade II astrocytomas, using polymerase chain reaction/single-strand conformation polymorphism, semiquantitative reverse-transcription-polymerase chain reaction (RT-PCR) and Southern Blot techniques.
  • These findings corroborate that EGFR is non-randomly involved in malignant glioma development and that different mutant forms participate in aberrant activation of tyrosine kinase pathways.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Epidermal Growth Factor / genetics. Gene Amplification

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16008822.001).
  • [ISSN] 0305-1846
  • [Journal-full-title] Neuropathology and applied neurobiology
  • [ISO-abbreviation] Neuropathol. Appl. Neurobiol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / RNA, Messenger; 62229-50-9 / Epidermal Growth Factor
  •  go-up   go-down


62. Völker HU, Hagemann C, Coy J, Wittig R, Sommer S, Stojic J, Haubitz I, Vince GH, Kämmerer U, Monoranu CM: Expression of transketolase-like 1 and activation of Akt in grade IV glioblastomas compared with grades II and III astrocytic gliomas. Am J Clin Pathol; 2008 Jul;130(1):50-7
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of transketolase-like 1 and activation of Akt in grade IV glioblastomas compared with grades II and III astrocytic gliomas.
  • This study was performed to compare the expression of transketolase-like 1 (TKTL1) and p-Akt in glioblastoma multiforme (GBM) and other astrocytic gliomas (AGs, grades II and III).
  • Immunohistochemically, the tumor grade significantly correlated with expression of TKTL1.
  • Compared with grades II and III AGs, GBMs showed higher expression of TKTL1, more positive tumors, and a higher percentage of positive tumor cells.
  • [MeSH-major] Astrocytoma / enzymology. Glioblastoma / enzymology. Proto-Oncogene Proteins c-akt / metabolism. Transketolase / biosynthesis

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18550470.001).
  • [ISSN] 0002-9173
  • [Journal-full-title] American journal of clinical pathology
  • [ISO-abbreviation] Am. J. Clin. Pathol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / RNA, Messenger; EC 2.2.1.1 / TKTL1 protein, human; EC 2.2.1.1 / Transketolase; EC 2.7.11.1 / Proto-Oncogene Proteins c-akt
  •  go-up   go-down


63. Kim SH, Kang SS, Jung TY, Jung S: Juvenile pilomyxoid astrocytoma in the opticohypothalamus. J Korean Neurosurg Soc; 2010 Nov;48(5):445-7

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Juvenile pilomyxoid astrocytoma in the opticohypothalamus.
  • Pilomyxoid astrocytoma (PMA) is a newly recognized variant of a pilocytic astrocytoma.
  • This report describes a case of a pilomyxoid astrocytoma that occurred in the opticohypothalamus.
  • Magnetic resonance imaging (MRI) showed an irregular lobulated tumor with heterogeneous enhancement at the suprasellar region involving the hypothalamus.
  • Adjuvant chemotherapy with cisplatin and vincristine was started following tumor resection.
  • Although long-term outcome is yet to be determined, the administration of combined cisplatin and vincristine treatment seems to be an effective regimen for a pilomyxoid astrocytoma.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Anticancer Res. 2009 Mar;29(3):919-26 [19414328.001]
  • [Cites] J Neurooncol. 1998 May;37(3):263-70 [9524084.001]
  • [Cites] Clin Neuropathol. 2001 Nov-Dec;20(6):256-62 [11758781.001]
  • [Cites] J Neurosurg. 2003 Aug;99(2):416-20 [12924720.001]
  • [Cites] Neurosurgery. 2003 Sep;53(3):544-53; discussion 554-5 [12943571.001]
  • [Cites] Neurosurgery. 2004 Jan;54(1):72-9; discussion 79-80 [14683543.001]
  • [Cites] AJNR Am J Neuroradiol. 2008 Nov;29(10):1861-6 [18701580.001]
  • [Cites] Cancer. 1993 May 15;71(10):3165-72 [8490847.001]
  • [Cites] J Neuropathol Exp Neurol. 1999 Jan;58(1):46-53 [10068313.001]
  • [Cites] J Neuropathol Exp Neurol. 1999 Oct;58(10):1061-8 [10515229.001]
  • [Cites] Pediatr Neurosurg. 2000 Apr;32(4):214-9 [10940774.001]
  • [Cites] J Clin Oncol. 2003 Dec 15;21(24):4572-8 [14673044.001]
  • [Cites] Neuropathology. 2006 Feb;26(1):89-93 [16521485.001]
  • [Cites] J Neurosurg. 1978 Aug;49(2):179-84 [671072.001]
  • (PMID = 21286484.001).
  • [ISSN] 1598-7876
  • [Journal-full-title] Journal of Korean Neurosurgical Society
  • [ISO-abbreviation] J Korean Neurosurg Soc
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Korea (South)
  • [Other-IDs] NLM/ PMC3030087
  • [Keywords] NOTNLM ; Adjuvant chemotherapy / Opticohypothalamus / Pilomyxoid astrocytoma
  •  go-up   go-down


64. Yang Z, Wang Y, Fang J, Chen F, Liu J, Wu J, Wang Y, Song T, Zeng F, Rao Y: Downregulation of WIF-1 by hypermethylation in astrocytomas. Acta Biochim Biophys Sin (Shanghai); 2010 Jun 15;42(6):418-25
Hazardous Substances Data Bank. AZACITIDINE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Downregulation of WIF-1 by hypermethylation in astrocytomas.
  • Wnt inhibitory factor-1 (WIF-1) acts as a Wnt antagonist and tumor suppressor, but hypermethylation of WIF-1 gene promoter and low expression of WIF-1 activate Wnt signaling aberrantly and induce the development of several human tumors.
  • By using RT-PCR, immunohistochemistry and methylation-specific PCR, we analyzed the expression and methylation of WIF-1 in 4 normal brain tissues, 35 freshly resected astrocytoma tissues and 4 glioblastoma-derived cell lines.
  • Significant downregulation of WIF-1 mRNA and protein expression levels was observed in astrocytoma tissues compared with normal brain tissues.
  • Significant association between WIF-1 downregulation and pathological grade of astrocytomas was found.
  • WIF-1 gene aberrant methylation was observed in 19 of 35 (54.29%) tumor samples.
  • Our results suggested that the WIF-1 gene is frequently silenced in astrocytoma by aberrant promoter methylation.
  • This may be an important mechanism in astrocytoma carcinogenesis.
  • [MeSH-major] Adaptor Proteins, Signal Transducing / genetics. Astrocytoma / genetics. DNA Methylation. Repressor Proteins / genetics
  • [MeSH-minor] Azacitidine / analogs & derivatives. Azacitidine / metabolism. Cell Line, Tumor. Down-Regulation. Gene Expression Regulation, Neoplastic. Humans. Promoter Regions, Genetic. RNA, Messenger / metabolism. Reverse Transcriptase Polymerase Chain Reaction. Signal Transduction. Wnt Proteins / genetics. beta Catenin / genetics

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20539942.001).
  • [ISSN] 1745-7270
  • [Journal-full-title] Acta biochimica et biophysica Sinica
  • [ISO-abbreviation] Acta Biochim. Biophys. Sin. (Shanghai)
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] China
  • [Chemical-registry-number] 0 / Adaptor Proteins, Signal Transducing; 0 / RNA, Messenger; 0 / Repressor Proteins; 0 / WIF1 protein, human; 0 / Wnt Proteins; 0 / beta Catenin; 776B62CQ27 / decitabine; M801H13NRU / Azacitidine
  •  go-up   go-down


65. Rush SZ, Abel TW, Valadez JG, Pearson M, Cooper MK: Activation of the Hedgehog pathway in pilocytic astrocytomas. Neuro Oncol; 2010 Aug;12(8):790-8
antibodies-online. View related products from antibodies-online.com (subscription/membership/fee required).

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Activation of the Hedgehog pathway in pilocytic astrocytomas.
  • Pilocytic astrocytoma is commonly viewed as a benign lesion.
  • However, disease onset is most prevalent in the first two decades of life, and children are often left with residual or recurrent disease and significant morbidity.
  • The Hedgehog (Hh) pathway regulates the growth of higher WHO grade gliomas, and in this study, we have evaluated the activation and operational status of this regulatory pathway in pilocytic astrocytomas.
  • Expression levels of the Hh pathway transcriptional target PTCH were elevated in 45% of tumor specimens analyzed (ages 1-22 years) and correlated inversely with patient age.
  • Evaluation of a tissue array revealed oligodendroglioma-like features, pilomyxoid features, infiltration, and necrosis more commonly in specimens from younger patients (below the median patient age of 10 years).
  • Taken together, these findings suggest that Hh pathway activation is common in pediatric pilocytic astrocytomas and may be associated with younger age at diagnosis and tumor growth.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Oncogene. 2009 May 21;28(20):2119-23 [19363522.001]
  • [Cites] Acta Neuropathol. 2009 Jun;117(6):657-65 [19271226.001]
  • [Cites] Mol Carcinog. 2009 Aug;48(8):703-12 [19142899.001]
  • [Cites] Pediatr Blood Cancer. 2009 Sep;53(3):417-23 [19479971.001]
  • [Cites] J Clin Oncol. 2009 Aug 1;27(22):3691-7 [19581535.001]
  • [Cites] N Engl J Med. 2009 Sep 17;361(12):1173-8 [19726761.001]
  • [Cites] Oncogene. 2009 Oct 1;28(39):3468-76 [19617900.001]
  • [Cites] Genes Chromosomes Cancer. 2000 Jan;27(1):44-51 [10564585.001]
  • [Cites] Cancer. 2000 Oct 1;89(7):1569-76 [11013373.001]
  • [Cites] Pediatr Neurosurg. 2001 Dec;35(6):311-7 [11786699.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Mar;61(3):215-25; discussion 226-9 [11895036.001]
  • [Cites] Curr Treat Options Oncol. 2001 Dec;2(6):529-36 [12057098.001]
  • [Cites] Nat Genet. 2002 Jul;31(3):306-10 [12068298.001]
  • [Cites] Science. 2002 Aug 30;297(5586):1559-61 [12202832.001]
  • [Cites] J Neurooncol. 2002 Sep;59(2):107-15 [12241103.001]
  • [Cites] Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14071-6 [12391318.001]
  • [Cites] J Neurosurg. 2003 Jun;98(6):1170-4 [12816259.001]
  • [Cites] J Clin Oncol. 2003 Aug 1;21(15):2968-73 [12885817.001]
  • [Cites] Neurosurgery. 2003 Sep;53(3):544-53; discussion 554-5 [12943571.001]
  • [Cites] Nature. 2003 Oct 23;425(6960):846-51 [14520411.001]
  • [Cites] Neurology. 2004 Apr 27;62(8):1311-6 [15111667.001]
  • [Cites] Nature. 2004 Oct 7;431(7009):707-12 [15361885.001]
  • [Cites] J Neurosurg. 1988 Jan;68(1):41-7 [3335911.001]
  • [Cites] J Neurosurg. 1988 Aug;69(2):171-6 [3392563.001]
  • [Cites] Neurosurgery. 1992 Sep;31(3):413-8; discussion 419 [1407423.001]
  • [Cites] Science. 1996 Jun 14;272(5268):1668-71 [8658145.001]
  • [Cites] Cell. 1996 Jun 14;85(6):841-51 [8681379.001]
  • [Cites] Cancer Res. 1997 Mar 1;57(5):842-5 [9041183.001]
  • [Cites] Cancer Res. 1997 Jun 1;57(11):2085-8 [9187099.001]
  • [Cites] Cancer Res. 1997 Jul 1;57(13):2581-5 [9205058.001]
  • [Cites] J Clin Oncol. 1997 Aug;15(8):2792-9 [9256121.001]
  • [Cites] J Neurooncol. 1998 Mar;37(1):9-16 [9525833.001]
  • [Cites] J Neurosurg. 1999 Feb;90(2):265-73 [9950497.001]
  • [Cites] Oncogene. 1999 Jan 21;18(3):833-6 [9989836.001]
  • [Cites] Neuropathol Appl Neurobiol. 1999 Apr;25(2):134-42 [10216001.001]
  • [Cites] J Clin Oncol. 2005 Aug 1;23(22):5198-204 [16051961.001]
  • [Cites] Cancer Res. 2006 Jan 15;66(2):839-45 [16424016.001]
  • [Cites] Dev Cell. 2006 Feb;10(2):187-97 [16459298.001]
  • [Cites] Curr Biol. 2007 Jan 23;17(2):165-72 [17196391.001]
  • [Cites] Childs Nerv Syst. 2007 May;23(5):543-7 [17226033.001]
  • [Cites] Acta Neuropathol. 2007 Aug;114(2):97-109 [17618441.001]
  • [Cites] Oncogene. 2007 Aug 23;26(39):5752-61 [17353902.001]
  • [Cites] Stem Cells. 2007 Oct;25(10):2524-33 [17628016.001]
  • [Cites] J Clin Invest. 2008 May;118(5):1739-49 [18398503.001]
  • [Cites] Pediatr Blood Cancer. 2008 Aug;51(2):245-50 [18386785.001]
  • [Cites] J Neuropathol Exp Neurol. 2008 Sep;67(9):878-87 [18716556.001]
  • [Cites] Cancer Res. 2008 Nov 1;68(21):8673-7 [18974108.001]
  • [Cites] Cancer Res. 2009 Feb 15;69(4):1284-92 [19190345.001]
  • [Cites] Trends Pharmacol Sci. 2009 Jun;30(6):303-12 [19443052.001]
  • (PMID = 20223881.001).
  • [ISSN] 1523-5866
  • [Journal-full-title] Neuro-oncology
  • [ISO-abbreviation] Neuro-oncology
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / P30 CA068485; United States / NINDS NIH HHS / NS / K02NS053614
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] England
  • [Chemical-registry-number] 0 / GLI1 protein, human; 0 / Hedgehog Proteins; 0 / RNA, Messenger; 0 / Receptors, Cell Surface; 0 / Transcription Factors; 0 / patched receptors
  • [Other-IDs] NLM/ PMC2940682
  •  go-up   go-down


66. Lefranc F, Rynkowski M, DeWitte O, Kiss R: Present and potential future adjuvant issues in high-grade astrocytic glioma treatment. Adv Tech Stand Neurosurg; 2009;34:3-35
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Present and potential future adjuvant issues in high-grade astrocytic glioma treatment.
  • Despite major advances in the management of malignant gliomas of which glioblastomas represent the ultimate grade of malignancy, they remain characterized by dismal prognoses.
  • Malignant gliomas are associated with such dismal prognoses because glioma cells can actively migrate through the narrow extra-cellular spaces in the brain, often travelling relatively long distances, making them elusive targets for effective surgical management.
  • Clinical and experimental data have demonstrated that invasive malignant glioma cells show a decrease in their proliferation rates and a relative resistance to apoptosis (type I programmed cell death) as compared to the highly cellular centre of the tumor, and this may contribute to their resistance to conventional pro-apoptotic chemotherapy and radiotherapy.
  • Despite resistance to apoptosis being closely linked to tumorigenesis, tumor cells can still be induced to die by non-apoptotic mechanisms such as necrosis, senescence, autophagy (type II programmed cell death) and mitotic catastrophe.
  • Another way to potentially overcome apoptosis resistance is to decrease the migration of malignant glioma cells in the brain, which then should restore a level of sensitivity to pro-apoptotic drugs.
  • Recent series of studies have supported the concept that malignant gliomas might be seen as an orchestration of cross-talks between cancer cells, microenvironment, vasculature and cancer stem cells.
  • The present chapter focuses on (i) the major signaling pathways making glioblastomas resistant to apoptosis, (ii) the signaling pathways distinctly activated by pro-autophagic drugs as compared to pro-apoptotic ones, (iii) autophagic cell death as an alternative to combat malignant gliomas, (iv) the major scientific data already obtained by researchers to prove that temozolomide is actually a pro-autophagic and pro-apoptotic drug, (v) the molecular and cellular therapies and local drug delivery which could be used to complement conventional treatments, and a review of some of the currently ongoing clinical trials, (vi) the fact that reducing the levels of malignant glioma cell motility can restore pro-apoptotic drug sensitivity, (vii) the observation that inhibiting the sodium pump activity reduces both glioma cell proliferation and migration, (viii) the brain tumor stem cells as a target to complement conventional treatment.
  • [MeSH-major] Astrocytoma / pathology. Astrocytoma / therapy. Brain Neoplasms / pathology. Brain Neoplasms / therapy


67. Villarejo F, de Diego JM, de la Riva AG: Prognosis of cerebellar astrocytomas in children. Childs Nerv Syst; 2008 Feb;24(2):203-10

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Prognosis of cerebellar astrocytomas in children.
  • OBJECTIVE: Our main objective is to review a large series of cerebellar astrocytomas in children and evaluate the outcome of the patients depending on astrocytoma class.
  • The effect of astrocytoma characteristics on the children's prognosis was determined by grouping a series of cerebellar astrocytomas by their location, radiological aspect, size, and histology and determining whether this was related with outcome.
  • MATERIALS AND METHODS: Two hundred and three children with cerebellar astrocytomas were retrospectively reviewed, and their tumors were classified by location, macroscopic radiological appearance, size, and histology.
  • RESULTS: Our patients' results were classified according to the Lapras scale/classification as normal, with some neurological deficit but able to lead a normal life, and those with severe post surgical deficits.
  • There were six recurrences and 22 deaths because of the disease.
  • One was whether the tumor was completely resected or not; this was the treatment in most cases in this series.
  • The second factor was the location, size, and macroscopic appearance of the tumor.
  • [MeSH-major] Astrocytoma / pathology. Cerebellar Neoplasms / pathology

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Int J Radiat Oncol Biol Phys. 1981 Dec;7(12):1661-5 [6977517.001]
  • [Cites] Childs Nerv Syst. 1997 Jan;13(1):17-23 [9083697.001]
  • [Cites] Cancer. 1979 Jul;44(1):276-80 [455252.001]
  • [Cites] J Neurosurg. 1985 Jan;62(1):9-17 [3964859.001]
  • [Cites] Neurosurgery. 1992 Jan;30(1):58-62; discussion 62-3 [1738456.001]
  • [Cites] Arch Neurol Psychiatry. 1950 Jul;64(1):74-88 [15426453.001]
  • [Cites] J Neurosurg. 1973 Dec;39(6):777-9 [4759666.001]
  • [Cites] J Neurosurg. 1999 Feb;90(2):265-73 [9950497.001]
  • [Cites] Acta Neurochir (Wien). 1975;32(1-2):139-46 [1163315.001]
  • [Cites] J Neurosurg. 1982 Oct;57(4):548-51 [7108605.001]
  • [Cites] J Neurosurg. 1978 Aug;49(2):179-84 [671072.001]
  • [Cites] J Neurosurg. 1968 May;28(5):399-404 [5659568.001]
  • [Cites] Childs Nerv Syst. 1986;2(2):55-9 [3731169.001]
  • [Cites] J Neurosurg. 1985 Feb;62(2):300-3 [3855445.001]
  • [Cites] Acta Neurochir (Wien). 1986;81(1-2):11-26 [3728086.001]
  • [Cites] Neurosurg Rev. 1990;13(4):315-20 [2280843.001]
  • [Cites] J Neurosurg. 1978 Jan;48(1):29-33 [619022.001]
  • [Cites] Arch Neurol. 1968 Jan;18(1):14-9 [5634368.001]
  • [Cites] J Neurosurg. 1989 Nov;71(5 Pt 1):661-4 [2809719.001]
  • [Cites] Arch Neurol. 1971 Feb;24(2):125-35 [5540377.001]
  • [Cites] J Neurol Neurosurg Psychiatry. 1981 Sep;44(9):820-8 [7310422.001]
  • [Cites] Neurosurgery. 1984 Sep;15(3):315-7 [6483145.001]
  • [Cites] Acta Neurochir (Wien). 1975;32(1-2):55-68 [1172345.001]
  • [Cites] J Neurol. 1985;232(3):134-6 [4031954.001]
  • [Cites] J Neurosurg. 1972 Oct;37(4):470-4 [5070873.001]
  • [Cites] Clin Neurosurg. 1968;15:247-64 [4945159.001]
  • [Cites] J Neurosurg. 1988 Jan;68(1):41-7 [3335911.001]
  • (PMID = 17710415.001).
  • [ISSN] 1433-0350
  • [Journal-full-title] Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
  • [ISO-abbreviation] Childs Nerv Syst
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  •  go-up   go-down


68. Stupp R, Reni M, Gatta G, Mazza E, Vecht C: Anaplastic astrocytoma in adults. Crit Rev Oncol Hematol; 2007 Jul;63(1):72-80
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Anaplastic astrocytoma in adults.
  • Anaplastic astrocytoma is an uncommon disease in the adult population.
  • Based on randomized data available, chemotherapy has consistently failed to improve the outcome of patients with anaplastic astrocytoma, while a meta-analysis showed a small, but significant improvement in survival favouring the use of chemotherapy.
  • In recurrent disease, chemotherapy with temozolomide has been proven to be active and well-tolerated in phase II trials, but no comparative phase III trials of other cytotoxic drugs have been conducted.
  • [MeSH-major] Antineoplastic Agents, Alkylating / therapeutic use. Astrocytoma / drug therapy. Brain Neoplasms / drug therapy. Dacarbazine / analogs & derivatives
  • [MeSH-minor] Adolescent. Adult. Aged. Clinical Trials as Topic. Clinical Trials, Phase II as Topic. Female. Humans. Incidence. Male. Middle Aged. Neoplasm Recurrence, Local / drug therapy. Prognosis. Risk Factors. Survival Analysis

  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • The Weizmann Institute of Science GeneCards and MalaCards databases. gene/protein/disease-specific - MalaCards for anaplastic astrocytoma .
  • Hazardous Substances Data Bank. DACARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17478095.001).
  • [ISSN] 1040-8428
  • [Journal-full-title] Critical reviews in oncology/hematology
  • [ISO-abbreviation] Crit. Rev. Oncol. Hematol.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Review
  • [Publication-country] Ireland
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide
  • [Number-of-references] 69
  •  go-up   go-down


69. Hoffman S, Propp JM, McCarthy BJ: Temporal trends in incidence of primary brain tumors in the United States, 1985-1999. Neuro Oncol; 2006 Jan;8(1):27-37
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Data for the years 1985 through 1999 from six collaborating state cancer registries of the Central Brain Tumor Registry of the United States were used to determine incidence trends in the broad age groups 0-19, 20-64, and >or=65 years, overall and for selected histologies.
  • Specific histologies that were increasing included anaplastic astrocytomas in individuals aged >or=65 years, microscopically confirmed gliomas in both adult age groups, and microscopically confirmed glioma, not otherwise specified (NOS), in children.
  • Decreases were noted for astrocytoma, NOS, nonmicroscopically confirmed gliomas, and pituitary tumors.
  • Improvements in diagnosis and classification are likely reflected in the decreasing trends in unspecified glioma subgroups and the accompanying increasing trends in more specific glioma subgroups.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Neuroepidemiology. 2004 May-Jun;23(3):101-9 [15084778.001]
  • [Cites] Neuro Oncol. 2006 Jan;8(1):1-11 [16443943.001]
  • [Cites] N Engl J Med. 1985 Oct 3;313(14):859-64 [3897866.001]
  • [Cites] AJR Am J Roentgenol. 1986 Sep;147(3):453-5 [3488645.001]
  • [Cites] J Natl Cancer Inst. 1990 Oct 17;82(20):1621-4 [2213902.001]
  • [Cites] Am J Ind Med. 1991;19(4):421-31 [2035544.001]
  • [Cites] CMAJ. 1991 Dec 15;145(12):1583-91 [1742695.001]
  • [Cites] J Natl Cancer Inst. 1991 Nov 20;83(22):1679-81 [1749021.001]
  • [Cites] Cancer. 1992 Mar 1;69(5):1300-6 [1739929.001]
  • [Cites] J Natl Cancer Inst. 1992 Mar 18;84(6):442-5 [1538422.001]
  • [Cites] Neurosurgery. 1992 Jul;31(1):78-82 [1641113.001]
  • [Cites] Brain Pathol. 1993 Jul;3(3):255-68 [8293185.001]
  • [Cites] Br J Cancer. 1994 Nov;70(5):973-9 [7947107.001]
  • [Cites] Cancer. 1995 Jan 1;75(1 Suppl):330-7 [8001004.001]
  • [Cites] Ann Neurol. 1995 Jan;37(1):67-73 [7818260.001]
  • [Cites] Eur J Cancer. 1994;30A(10):1498-511 [7833109.001]
  • [Cites] IARC Sci Publ. 1994;(128):1-302 [7698823.001]
  • [Cites] Cancer. 1995 Nov 1;76(9):1634-42 [8635069.001]
  • [Cites] Cancer. 1996 Aug 1;78(3):532-41 [8697401.001]
  • [Cites] Paediatr Perinat Epidemiol. 1996 Jul;10(3):319-38 [8822774.001]
  • [Cites] Int J Epidemiol. 1995 Dec;24(6):1078-85 [8824847.001]
  • [Cites] Stat Med. 2000 Feb 15;19(3):335-51 [10649300.001]
  • [Cites] Cancer. 2000 May 15;88(10):2342-9 [10820357.001]
  • [Cites] N Engl J Med. 2001 Jan 11;344(2):79-86 [11150357.001]
  • [Cites] J Neuropathol Exp Neurol. 2001 Mar;60(3):248-62 [11245209.001]
  • [Cites] Neuro Oncol. 2001 Jul;3(3):141-51 [11465394.001]
  • [Cites] Neuro Oncol. 1999 Jan;1(1):14-25 [11554386.001]
  • [Cites] Brain Pathol. 2002 Apr;12(2):257-9 [11958379.001]
  • [Cites] Neurology. 2002 Apr 23;58(8):1304-6 [11971109.001]
  • [Cites] Cancer. 2002 Jul 1;95(1):193-202 [12115333.001]
  • [Cites] J Neurooncol. 2002 Oct;60(1):61-9 [12416547.001]
  • [Cites] J Neuropathol Exp Neurol. 2003 Feb;62(2):111-26 [12578221.001]
  • [Cites] Neuroepidemiology. 2003 Mar-Apr;22(2):124-9 [12629278.001]
  • [Cites] Int J Cancer. 2004 Jan 20;108(3):450-5 [14648713.001]
  • [Cites] Neuroepidemiology. 2004 Jan-Apr;23(1-2):85-93 [14739573.001]
  • [Cites] Am J Epidemiol. 2004 Feb 1;159(3):277-83 [14742288.001]
  • [Cites] Cancer. 1997 Apr 1;79(7):1381-93 [9083161.001]
  • [Cites] J Natl Cancer Inst. 1998 Sep 2;90(17):1269-77 [9731733.001]
  • [Cites] J Natl Cancer Inst. 1999 Apr 7;91(7):648-9 [10203289.001]
  • [Cites] AIDS. 1999 Jan 14;13(1):103-8 [10207551.001]
  • [Cites] Cancer. 1999 May 1;85(9):2077-90 [10223251.001]
  • [Cites] J Natl Cancer Inst. 1999 Jun 2;91(11):973-4 [10359552.001]
  • [Cites] J Natl Cancer Inst. 1999 Aug 18;91(16):1382-90 [10451443.001]
  • [Cites] Neurology. 1999 Sep 22;53(5):1141-3 [10496285.001]
  • [Cites] Cancer. 2004 Nov 15;101(10):2293-9 [15476282.001]
  • [Cites] Epidemiology. 2004 Nov;15(6):653-9 [15475713.001]
  • (PMID = 16443945.001).
  • [ISSN] 1522-8517
  • [Journal-full-title] Neuro-oncology
  • [ISO-abbreviation] Neuro-oncology
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Other-IDs] NLM/ PMC1871920
  •  go-up   go-down


70. Hamlat A, Saikali S, Diabira S, Messerer M, Riffaud L: Diagnosis of childhood astrocytomas. Expert Opin Med Diagn; 2009 Sep;3(5):501-22

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Diagnosis of childhood astrocytomas.
  • BACKGROUND: Astrocytomas are the most common brain tumours, accounting for 28 - 50% of all primary CNS tumours.
  • Objectives/method: The clinical presentations of CNS astrocytomas vary with their sites of location; therefore, a period of uncertainty often precedes diagnosis, and approximately 42% of patients with an intracranial process make several visits to various physicians between the onset and diagnosis.
  • However, on clinical suspicion of a brain tumour, a wide range of neuroimaging techniques may be used to assess the diagnosis of paediatric brain lesions.
  • In this review the authors, for ease of presentation, describe the clinical presentations of supratentorial, infratentorial and spinal cord astrocytomas as well as their radiological and pathological features, and discuss their differential diagnoses.
  • RESULTS/CONCLUSIONS: Understanding and mastering the numerous imaging features of several subtypes of primary brain tumours affecting children, in addition to radiological features of non-tumoural disorders, remains a significant challenge and demands increased awareness of the paediatric brain diseases.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 23495981.001).
  • [ISSN] 1753-0059
  • [Journal-full-title] Expert opinion on medical diagnostics
  • [ISO-abbreviation] Expert Opin Med Diagn
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


71. Nakamura M, Tsuji O, Fujiyoshi K, Watanabe K, Tsuji T, Ishii K, Matsumoto M, Toyama Y, Chiba K: Cordotomy for patients with thoracic malignant astrocytoma. J Neurosurg Spine; 2010 Oct;13(4):418-23

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Cordotomy for patients with thoracic malignant astrocytoma.
  • OBJECT: The optimal management of malignant astrocytomas remains controversial, and the prognosis of these lesions has been dismal regardless of the administered treatment.
  • In this study the authors investigated the surgical outcomes of cordotomy in patients with thoracic malignant astrocytomas to determine the effectiveness of this procedure.
  • METHODS: Cordotomy was performed in 5 patients with glioblastoma multiforme (GBM) and 2 with anaplastic astrocytoma (AA).
  • In the 2 patients with GBM, cordotomy was performed 2 and 3 weeks after a partial tumor resection.
  • In the 2 patients with AA, the initial treatment consisted of partial tumor resection and subtotal resection combined with radiotherapy, and rostral tumor growth and progressive paralysis necessitated cordotomy 2 and 28 months later.
  • One patient with a secondary GBM underwent cordotomy; the GBM developed 1 year after subtotal resection and radiotherapy for a WHO Grade II astrocytoma.
  • In patients with thoracic GBM, even if paralysis is incomplete, cordotomy should be performed before the tumor disseminates through the CSF.
  • If the tumor persists, radiotherapy and chemotherapy are indicated, and cordotomy should be reserved for lesions growing progressively after such second-line treatments.
  • [MeSH-major] Astrocytoma / surgery. Cordotomy. Thoracic Neoplasms / surgery
  • [MeSH-minor] Adolescent. Adult. Disease Progression. Encephalitis / etiology. Female. Glioblastoma / complications. Glioblastoma / pathology. Glioblastoma / surgery. Humans. Kaplan-Meier Estimate. Male. Middle Aged. Neoplasm Staging. Pain, Postoperative. Paraplegia / etiology. Paraplegia / surgery. Prognosis. Radiotherapy, Adjuvant. Treatment Outcome. Young Adult

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20887138.001).
  • [ISSN] 1547-5646
  • [Journal-full-title] Journal of neurosurgery. Spine
  • [ISO-abbreviation] J Neurosurg Spine
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


72. Niculescu CE, Stănescu L, Popescu M, Niculescu D: Supratentorial pilocytic astrocytoma in children. Rom J Morphol Embryol; 2010;51(3):577-80
Genetic Alliance. consumer health - Pilocytic astrocytoma.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Supratentorial pilocytic astrocytoma in children.
  • The authors describe the case of a child aged 2 years and 4 months with increased intracranial pressure, symptomatology accompanied by rapid deterioration of general condition.
  • Histopathological examination revealed the typical grade I pilocytic astrocytoma.
  • [MeSH-major] Astrocytoma / pathology. Supratentorial Neoplasms / pathology

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20809042.001).
  • [ISSN] 1220-0522
  • [Journal-full-title] Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie
  • [ISO-abbreviation] Rom J Morphol Embryol
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Romania
  •  go-up   go-down


73. Maris C, Rorive S, Sandras F, D'Haene N, Sadeghi N, Bièche I, Vidaud M, Decaestecker C, Salmon I: Tenascin-C expression relates to clinicopathological features in pilocytic and diffuse astrocytomas. Neuropathol Appl Neurobiol; 2008 Jun;34(3):316-29
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Tenascin-C expression relates to clinicopathological features in pilocytic and diffuse astrocytomas.
  • AIMS: Tenascin-C (TN-C) is an extracellular matrix brain glycoprotein for which conflicting in vitro and in vivo results are reported in the literature dealing with its involvement in astrocytoma aggressiveness, in particular astrocytoma invasion.
  • In view of these conflicting results and the lack of data available on low-grade astrocytomas, the present study focuses on pilocytic World Health Organization (WHO) grade I, and diffuse WHO grade II astrocytomas, that is, two histological entities associated with very different invasive abilities.
  • METHODS: Using real-time reverse transcription polymerase chain reaction and immunohistochemistry, we analysed the TN-C expression in normal brain tissue as well as in a series of 54 pilocytic and 53 grade II astrocytomas.
  • Paralleling these observations, we showed that TN-C expression in low-grade astrocytomas similarly varies according to tumour site.
  • Cox regression analysis evidenced that TN-C provided an independent prognostic value which is enhanced in the case of grade II astrocytomas for which positive TN-C expression is associated with a higher risk of recurrence.
  • We also analysed TN-C expression specifically in vascular areas of low-grade astrocytomas without demonstrating any prognostic value for this additional feature.
  • RESULTS: Similarly to normal brain, low-grade astrocytomas exhibit variations in TN-C expression with site, and this expression is associated with an independent prognostic value in terms of recurrence.
  • [MeSH-major] Astrocytoma / metabolism. Astrocytoma / pathology. Brain Neoplasms / metabolism. Brain Neoplasms / pathology. Tenascin / biosynthesis
  • [MeSH-minor] Adult. Age Factors. Biomarkers, Tumor / analysis. Child. Female. Humans. Immunohistochemistry. Kaplan-Meier Estimate. Male. Neoplasm Recurrence, Local / pathology. Prognosis. Reverse Transcriptase Polymerase Chain Reaction. Spinal Cord Neoplasms / metabolism. Spinal Cord Neoplasms / mortality. Spinal Cord Neoplasms / pathology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17983425.001).
  • [ISSN] 1365-2990
  • [Journal-full-title] Neuropathology and applied neurobiology
  • [ISO-abbreviation] Neuropathol. Appl. Neurobiol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Tenascin
  •  go-up   go-down


74. Matsuda K, Sakurada K, Mouri W, Saino M, Sato S, Saito S, Kayama T, Nakazato Y: [Operative case of isomorphic astrocytoma]. Brain Nerve; 2007 Aug;59(8):881-6
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Operative case of isomorphic astrocytoma].
  • Diffuse astrocytomas are classified as WHO Grade II tumors.
  • Recently, a subtype presenting with better prognosis has been proposed, and it is known as "isomorphic astrocytoma."
  • A clinical case that we encountered was believed to be categorized as this subtype; it has been presented in this report.
  • The tumor was resected under awake surgery.
  • The pathological diagnosis was diffuse astrocytoma, but this tumor was considered to be the isomorphic subtype.
  • Some parts of the tumor showed a relatively high MIB-1 labeling index (LI) of 9.2%, and additional 50-Gy radiotherapy was performed.
  • Isomorphic astrocytoma is characterized by prolonged epileptic seizures, a low MIB-1 LI, and better prognosis.
  • In our case, since the MIB-1 LI was higher in some parts of the tumor, the appropriate therapy for WHO Grade II tumors was performed.
  • However, this case was considered representative of isomorphic astrocytoma.
  • No reports of this tumor subtype have been previously described in Japan.
  • Therefore, this report is the first case of isomorphic astrocytoma reported to Japanese literature.
  • [MeSH-major] Astrocytoma / surgery. Brain Neoplasms / surgery

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17713125.001).
  • [ISSN] 1881-6096
  • [Journal-full-title] Brain and nerve = Shinkei kenkyū no shinpo
  • [ISO-abbreviation] Brain Nerve
  • [Language] jpn
  • [Publication-type] Case Reports; English Abstract; Journal Article
  • [Publication-country] Japan
  •  go-up   go-down


75. Zajdel A, Wilczok A, Slowinski J, Orchel J, Mazurek U: Aldehydic lipid peroxidation products in human brain astrocytomas. J Neurooncol; 2007 Sep;84(2):167-73
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Aldehydic lipid peroxidation products in human brain astrocytomas.
  • We explored whether these aldehydes and histone H3 mRNA levels could serve as biomarkers of malignancy and predictive factor in human brain astrocytomas.
  • Aldehydic lipid peroxidation products were determined as their dinitrophenylhydrazone derivatives in specimens obtained from 26 adult patients with brain astrocytomas.
  • H3 mRNA, 2-hydroxyhexanal, and 4-hydroxynonenal levels were higher in high-grade astrocytomas compared to low-grade astrocytomas and showed negative correlation with survival.
  • Higher levels of 2-hydroxyhexanal and 4-hydroxynonenal, and lower levels of n-hexanal were associated with poorer patient prognosis.
  • Our data suggest that tissue concentrations of aldehydic lipid peroxidation products can assist grading and predicting the clinical outcome in patients with astrocytic brain tumors.
  • Possibly, this parameter will enhance optimal selection of patients for individualized treatment protocols, tailored to unique biochemical and molecular profile of the tumor.
  • [MeSH-major] Aldehydes / analysis. Astrocytoma / metabolism. Brain Chemistry / physiology. Brain Neoplasms / metabolism. Lipid Peroxidation / physiology

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17487452.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Aldehydes; 0 / Histones; 0 / RNA, Messenger
  •  go-up   go-down


76. Santhosh K, Kesavadas C, Radhakrishnan VV, Abraham M, Gupta AK: Multifocal desmoplastic noninfantile astrocytoma. J Neuroradiol; 2008 Dec;35(5):286-91
MedlinePlus Health Information. consumer health - MRI Scans.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Multifocal desmoplastic noninfantile astrocytoma.
  • This is a report of a case of multifocal desmoplastic astrocytoma in an 11-year-old child in which we describe the MRI findings and discuss the possible mechanism of its development.
  • The MRI appearances in our case support the view that the tumor is primarily of leptomeningeal or superficial cortical origin, with cystic formation secondary to entrapment of cerebrospinal fluid.
  • Desmoplastic astrocytoma at a noninfantile age is extremely rare: only four cases have been reported in the literature so far.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Magnetic Resonance Imaging / methods

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18538396.001).
  • [ISSN] 0150-9861
  • [Journal-full-title] Journal of neuroradiology. Journal de neuroradiologie
  • [ISO-abbreviation] J Neuroradiol
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] France
  • [Chemical-registry-number] 0 / Contrast Media
  •  go-up   go-down


77. Ohgaki H, Kleihues P: Epidemiology and etiology of gliomas. Acta Neuropathol; 2005 Jan;109(1):93-108
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Epidemiology and etiology of gliomas.
  • Gliomas of astrocytic, oligodendroglial and ependymal origin account for more than 70% of all brain tumors.
  • With the exception of pilocytic astrocytomas, the prognosis of glioma patients is still poor.
  • Brain tumors are a component of several inherited tumor syndromes, but the prevalence of these syndromes is very low.
  • Several occupations, environmental carcinogens, and diet (N-nitroso compounds) have been reported to be associated with an elevated glioma risk, but the only environmental factor unequivocally associated with an increased risk of brain tumors, including gliomas, is therapeutic X-irradiation.
  • In particular, children treated with X-irradiation for acute lymphoblastic leukemia show a significantly elevated risk of developing gliomas and primitive neuroectodermal tumor (PNET), often within 10 years after therapy.
  • TP53 mutations are frequent in low-grade gliomas and secondary glioblastomas derived therefrom.
  • TP53 mutations are significantly more frequent in low-grade astrocytomas with promoter methylation of the O(6)-methylguanine-DNA methyltransferase repair gene, suggesting that, in addition to deamination of 5-methylcytosine, exogenous or endogenous alkylation in the O(6) position of guanine may contribute to the formation of these mutations.
  • [MeSH-major] Glioma / epidemiology. Glioma / etiology. Risk Factors
  • [MeSH-minor] Age Factors. Central Nervous System Viral Diseases / complications. Craniocerebral Trauma / complications. Educational Status. Electromagnetic Fields / adverse effects. Humans. Hypersensitivity / complications. Incidence. Models, Biological. Mortality. Mutation / genetics. Occupational Exposure. Radiation, Ionizing. Sex Factors. Smoking / adverse effects. Tumor Suppressor Protein p53 / genetics

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15685439.001).
  • [ISSN] 0001-6322
  • [Journal-full-title] Acta neuropathologica
  • [ISO-abbreviation] Acta Neuropathol.
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Tumor Suppressor Protein p53
  • [Number-of-references] 153
  •  go-up   go-down


78. Geranmayeh F, Scheithauer BW, Spitzer C, Meyer FB, Svensson-Engwall AC, Graeber MB: Microglia in gemistocytic astrocytomas. Neurosurgery; 2007 Jan;60(1):159-66; discussion 166
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Microglia in gemistocytic astrocytomas.
  • OBJECTIVE: Although gemistocytic astrocytomas are graded as World Health Organization II astrocytomas, they behave more aggressively than other astrocytomas.
  • Microglial cells, a feature of this astrocytoma variant, are of increasing interest in the context of glioma growth.
  • METHODS: We selected 23 tumor biopsies from 201 samples obtained from patients with gemistocytic astrocytomas operated at Mayo Clinic between 1985 and 1998.
  • RESULTS: A high number of microglia was detected in gemistocytic astrocytomas.
  • More microglia were present if the fraction of gemistocytic tumor cells was high (correlation coefficient = 0.699; P < 0.0002).
  • CONCLUSION: Our results support the view that gemistocytic astrocytomas contain unusually high numbers of microglial cells.
  • We propose that the finding of aberrant MHC Class II expression by gemistocytic tumor cells correlates with a loss of immune-competent MHC Class II-expressing microglia.
  • This may be related to the especially poor prognosis of gemistocytic astrocytomas for which induction of T cell anergy could provide one explanation.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Microglia / pathology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17228265.001).
  • [ISSN] 1524-4040
  • [Journal-full-title] Neurosurgery
  • [ISO-abbreviation] Neurosurgery
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


79. Yue WY, Chen ZP: Does vasculogenic mimicry exist in astrocytoma? J Histochem Cytochem; 2005 Aug;53(8):997-1002
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Does vasculogenic mimicry exist in astrocytoma?
  • Vasculogenic mimicry (VM) has been observed in melanoma and in some nonmelanoma tumor types.
  • It is unknown whether a similar VM phenomenon exists in astrocytoma.
  • The present study was to examine 45 astrocytomas (including World Health Organization grade II 15 cases, grade III 15 cases, and grade IV 15 cases) by CD34 endothelial marker periodic acid-Schiff (PAS) dual staining to see if VM existing in these tumors.
  • The results demonstrated that endothelium-lined vessels dominated the tumor microvasculature and stained positively for PAS, laminin, and endothelial marker.
  • PAS-positive pattern of VM was found in two grade IV astrocytomas.
  • Channels stained positively for PAS, laminin, and negatively for CD34 of the VM entrapped in the tumor tissue.
  • Furthermore, in astrocytoma, especially glioblastoma, focus of anaplastic tumor cells appeared with CD34 expression, whereas some tumor cells lost glial fibrillary acid protein expression.
  • It is assumed that genetically deregulated tumor cells in astrocytoma could lose the astrocyte-specific protein and express inappropriate markers not expected in cells of astrocyte lineage.
  • The present results suggest that VM phenomenon exists in some malignant astrocytoma.
  • [MeSH-major] Astrocytoma / blood supply. Brain Neoplasms / blood supply
  • [MeSH-minor] Antigens, CD34 / metabolism. Biomarkers / metabolism. Coloring Agents. Endothelium, Vascular / metabolism. Humans. Microcirculation. Neoplasm Staging. Periodic Acid. Schiff Bases

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15923371.001).
  • [ISSN] 0022-1554
  • [Journal-full-title] The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society
  • [ISO-abbreviation] J. Histochem. Cytochem.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, CD34; 0 / Biomarkers; 0 / Coloring Agents; 0 / Schiff Bases; 10450-60-9 / Periodic Acid
  •  go-up   go-down


80. Tsuji K, Nakasu S, Tsuji A, Fukami T, Nozaki K: [Postoperative regression of desmoplastic infantile astrocytoma]. No Shinkei Geka; 2008 Nov;36(11):1035-9
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Postoperative regression of desmoplastic infantile astrocytoma].
  • Desmoplastic infantile astrocytoma/ganglioglioma (DIA/DIG) is a rare tumor that is usually located superficially with a large cystic component.
  • In rare cases, postoperative regression of the residual tumor has been reported.
  • A CT scan showed a large cystic tumor in his left parieto-occipital lobe.
  • The histopathological examination revealed an astrocytic tumor with marked desmoplasia.
  • In the central portion of the tumor, anaplastic features, such as necrosis, mitosis, and high nucleus-cytoplasmic ratio, were noticed.
  • Six months later when he was admitted for the second-stage surgery, MRI showed regression of the tumor.
  • [MeSH-major] Astrocytoma / pathology. Astrocytoma / surgery. Brain Neoplasms / pathology. Brain Neoplasms / surgery
  • [MeSH-minor] Gliosis. Humans. Infant. Male. Neoplasm Regression, Spontaneous

  • Genetic Alliance. consumer health - Desmoplastic Infantile Astrocytoma.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19048924.001).
  • [ISSN] 0301-2603
  • [Journal-full-title] No shinkei geka. Neurological surgery
  • [ISO-abbreviation] No Shinkei Geka
  • [Language] jpn
  • [Publication-type] Case Reports; English Abstract; Journal Article
  • [Publication-country] Japan
  •  go-up   go-down


81. Moshel YA, Link MJ, Kelly PJ: Stereotactic volumetric resection of thalamic pilocytic astrocytomas. Neurosurgery; 2007 Jul;61(1):66-75; discussion 75
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Stereotactic volumetric resection of thalamic pilocytic astrocytomas.
  • OBJECTIVE: To describe the surgical approaches, the radiographic and clinical outcomes, and the long-term follow-up of patients harboring thalamic pilocytic astrocytomas after radical resection by means of a stereotactic volumetric technique.
  • METHODS: Seventy-two patients with thalamic pilocytic astrocytomas underwent stereotactic volumetric resection by the senior author (PJK) at the Mayo Clinic between 1984 and 1993 (44 patients) and at New York University Medical Center between 1993 and 2005 (28 patients).
  • Postoperative imaging demonstrated gross total resection in 58 patients and minimal (<6 mm) residual tumor in 13 patients.
  • Tumor resection was aborted in one patient.
  • Six patients had worsening of a preexisting hemiparesis and one had a new transient postoperative hemiparesis.
  • After 13 to 20 years of follow-up in the Mayo group (mean, 15 +/- 3 yr) and 1 to 13 years of follow-up in the New York University group (mean, 8 +/- 3 yr), 67 patients were recurrence/progression-free, one had tumor recurrence, and three had progression of residual tumor.
  • On long-term neurological follow-up, 27 patients had significant improvements in hemiparesis; one patient with a postoperative worsening of a preexisting hemiparesis remained unchanged.
  • CONCLUSION: Gross total removal of thalamic pilocytic astrocytomas with low morbidity and mortality can be achieved by computer-assisted stereotactic volumetric resection techniques.
  • [MeSH-major] Astrocytoma / surgery. Brain Neoplasms / surgery. Paresis / prevention & control. Stereotaxic Techniques. Thalamic Diseases / surgery. Thalamus / surgery

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17621020.001).
  • [ISSN] 1524-4040
  • [Journal-full-title] Neurosurgery
  • [ISO-abbreviation] Neurosurgery
  • [Language] eng
  • [Publication-type] Clinical Trial; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


82. Compostella A, Tosoni A, Blatt V, Franceschi E, Brandes AA: Prognostic factors for anaplastic astrocytomas. J Neurooncol; 2007 Feb;81(3):295-303
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Prognostic factors for anaplastic astrocytomas.
  • Anaplastic astrocytomas (WHO grade III) constitute about 10% of all gliomas.
  • Definitive data on predictive and prognostic factors are lacking for these neoplasms that are considered the most enigmatic entity among the whole spectrum of astrocytic tumors because of their unclear biologic behavior and variable clinical outcome.
  • Currently, only few factors have been identified as useful for prognosis of anaplastic astrocytoma: age and Karnofsky Performance Status.
  • Potential prognostic biomarkers concern tumor suppressor genes on chromosome 9q that are involved in the RB1 pathway; PTEN, the PI3k/Akt/p70s6k cascade, survivin gene, Formylpeptide receptor, minichromosome maintenance protein 3 and genes on chromosome 7.
  • The state of the art pictured here underlie the recent interest on gene expression profile to identify aberrations useful to understand the biologic behavior of astrocytic tumors.
  • [MeSH-major] Astrocytoma / genetics. Astrocytoma / pathology. Biomarkers, Tumor / analysis. Brain Neoplasms / genetics. Brain Neoplasms / pathology


83. López-Aguilar E, Sepúlveda Vildósola AC, Rioscovián-Soto AP, Gascón-Lastiri G, Rojas-Puentes F, Siordia-Reyes G, Diegopérez-Ramírez J, De la Cruz-Yáñez H, Barrientos-Salcedo C: [Survival of patients with malignant astrocytomas according to the expression of Ki67 antigen in a pediatric hospital]. Gac Med Mex; 2010 Mar-Apr;146(2):118-23
MedlinePlus Health Information. consumer health - Childhood Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Survival of patients with malignant astrocytomas according to the expression of Ki67 antigen in a pediatric hospital].
  • [Transliterated title] Sobrevida de los pacientes con astrocitoma de alto grado que expresan el antígeno Ki67, atendidos en un hospital de pediatría.
  • BACKGROUND: Pediatric patients with malignant gliomas and same histological diagnosis respond distinctly to treatment.
  • The aim of this study was to determine if the expression of this antigen influences survival of patients treated for malignant gliomas in the CMN SXXI Pediatrics Hospital.
  • METHODS: We included patients with anaplasic astrocitoma or glioblastoma multiforme seen at our hospital between 1995 and 2005.
  • We determined the expression of Ki67 by immunohistochemistry and correlated the findings with tumor histology and patient survival.
  • CONCLUSIONS: Being young (under 11 years) is a marker of poor prognosis among pediatric patients with anaplasic astrocytoma or glioblastoma multiforme.
  • [MeSH-major] Astrocytoma / metabolism. Astrocytoma / mortality. Brain Neoplasms / metabolism. Brain Neoplasms / mortality. Ki-67 Antigen / biosynthesis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20626127.001).
  • [ISSN] 0016-3813
  • [Journal-full-title] Gaceta médica de México
  • [ISO-abbreviation] Gac Med Mex
  • [Language] spa
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] Mexico
  • [Chemical-registry-number] 0 / Ki-67 Antigen
  •  go-up   go-down


84. Miura FK, Alves MJ, Rocha MC, da Silva R, Oba-Shinjo SM, Marie SK: Xenograft transplantation of human malignant astrocytoma cells into immunodeficient rats: an experimental model of glioblastoma. Clinics (Sao Paulo); 2010 Mar;65(3):305-9
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Xenograft transplantation of human malignant astrocytoma cells into immunodeficient rats: an experimental model of glioblastoma.
  • INTRODUCTION: Astrocytic gliomas are the most common intracranial central nervous system neoplasias, accounting for about 60% of all primary central nervous system tumors.
  • Despite advances in the treatment of gliomas, no effective therapeutic approach is yet available; hence, the search for a more realistic model to generate more effective therapies is essential.
  • OBJECTIVE: To develop an experimental malignant astrocytoma model with the characteristics of the human tumor.
  • METHOD: Primary cells from subcutaneous xenograft tumors produced with malignant astrocytoma U87MG cells were inoculated intracerebrally by stereotaxis into immunosuppressed (athymic) Rowett rats.
  • CONCLUSION: A malignant astrocytoma intracerebral xenograft model with poorly invasive behavior was achieved in athymic Rowett rats.
  • Tumor invasiveness in an experimental animal model may depend on a combination of several factors, including the cell line used to induce tumor formation, the rat strains and the status of the animal's immune system.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Glioblastoma / pathology. Immunocompromised Host
  • [MeSH-minor] Animals. Cell Line, Tumor. Disease Models, Animal. Female. Humans. Neoplasm Transplantation. Rats. Rats, Nude. Transplantation, Heterologous

  • Genetic Alliance. consumer health - Glioblastoma.
  • Genetic Alliance. consumer health - Transplantation.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Anticancer Res. 2006 Jul-Aug;26(4B):2887-900 [16886610.001]
  • [Cites] Surg Neurol. 2005 Jun;63(6):511-9; discussion 519 [15936366.001]
  • [Cites] Acta Neuropathol. 2007 Aug;114(2):97-109 [17618441.001]
  • [Cites] Arq Neuropsiquiatr. 2008 Jun;66(2A):238-41 [18545790.001]
  • [Cites] J Neurooncol. 2001 May;52(3):205-15 [11519850.001]
  • [Cites] J Neurosurg. 2000 Feb;92(2):326-33 [10659021.001]
  • [Cites] Neurosurgery. 2000 Oct;47(4):993-9; discussion 999-1000 [11014444.001]
  • [Cites] Genes Dev. 2001 Jun 1;15(11):1311-33 [11390353.001]
  • [Cites] Cell Tissue Res. 2002 Dec;310(3):257-70 [12457224.001]
  • [Cites] Arq Neuropsiquiatr. 2003 Jun;61(2A):234-40 [12806502.001]
  • [Cites] J Neurol. 1981;224(3):183-92 [6162014.001]
  • [Cites] Funct Dev Morphol. 1993;3(3):175-80 [8167397.001]
  • [Cites] J Neurosurg. 1994 May;80(5):865-76 [8169627.001]
  • [Cites] J Neurooncol. 1998 Jan;36(1):91-102 [9525831.001]
  • [Cites] J Neurooncol. 1999 Mar;42(1):59-67 [10360479.001]
  • [Cites] Exp Neurol. 2004 Dec;190(2):478-85 [15530886.001]
  • [Cites] Clin Cancer Res. 2006 Sep 15;12(18):5288-97 [17000661.001]
  • (PMID = 20360922.001).
  • [ISSN] 1980-5322
  • [Journal-full-title] Clinics (São Paulo, Brazil)
  • [ISO-abbreviation] Clinics (Sao Paulo)
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Brazil
  • [Other-IDs] NLM/ PMC2845772
  • [Keywords] NOTNLM ; Athymic Rowett rats / Brain tumor / Experimental model / U87MG cells
  •  go-up   go-down


85. Samuelson C, Forman KM, Smith S: Idiopathic thrombocytopenic purpura associated with an astrocytoma. BMJ Case Rep; 2010;2010

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Idiopathic thrombocytopenic purpura associated with an astrocytoma.
  • She underwent treatment with intravenous immunoglobulin (IVIg) and steroids to increase her platelet count, followed by excision of the lesion, which was found to be a benign pilocytic astrocytoma.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 22419950.001).
  • [ISSN] 1757-790X
  • [Journal-full-title] BMJ case reports
  • [ISO-abbreviation] BMJ Case Rep
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Other-IDs] NLM/ PMC3028124
  •  go-up   go-down


86. Manley S, Crooks D, Artingstall L, Buxton N, Appleton R, Riordan A, Cleary G, Pizer B: Diffuse central nervous system protoplasmic astrocytoma. Pediatr Blood Cancer; 2010 May;54(5):768-9
Genetic Alliance. consumer health - Diffuse Astrocytoma.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Diffuse central nervous system protoplasmic astrocytoma.
  • Protoplasmic astrocytoma is an extremely rare form of grade II low grade glioma which usually presents as a discrete mass lesion.
  • We describe a 3-year-old female with diffuse protoplasmic astrocytoma with parenchymal involvement and leptomeningeal spread.
  • To our knowledge this case represents the distinct presentation of protoplasmic astrocytoma presenting as extensive diffuse meningeal disease.
  • [MeSH-major] Astrocytoma / pathology. Cerebellar Neoplasms / pathology. Meningeal Neoplasms / pathology

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20049933.001).
  • [ISSN] 1545-5017
  • [Journal-full-title] Pediatric blood & cancer
  • [ISO-abbreviation] Pediatr Blood Cancer
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


87. Li HM, Hsu SS, Wang JS, Weng MJ, Fu JH, Chen CK, Lai PH: Cerebral pilocytic astrocytoma with spontaneous intracranial hemorrhage in adults. J Chin Med Assoc; 2008 Nov;71(11):587-93
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Cerebral pilocytic astrocytoma with spontaneous intracranial hemorrhage in adults.
  • Pilocytic astrocytomas are found predominantly in the pediatric population; reports of these tumors are extremely rare in adults.
  • We report 2 cases of adult pilocytic astrocytoma with intracranial hemorrhage.
  • Computed tomography (CT) and magnetic resonance imaging (MRI) revealed a well-enhanced and circumscribed cystic hemorrhagic tumor with mural nodule over the cerebral hemisphere region.
  • After surgical resection, microscopic examination of the lesions showed pilocytic astrocytomas.
  • Since pilocytic astrocytoma and other cystic tumors with mural nodule (such as hemangioblastoma) have similar findings on conventional CT and MRI, PWI is helpful in the differential diagnosis.
  • The literature on hemorrhagic pilocytic astrocytoma is also reviewed.
  • [MeSH-major] Astrocytoma / diagnosis. Brain Neoplasms / diagnosis. Cerebral Hemorrhage / etiology

  • Genetic Alliance. consumer health - Pilocytic astrocytoma.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19015059.001).
  • [ISSN] 1726-4901
  • [Journal-full-title] Journal of the Chinese Medical Association : JCMA
  • [ISO-abbreviation] J Chin Med Assoc
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] China (Republic : 1949- )
  •  go-up   go-down


88. Hwang SL, Lin CL, Lieu AS, Hwang YF, Howng SL, Hong YR, Chang DS, Lee KS: The expression of thyroid hormone receptor isoforms in human astrocytomas. Surg Neurol; 2008 Dec;70 Suppl 1:S1:4-8; discussion S1:8
MedlinePlus Health Information. consumer health - Childhood Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The expression of thyroid hormone receptor isoforms in human astrocytomas.
  • However, little was studied about the expression of TR isoforms in human astrocytomas.
  • METHODS: In this study, RT-PCR was used to examine the expression of human TR isoforms in 34 human astrocytoma samples.
  • However, the frequency of TRbeta1 expression significantly increased with the grades of malignancy astrocytomas (P=.017).
  • CONCLUSIONS: Our study demonstrated for the first time that TR isoforms are indeed expressed in human astrocytomas.
  • The expression of TR isoforms is correlated to the malignancy grading of astrocytomas.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Receptors, Thyroid Hormone / biosynthesis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18617237.001).
  • [ISSN] 0090-3019
  • [Journal-full-title] Surgical neurology
  • [ISO-abbreviation] Surg Neurol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Receptors, Thyroid Hormone; 0 / Thyroid Hormone Receptors alpha; 0 / Thyroid Hormone Receptors beta; 63231-63-0 / RNA
  •  go-up   go-down


89. Kwon CH, Zhao D, Chen J, Alcantara S, Li Y, Burns DK, Mason RP, Lee EY, Wu H, Parada LF: Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res; 2008 May 1;68(9):3286-94
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Pten haploinsufficiency accelerates formation of high-grade astrocytomas.
  • We previously reported that central nervous system (CNS) inactivation of Nf1 and p53 tumor suppressor genes in mice results in the development of low-grade to high-grade progressive astrocytomas.
  • When the tumors achieve high grade, they are frequently accompanied by Akt activation, reminiscent of the frequent association of PTEN mutations in human high-grade glioma.
  • In the present study, we introduced CNS heterozygosity of Pten into the Nf1/p53 astrocytoma model.
  • Resulting mice had accelerated morbidity, shortened survival, and full penetrance of high-grade astrocytomas.
  • Haploinsufficiency of Pten accelerated formation of grade 3 astrocytomas, whereas loss of Pten heterozygosity and Akt activation coincided with progression into grade 4 tumors.
  • These data suggest that successive loss of each Pten allele may contribute to de novo formation of high-grade astrocytoma and progression into glioblastoma, respectively, thus providing insight into the etiology of primary glioblastoma.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • KOMP Repository. gene/protein/disease-specific - KOMP Repository (subscription/membership/fee required).
  • Mouse Genome Informatics (MGI). Mouse Genome Informatics (MGI) .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Brain Res Mol Brain Res. 1997 Apr;45(1):90-8 [9105674.001]
  • [Cites] J Biol Chem. 1997 Jan 31;272(5):2927-35 [9006938.001]
  • [Cites] Lab Invest. 1998 Feb;78(2):165-74 [9484714.001]
  • [Cites] J Biol Chem. 1998 May 29;273(22):13375-8 [9593664.001]
  • [Cites] Nat Genet. 1998 Aug;19(4):348-55 [9697695.001]
  • [Cites] Cell. 1998 Oct 2;95(1):29-39 [9778245.001]
  • [Cites] Curr Biol. 1998 Oct 22;8(21):1169-78 [9799734.001]
  • [Cites] Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1563-8 [9990064.001]
  • [Cites] Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4240-5 [10200246.001]
  • [Cites] Cell. 1999 Jun 11;97(6):703-16 [10380923.001]
  • [Cites] Neuron. 1999 Jun;23(2):257-71 [10399933.001]
  • [Cites] Cancer Res. 2004 Nov 1;64(21):7773-9 [15520182.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):987-96 [15758009.001]
  • [Cites] Cancer Res. 2005 Mar 15;65(6):2065-9 [15781613.001]
  • [Cites] J Neurosci. 2005 Apr 13;25(15):3774-86 [15829629.001]
  • [Cites] Cancer Res. 2005 Jun 15;65(12):5172-80 [15958561.001]
  • [Cites] Neoplasia. 2005 Apr;7(4):356-68 [15967113.001]
  • [Cites] J Neuropathol Exp Neurol. 2005 Jun;64(6):479-89 [15977639.001]
  • [Cites] Cancer Cell. 2005 Aug;8(2):119-30 [16098465.001]
  • [Cites] Cancer Res. 2006 Feb 15;66(4):1929-39 [16488991.001]
  • [Cites] Genesis. 2006 Mar;44(3):130-5 [16496331.001]
  • [Cites] Cancer Cell. 2006 Mar;9(3):157-73 [16530701.001]
  • [Cites] Neuron. 2006 May 4;50(3):377-88 [16675393.001]
  • [Cites] J Neurosci. 2006 Jul 26;26(30):7907-18 [16870736.001]
  • [Cites] Cancer Res. 2006 Aug 1;66(15):7429-37 [16885338.001]
  • [Cites] Cancer Res. 2006 Aug 1;66(15):7473-81 [16885344.001]
  • [Cites] J Natl Cancer Inst. 1999 Nov 17;91(22):1922-32 [10564676.001]
  • [Cites] Science. 2000 Feb 25;287(5457):1433-8 [10688783.001]
  • [Cites] Nat Genet. 2000 May;25(1):55-7 [10802656.001]
  • [Cites] Nat Genet. 2000 Sep;26(1):109-13 [10973261.001]
  • [Cites] Exp Cell Res. 2001 Mar 10;264(1):19-28 [11237520.001]
  • [Cites] Nat Rev Neurosci. 2001 Apr;2(4):287-93 [11283751.001]
  • [Cites] Cancer Res. 2001 May 1;61(9):3826-36 [11325859.001]
  • [Cites] Genes Dev. 2001 Jun 1;15(11):1311-33 [11390353.001]
  • [Cites] Genesis. 2001 Oct;31(2):85-94 [11668683.001]
  • [Cites] Science. 2001 Dec 7;294(5549):2186-9 [11691952.001]
  • [Cites] Cell. 2002 Apr 5;109(1):75-86 [11955448.001]
  • [Cites] Cancer Cell. 2002 Mar;1(2):157-68 [12086874.001]
  • [Cites] Nat Rev Cancer. 2002 Aug;2(8):616-26 [12154354.001]
  • [Cites] Glia. 2002 Sep;39(3):193-206 [12203386.001]
  • [Cites] Cancer Res. 2002 Oct 1;62(19):5551-8 [12359767.001]
  • [Cites] Cancer Cell. 2003 Feb;3(2):117-30 [12620407.001]
  • [Cites] Cancer Res. 2003 Sep 15;63(18):5821-8 [14522905.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15178-83 [14645703.001]
  • [Cites] Cancer Res. 2004 May 15;64(10):3525-32 [15150107.001]
  • [Cites] Cancer Res. 2004 Oct 1;64(19):6892-9 [15466178.001]
  • [Cites] Hum Mol Genet. 1993 Oct;2(10):1687-90 [8268922.001]
  • [Cites] Curr Biol. 1994 Jan 1;4(1):1-7 [7922305.001]
  • [Cites] Science. 1997 May 2;276(5313):791-4 [9115203.001]
  • (PMID = 18451155.001).
  • [ISSN] 1538-7445
  • [Journal-full-title] Cancer research
  • [ISO-abbreviation] Cancer Res.
  • [Language] ENG
  • [Grant] United States / NCRR NIH HHS / RR / P41 RR002584; United States / NINDS NIH HHS / NS / R37 NS033199-10; United States / NINDS NIH HHS / NS / P50 NS052606-05; None / None / / U24 CA126608-01; United States / NCI NIH HHS / CA / U24CA126608; United States / NINDS NIH HHS / NS / NS033199-10; United States / NINDS NIH HHS / NS / NS052606-05; United States / NCRR NIH HHS / RR / P41-RR02584; United States / NINDS NIH HHS / NS / R37NS33199; United States / NCI NIH HHS / CA / U24 CA126608; United States / NINDS NIH HHS / NS / R37 NS033199; United States / NINDS NIH HHS / NS / P50 NS052606; United States / NCI NIH HHS / CA / U24 CA126608-01
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] EC 2.7.11.1 / Oncogene Protein v-akt; EC 3.1.3.48 / Pten protein, mouse; EC 3.1.3.67 / PTEN Phosphohydrolase
  • [Other-IDs] NLM/ NIHMS149010; NLM/ PMC2760841
  •  go-up   go-down


90. Shimizu H, Mori O, Ohaki Y, Kamoi S, Kobayashi S, Okada S, Maeda S, Naito Z: Cytological interface of diffusely infiltrating astrocytoma and its marginal tissue. Brain Tumor Pathol; 2005;22(2):59-74
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Cytological interface of diffusely infiltrating astrocytoma and its marginal tissue.
  • Cytological differences between infiltrating lesions of the diffusely infiltrating astrocytoma (DIA) and reactive gliosis at its periphery have not yet been established.
  • The cytological findings of this area are important because the surgeon may have to make a rapid diagnosis regarding the existence of the tumor.
  • [MeSH-major] Astrocytoma / pathology. Brain / pathology. Brain Neoplasms / pathology. Glioblastoma / pathology. Gliosis / pathology
  • [MeSH-minor] Adult. Astrocytes / ultrastructure. Axons / ultrastructure. Biopsy. Carcinoma / secondary. Cell Nucleus / ultrastructure. Diagnosis, Differential. Humans. Magnetic Resonance Imaging. Myelin Sheath / ultrastructure. Neoplasm Invasiveness. Neurons / ultrastructure. Oligodendroglia / ultrastructure. Staining and Labeling / methods

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18095107.001).
  • [ISSN] 1861-387X
  • [Journal-full-title] Brain tumor pathology
  • [ISO-abbreviation] Brain Tumor Pathol
  • [Language] eng
  • [Publication-type] Case Reports; Comparative Study; Journal Article
  • [Publication-country] Japan
  •  go-up   go-down


91. Parsa CF, Givrad S: Juvenile pilocytic astrocytomas do not undergo spontaneous malignant transformation: grounds for designation as hamartomas. Br J Ophthalmol; 2008 Jan;92(1):40-6
Faculty of 1000. commentaries/discussion - See the articles recommended by F1000Prime's Faculty of more than 8,000 leading experts in Biology and Medicine. (subscription/membership/fee required).

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Juvenile pilocytic astrocytomas do not undergo spontaneous malignant transformation: grounds for designation as hamartomas.
  • AIM: To determine whether juvenile pilocytic astrocytomas WHO grade I have the potential for spontaneous malignant transformation.
  • METHODS: A literature search was performed, cross-referencing juvenile pilocytic astrocytoma, pilocytic astrocytoma, astrocytoma grade I, optic glioma, glioma, low-grade gliomas, polar spongioblastoma, gliocytoma embryonale, and malignant transformation, anaplasia or anaplastic change.
  • Twenty-two of these tumours, however, did not initially match criteria for juvenile pilocytic astrocytoma WHO grade I and were excluded.
  • CONCLUSION: Juvenile pilocytic astrocytomas WHO grade I do not undergo spontaneous anaplastic transformation.
  • Earlier clinical and histopathological opinions regarding juvenile pilocytic astrocytomas as hamartomatous lesions are reaffirmed.
  • [MeSH-major] Astrocytoma / pathology. Brain Diseases / pathology. Brain Neoplasms / pathology. Cell Transformation, Neoplastic / pathology. Hamartoma / pathology
  • [MeSH-minor] Adolescent. Adult. Child. Child, Preschool. Disease Progression. Humans. Middle Aged. Neoplasms, Radiation-Induced / etiology. Neoplasms, Second Primary / etiology

  • MedlinePlus Health Information. consumer health - Brain Diseases.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17962395.001).
  • [ISSN] 1468-2079
  • [Journal-full-title] The British journal of ophthalmology
  • [ISO-abbreviation] Br J Ophthalmol
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] England
  • [Number-of-references] 90
  •  go-up   go-down


92. Mohyeldin A, Dalgard CL, Lu H, Mcfate T, Tait AS, Patel VC, Wong K, Rushing E, Roy S, Acs G, Verma A: Survival and invasiveness of astrocytomas promoted by erythropoietin. J Neurosurg; 2007 Feb;106(2):338-50
Hazardous Substances Data Bank. CIS-DIAMINEDICHLOROPLATINUM .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Survival and invasiveness of astrocytomas promoted by erythropoietin.
  • Since hypoxia has been implicated in the malignant progression of some human cancers, the authors investigated whether EPO signaling influenced the malignant properties of human astrocytoma cells.
  • Expression of both EPO and EPOR was observed in the hypoxic regions and invasive margins of glioma specimens obtained at biopsy, and expression of EPOR correlated with the stage of the tumor.
  • [MeSH-major] Brain Neoplasms / pathology. Erythropoietin / physiology. Glioma / pathology
  • [MeSH-minor] Animals. Antineoplastic Agents / therapeutic use. Cell Hypoxia / physiology. Cell Line, Tumor. Cisplatin / therapeutic use. Epoetin Alfa. Hematinics / therapeutic use. Humans. Neoplasm Invasiveness. Rats. Rats, Wistar. Receptors, Erythropoietin / metabolism. Recombinant Proteins. Signal Transduction / physiology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. EPOETIN ALFA .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentIn] J Neurosurg. 2007 Feb;106(2):337; discussion 337 [17410720.001]
  • (PMID = 17410721.001).
  • [ISSN] 0022-3085
  • [Journal-full-title] Journal of neurosurgery
  • [ISO-abbreviation] J. Neurosurg.
  • [Language] eng
  • [Grant] United States / NINDS NIH HHS / NS / R01 NS37814
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Hematinics; 0 / Receptors, Erythropoietin; 0 / Recombinant Proteins; 11096-26-7 / Erythropoietin; 64FS3BFH5W / Epoetin Alfa; Q20Q21Q62J / Cisplatin
  •  go-up   go-down


93. Rafique MZ, Ahmad MN, Yaqoob N, Ahsan H: Diffuse bilateral thalamic astrocytoma. J Coll Physicians Surg Pak; 2007 Mar;17(3):170-2
Genetic Alliance. consumer health - Diffuse Astrocytoma.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Diffuse bilateral thalamic astrocytoma.
  • Diffuse astrocytoma with bilateral thalamic involvement is extremely rare.
  • MRI scans were performed twice and were reported as Leigh's disease and hemimegalencephaly respectively.
  • Biopsy showed grade III Astrocytoma with bilateral thalamic involvement.
  • [MeSH-major] Astrocytoma / pathology. Cerebellar Neoplasms / pathology. Thalamic Diseases / pathology

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17374306.001).
  • [ISSN] 1022-386X
  • [Journal-full-title] Journal of the College of Physicians and Surgeons--Pakistan : JCPSP
  • [ISO-abbreviation] J Coll Physicians Surg Pak
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Pakistan
  •  go-up   go-down


94. Fathi AR, Vassella E, Arnold M, Curschmann J, Reinert M, Vajtai I, Weis J, Deiana G, Mariani L: Objective response to radiation therapy and long-term survival of patients with WHO grade II astrocytic gliomas with known LOH 1p/19q status. Strahlenther Onkol; 2007 Sep;183(9):517-22

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Objective response to radiation therapy and long-term survival of patients with WHO grade II astrocytic gliomas with known LOH 1p/19q status.
  • BACKGROUND: WHO grade II gliomas are often approached by radiation therapy (RT).
  • However, little is known about tumor response and its potential impact on long-term survival.
  • PATIENTS AND METHODS: Patients subjected to RT were selected from the own database of WHO grade II gliomas diagnosed between 1991 and 2000.
  • The volumetric tumor response after RT was assessed based on magnetic resonance imaging and graded according to standard criteria as complete, partial (PR, >or= 50%), or minor (MR, 25% to <50%).
  • RESULTS: There were 24 astrocytomas and three oligoastrocytomas.
  • CONCLUSION: Approximately 50% of patients with astrocytic WHO grade II gliomas respond to RT despite the absence of LOH for 1p/19q.
  • [MeSH-major] Astrocytoma / genetics. Astrocytoma / radiotherapy. Chromosomes, Human, Pair 1 / radiation effects. Chromosomes, Human, Pair 19 / radiation effects. Cranial Irradiation. Loss of Heterozygosity / radiation effects. Supratentorial Neoplasms / genetics. Supratentorial Neoplasms / radiotherapy. Survivors
  • [MeSH-minor] Adult. Aged. Female. Follow-Up Studies. Humans. Kaplan-Meier Estimate. Magnetic Resonance Imaging. Male. Microsatellite Repeats. Middle Aged. Neoplasm Staging. Radiotherapy Dosage. Retrospective Studies. Survival Analysis

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17762927.001).
  • [ISSN] 0179-7158
  • [Journal-full-title] Strahlentherapie und Onkologie : Organ der Deutschen Röntgengesellschaft ... [et al]
  • [ISO-abbreviation] Strahlenther Onkol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  •  go-up   go-down


95. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, Wilson KA, Byars A, Sahmoud T, Franz DN: Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med; 2010 Nov 4;363(19):1801-11
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis.
  • BACKGROUND: Neurosurgical resection is the standard treatment for subependymal giant-cell astrocytomas in patients with the tuberous sclerosis complex.
  • METHODS: Patients 3 years of age or older with serial growth of subependymal giant-cell astrocytomas were eligible for this open-label study.
  • The primary efficacy end point was the change in volume of subependymal giant-cell astrocytomas between baseline and 6 months.
  • Everolimus therapy was associated with a clinically meaningful reduction in volume of the primary subependymal giant-cell astrocytoma, as assessed on independent central review (P<0.001 for baseline vs. 6 months), with a reduction of at least 30% in 21 patients (75%) and at least 50% in 9 patients (32%).
  • There were no new lesions, worsening hydrocephalus, evidence of increased intracranial pressure, or necessity for surgical resection or other therapy for subependymal giant-cell astrocytoma.
  • CONCLUSIONS: Everolimus therapy was associated with marked reduction in the volume of subependymal giant-cell astrocytomas and seizure frequency and may be a potential alternative to neurosurgical resection in some cases, though long-term studies are needed. (Funded by Novartis; ClinicalTrials.gov number, NCT00411619.).
  • [MeSH-major] Astrocytoma / drug therapy. Brain Neoplasms / drug therapy. Intracellular Signaling Peptides and Proteins / antagonists & inhibitors. Protein-Serine-Threonine Kinases / antagonists & inhibitors. Seizures / drug therapy. Sirolimus / analogs & derivatives. Tuberous Sclerosis / drug therapy


96. Rorive S, Lopez XM, Maris C, Trepant AL, Sauvage S, Sadeghi N, Roland I, Decaestecker C, Salmon I: TIMP-4 and CD63: new prognostic biomarkers in human astrocytomas. Mod Pathol; 2010 Oct;23(10):1418-28
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] TIMP-4 and CD63: new prognostic biomarkers in human astrocytomas.
  • Based on the molecular profiling of astrocytomas, we previously identified a series of genes involved in astrocytoma invasion.
  • Of these, tissue inhibitor of metalloproteinase-4 (TIMP-4) was found to be overexpressed in pilocytic astrocytomas relative to diffuse astrocytomas of any histological grade.
  • Although some data suggest that TIMP-4 may be an anti-tumoral actor in astrocytomas, recent findings challenge this concept.
  • The present study aims to investigate the diagnostic and prognostic values of TIMP-4 and its putative partner CD63 in human astrocytomas.
  • Tissue microarray and image analysis were first carried out to quantitatively analyze the immunohistochemical expression of these proteins in 471 gliomas including 354 astrocytomas.
  • Pathological semi-quantitative scores of both markers' expression were then established and correlated to astrocytoma diagnosis and patient prognosis.
  • TIMP-4 and CD63 expressions were both overexpressed in astrocytomas compared with oligodendrogliomas (P<0.001) and in pilocytic astrocytomas compared with grade II diffuse astrocytomas (P<0.001).
  • In conclusion, this work provides the first evidence of a TIMP-4/CD63 association in astrocytoma tumor cells.
  • It identifies TIMP-4 and CD63 as markers of the astrocytic phenotype in patients with gliomas.
  • [MeSH-major] Antigens, CD / biosynthesis. Astrocytoma / metabolism. Biomarkers, Tumor / analysis. Brain Neoplasms / metabolism. Platelet Membrane Glycoproteins / biosynthesis. Tissue Inhibitor of Metalloproteinases / biosynthesis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20693981.001).
  • [ISSN] 1530-0285
  • [Journal-full-title] Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
  • [ISO-abbreviation] Mod. Pathol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, CD; 0 / Antigens, CD63; 0 / Biomarkers, Tumor; 0 / CD63 protein, human; 0 / Platelet Membrane Glycoproteins; 0 / Tissue Inhibitor of Metalloproteinases; 0 / tissue inhibitor of metalloproteinase-4
  •  go-up   go-down


97. Hu CH, Fang XM, Hu XY, Cui L: Analysis of the mismatched manifestation between rCBF and rCBV maps in cerebral astrocytomas. Clin Imaging; 2009 Nov-Dec;33(6):417-23
MedlinePlus Health Information. consumer health - CT Scans.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Analysis of the mismatched manifestation between rCBF and rCBV maps in cerebral astrocytomas.
  • OBJECTIVE: To explore the mismatched manifestation between regional cerebral blood flow (rCBF) and regional cerebral blood volume (rCBV) of astrocytomas.
  • METHODS: Both conventional and perfusion CT were performed on 29 patients with pathologically confirmed astrocytomas (15 cases in Grades I-II, 14 cases in Grades III-IV).
  • RESULTS: Twelve low-grade astrocytomas showed low or medium values of both rCBF (46.95+/-22.92 ml 100 g(-1) mm(-1)) and rCBV (5.74+/-3.61 ml 100 g(-1)); 12 high-grade astrocytomas showed high values of both rCBF (95.44+/-42.58 ml 100 g(-1) min(-1)) and rCBV (9.24+/-5.32 ml 100g(-1)).
  • However, the remaining five astrocytomas were mismatched, showing reduced rCBF value and increased rCBV value in the same ROI.
  • The discrepancy may mislead to an inaccuracy of perfusion CT in grading gliomas.
  • CONCLUSIONS: The mismatched manifestation between rCBF and rCBV occasionally exists in some areas of astrocytomas.
  • Hence, attention should be paid to assessments in preoperative grading of astrocytomas and in monitoring therapeutic effects.
  • [MeSH-major] Astrocytoma / physiopathology. Astrocytoma / radiography. Brain Neoplasms / physiopathology. Brain Neoplasms / radiography. Cerebrovascular Circulation. Perfusion Imaging / methods. Tomography, X-Ray Computed / methods

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19857800.001).
  • [ISSN] 1873-4499
  • [Journal-full-title] Clinical imaging
  • [ISO-abbreviation] Clin Imaging
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


98. Yan B, Omar FM, Das K, Ng WH, Lim C, Shiuan K, Yap CT, Salto-Tellez M: Characterization of Numb expression in astrocytomas. Neuropathology; 2008 Oct;28(5):479-84
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Characterization of Numb expression in astrocytomas.
  • Numb has also been reported to function as a tumor suppressor in breast cancers and medulloblastomas.
  • Given its role in maintaining neural progenitor pools in animal models and its reported role as a tumor suppressor, Numb could potentially contribute to astrocytoma oncogenesis.
  • We characterized Numb expression in both human astrocytoma tissue samples and glioblastoma cell lines.
  • We found that Numb is expressed in all grades of astrocytomas, being predominantly cytoplasmic in higher-grade astrocytomas but nuclear in pilocytic astrocytomas.
  • Numb expression in astrocytomas recapitulates that of progenitor cells during neurodevelopment, and suggests a role for Numb in astrocytoma oncogenesis.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Membrane Proteins / biosynthesis. Nerve Tissue Proteins / biosynthesis
  • [MeSH-minor] Adult. Aged. Cell Line, Tumor. Child. Child, Preschool. Female. Glial Fibrillary Acidic Protein / biosynthesis. Humans. Immunohistochemistry. Infant. Male. Middle Aged. Neuroglia / metabolism. Neurons / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18384513.001).
  • [ISSN] 1440-1789
  • [Journal-full-title] Neuropathology : official journal of the Japanese Society of Neuropathology
  • [ISO-abbreviation] Neuropathology
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Australia
  • [Chemical-registry-number] 0 / Glial Fibrillary Acidic Protein; 0 / Membrane Proteins; 0 / Nerve Tissue Proteins; 0 / Numb protein, human
  •  go-up   go-down


99. Tsutsumi S, Higo T, Kondo A, Abe Y, Yasumoto Y, Ito M: Atypical cervical astrocytoma manifesting as occipitalgia. Neurol Med Chir (Tokyo); 2007 Aug;47(8):371-4
MedlinePlus Health Information. consumer health - Headache.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Atypical cervical astrocytoma manifesting as occipitalgia.
  • Cervical MR imaging revealed a cervical intramedullary tumor.
  • Intraoperatively the subpial tumor was found to stretch the 3rd-5th dorsal nerve roots posteriorly, which was thought to cause the intolerable headache.
  • Total tumor resection was achieved without requiring myelotomy using electrophysiological monitoring with somatosensory and motor evoked potentials.
  • Histological examination identified diffuse astrocytoma.
  • Cervical astrocytoma of subpial location is a very rare cause of headache in adults.
  • [MeSH-major] Astrocytoma / complications. Astrocytoma / pathology. Headache / etiology. Spinal Cord / pathology. Spinal Cord Neoplasms / complications. Spinal Cord Neoplasms / pathology

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17721055.001).
  • [ISSN] 0470-8105
  • [Journal-full-title] Neurologia medico-chirurgica
  • [ISO-abbreviation] Neurol. Med. Chir. (Tokyo)
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Japan
  •  go-up   go-down


100. Hernández-Hernández OT, Rodríguez-Dorantes M, González-Arenas A, Camacho-Arroyo I: Progesterone and estradiol effects on SRC-1 and SRC-3 expression in human astrocytoma cell lines. Endocrine; 2010 Feb;37(1):194-200
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Progesterone and estradiol effects on SRC-1 and SRC-3 expression in human astrocytoma cell lines.
  • In this study, we determined progesterone and estrogen receptor isoform expression in two human astrocytoma cell lines with different evolution grade (U373, grade III; and D54, grade IV) by Western Blot.
  • Our data suggest that SRC-1 and SRC-3 expression is differentially regulated by sex steroid hormones in astrocytomas and that P(4) regulates SRC-1 expression depending on the evolution grade of human astrocytoma cells.
  • [MeSH-major] Astrocytoma / metabolism. Estradiol / metabolism. Gene Expression Regulation, Neoplastic. Glioblastoma / metabolism. Nuclear Receptor Coactivator 1 / metabolism. Nuclear Receptor Coactivator 3 / metabolism. Progesterone / metabolism
  • [MeSH-minor] Blotting, Western. Cell Line, Tumor. Humans. Protein Isoforms / metabolism. RNA, Messenger / metabolism. Receptors, Estradiol / metabolism. Receptors, Estrogen / metabolism. Receptors, Progesterone / metabolism. Reverse Transcriptase Polymerase Chain Reaction. Time Factors

  • Hazardous Substances Data Bank. ESTRADIOL .
  • Hazardous Substances Data Bank. PROGESTERONE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20963570.001).
  • [ISSN] 1559-0100
  • [Journal-full-title] Endocrine
  • [ISO-abbreviation] Endocrine
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Protein Isoforms; 0 / RNA, Messenger; 0 / Receptors, Estradiol; 0 / Receptors, Estrogen; 0 / Receptors, Progesterone; 4G7DS2Q64Y / Progesterone; 4TI98Z838E / Estradiol; EC 2.3.1.48 / NCOA1 protein, human; EC 2.3.1.48 / NCOA3 protein, human; EC 2.3.1.48 / Nuclear Receptor Coactivator 1; EC 2.3.1.48 / Nuclear Receptor Coactivator 3
  •  go-up   go-down






Advertisement