[X] Close
You are about to erase all the values you have customized, search history, page format, etc.
Click here to RESET all values       Click here to GO BACK without resetting any value
Items 1 to 100 of about 149
1. Tang J, Shao W, Dorak MT, Li Y, Miike R, Lobashevsky E, Wiencke JK, Wrensch M, Kaslow RA, Cobbs CS: Positive and negative associations of human leukocyte antigen variants with the onset and prognosis of adult glioblastoma multiforme. Cancer Epidemiol Biomarkers Prev; 2005 Aug;14(8):2040-4
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Positive and negative associations of human leukocyte antigen variants with the onset and prognosis of adult glioblastoma multiforme.
  • We examined the relationships of human leukocyte antigen (HLA) and related polymorphisms to glioblastoma multiforme in adult Caucasians (non-Hispanic Whites) from the San Francisco Bay area.
  • For 155 glioblastoma multiforme patients and 157 control subjects closely matched by ethnicity, age, and gender, PCR-based techniques resolved alleles at HLA-A, -B, -C, and -DRB1 loci along with short tandem repeat polymorphisms of MICA exon 5 and TNFb.
  • By multivariable logistic regression, B*13 and the B*07-Cw*07 haplotype were positively associated with glioblastoma multiforme (P=0.01 and <0.001, respectively), whereas Cw*01 was the only variant showing a negative association (P=0.05).
  • Among glioblastoma multiforme patients, progression to death after diagnosis was slower in those with A*32 (relative hazard, 0.45; P<0.01) and faster in those with B*55 (relative hazard, 2.27; P<0.01).
  • Thus, both the occurrence and the prognosis of glioblastoma multiforme could be associated with specific but different HLA genotypes.
  • B*07 and the B*07-Cw*07 haplotype are much more common in Caucasians than other ethnic groups in the U.S., which may partially explain the higher incidence of glioblastoma multiforme in Caucasians.
  • [MeSH-major] Biomarkers, Tumor / genetics. Glioblastoma / genetics. HLA Antigens / genetics
  • [MeSH-minor] Adult. Case-Control Studies. Female. Genetic Variation. Genotype. Humans. Male. Microsatellite Repeats. Polymerase Chain Reaction. Polymorphism, Genetic. Prognosis. San Francisco

  • Genetic Alliance. consumer health - Glioblastoma.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16103458.001).
  • [ISSN] 1055-9965
  • [Journal-full-title] Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
  • [ISO-abbreviation] Cancer Epidemiol. Biomarkers Prev.
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / CA097247; United States / NCI NIH HHS / CA / CA097257; United States / NCI NIH HHS / CA / CA52689
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / HLA Antigens
  •  go-up   go-down


2. Gallia GL, Rand V, Siu IM, Eberhart CG, James CD, Marie SK, Oba-Shinjo SM, Carlotti CG, Caballero OL, Simpson AJ, Brock MV, Massion PP, Carson BS Sr, Riggins GJ: PIK3CA gene mutations in pediatric and adult glioblastoma multiforme. Mol Cancer Res; 2006 Oct;4(10):709-14
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] PIK3CA gene mutations in pediatric and adult glioblastoma multiforme.
  • Recently, a large-scale mutational analysis of eight PI3K and eight PI3K-like genes revealed somatic mutations in PIK3CA, which encodes the p110alpha catalytic subunit of class IA PI3K, in several types of cancer, including glioblastoma multiforme.
  • Given this disparity and to address the relation of patient age to mutation frequency, we examined 10 exons of PIK3CA in 73 glioblastoma samples by PCR amplification followed by direct DNA sequencing.
  • Of the primary tumors, PIK3CA mutations were identified in 21% and 17% of pediatric and adult samples, respectively.
  • [MeSH-major] Genetic Predisposition to Disease. Glioblastoma / genetics. Mutation. Phosphatidylinositol 3-Kinases / genetics

  • Genetic Alliance. consumer health - Glioblastoma.
  • COS Scholar Universe. author profiles.
  • ClinicalTrials.gov. clinical trials - ClinicalTrials.gov .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17050665.001).
  • [ISSN] 1541-7786
  • [Journal-full-title] Molecular cancer research : MCR
  • [ISO-abbreviation] Mol. Cancer Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] EC 2.7.1.- / Phosphatidylinositol 3-Kinases; EC 2.7.1.137 / PIK3CA protein, human
  •  go-up   go-down


3. Arslantas A, Artan S, Oner U, Müslümanoglu MH, Ozdemir M, Durmaz R, Arslantas D, Vural M, Cosan E, Atasoy MA: Genomic alterations in low-grade, anaplastic astrocytomas and glioblastomas. Pathol Oncol Res; 2007;13(1):39-46
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Genomic alterations in low-grade, anaplastic astrocytomas and glioblastomas.
  • To extend our understanding of potential stepwise genetic alterations that may underlie tumor progression from low-grade astrocytomas to glioblastomas, histopathologic and comparative genomic hybridization analyses were performed on tumor specimens from 68 primary lesions, including 40 glioblastomas, 10 anaplastic and 18 low-grade astrocytomas.
  • The number of aberrations per case increased towards the higher grade tumors (grade II: 1.66+/-1.49; grade III: 2.80+/-1.68; grade IV: 3.02+/-1.07; F=6.955, p=0.002).
  • A gain of 7/7q was common and the most frequently seen aberration in low-grade astrocytomas, whereas loss of 10q was the most frequently seen anomaly in anaplastic astrocytomas and glioblastomas.
  • Chromosome 10/10q deletion and combination of 1p, 19q and 17p deletions were specific to high-grade astrocytic tumors.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Chromosome Aberrations. Chromosome Deletion. Glioblastoma / genetics
  • [MeSH-minor] Adult. Aged. Female. Humans. Male. Middle Aged. Prognosis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Acta Neurol Belg. 2002 Jun;102(2):53-62 [12161900.001]
  • [Cites] Am J Pathol. 1999 Aug;155(2):375-86 [10433931.001]
  • [Cites] Cancer Res. 1994 Mar 15;54(6):1397-401 [8137236.001]
  • [Cites] Neurol Med Chir (Tokyo). 2003 Jan;43(1):12-8; discussion 19 [12568317.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Apr;61(4):321-8 [11939587.001]
  • [Cites] Mol Carcinog. 2003 Jan;36(1):6-14 [12503074.001]
  • [Cites] Hum Genet. 1993 Sep;92(2):169-74 [8370584.001]
  • [Cites] Front Biosci. 2003 May 01;8:e281-8 [12700122.001]
  • [Cites] Genes Chromosomes Cancer. 1998 Apr;21(4):340-6 [9559346.001]
  • [Cites] Cancer Genet Cytogenet. 2003 Apr 1;142(1):1-7 [12660025.001]
  • [Cites] Nat Genet. 1997 Sep;17(1):32-9 [9288095.001]
  • [Cites] Anticancer Res. 1994 Mar-Apr;14(2A):577-9 [8017863.001]
  • [Cites] J Natl Cancer Inst. 1998 Oct 7;90(19):1473-9 [9776413.001]
  • [Cites] Cancer Res. 2004 Oct 1;64(19):6892-9 [15466178.001]
  • [Cites] Cancer Res. 2001 Oct 15;61(20):7683-8 [11606412.001]
  • [Cites] Genes Chromosomes Cancer. 2005 Jan;42(1):68-77 [15472895.001]
  • [Cites] Cancer Res. 1999 Apr 15;59(8):1820-4 [10213484.001]
  • [Cites] Clin Neurol Neurosurg. 1997 May;99(2):117-23 [9213056.001]
  • [Cites] Neurosurg Rev. 2004 Jan;27(1):58-64 [12845540.001]
  • [Cites] Am J Pathol. 1994 Jun;144(6):1203-18 [8203461.001]
  • [Cites] Oncogene. 1997 Jun 19;14(24):2927-33 [9205099.001]
  • [Cites] Cancer Lett. 1999 Jan 8;135(1):61-6 [10077222.001]
  • [Cites] Br J Cancer. 1996 Feb;73(4):424-8 [8595154.001]
  • [Cites] Int J Cancer. 1999 Apr 20;84(2):150-4 [10096247.001]
  • [Cites] Int J Oncol. 2002 Nov;21(5):1141-50 [12370766.001]
  • [Cites] Br J Cancer. 2005 Jul 11;93(1):124-30 [15970925.001]
  • [Cites] Hum Pathol. 2000 May;31(5):608-14 [10836301.001]
  • [Cites] Virchows Arch. 1995;427(2):113-8 [7582239.001]
  • [Cites] Cancer Res. 1994 Dec 15;54(24):6353-8 [7987828.001]
  • (PMID = 17387387.001).
  • [ISSN] 1219-4956
  • [Journal-full-title] Pathology oncology research : POR
  • [ISO-abbreviation] Pathol. Oncol. Res.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  •  go-up   go-down


Advertisement
4. Jain R, Ellika SK, Scarpace L, Schultz LR, Rock JP, Gutierrez J, Patel SC, Ewing J, Mikkelsen T: Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. AJNR Am J Neuroradiol; 2008 Apr;29(4):694-700
MedlinePlus Health Information. consumer health - CT Scans.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade.
  • BACKGROUND AND PURPOSE: Glioma angiogenesis and its different hemodynamic features, which can be evaluated by using perfusion CT (PCT) imaging of the brain, have been correlated with the grade and the aggressiveness of gliomas.
  • Our hypothesis was that quantitative estimation of permeability surface area product (PS), cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) in astroglial brain tumors by using PCT will correlate with glioma grade.
  • High-grade gliomas will show higher PS and CBV as compared with low-grade gliomas.
  • MATERIALS AND METHODS: PCT was performed in 32 patients with previously untreated astroglial tumors (24 high-grade gliomas and 8 low-grade gliomas) by using a total acquisition time of 170 seconds.
  • RESULTS: The differences in PS, CBV, and CBF between the low- and high-grade tumor groups were statistically significant, with the low-grade group showing lower mean values than the high-grade group.
  • ROC analyses showed that both CBV (C-statistic 0.930) and PS (C-statistic 0.927) were very similar to each other in differentiating low- and high-grade gliomas and had higher predictability compared with CBF and MTT.
  • Within the high-grade group, differentiation of WHO grade III and IV gliomas was also possible by using PCT parameters, and PS showed the highest C-statistic value (0.926) for the ROC analyses in this regard.
  • CONCLUSIONS: Both PS and CBV showed strong association with glioma grading, high-grade gliomas showing higher PS and CBV as compared with low-grade gliomas.
  • Perfusion parameters, especially PS, can also be used to differentiate WHO grade III from grade IV in the high-grade tumor group.
  • [MeSH-major] Astrocytoma / radiography. Brain Neoplasms / radiography. Capillary Permeability. Cerebrovascular Circulation. Tomography, X-Ray Computed
  • [MeSH-minor] Adult. Aged. Blood Flow Velocity. Blood Volume. Contrast Media. Female. Humans. Male. Middle Aged

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18202239.001).
  • [ISSN] 1936-959X
  • [Journal-full-title] AJNR. American journal of neuroradiology
  • [ISO-abbreviation] AJNR Am J Neuroradiol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Contrast Media
  •  go-up   go-down


5. Henriksson R, Malmström A, Bergström P, Bergh G, Trojanowski T, Andreasson L, Blomquist E, Jonsborg S, Edekling T, Salander P, Brännström T, Bergenheim AT: High-grade astrocytoma treated concomitantly with estramustine and radiotherapy. J Neurooncol; 2006 Jul;78(3):321-6
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] High-grade astrocytoma treated concomitantly with estramustine and radiotherapy.
  • The present study is an open randomized clinical trial comparing estramustine phosphate (Estracyt) in addition to radiotherapy with radiotherapy alone as first line treatment of astrocytoma grade III and IV.
  • For astrocytoma grade III the median survival time was 10.6 (1.3-92.7) months for the radiotherapy only group and 17.3 (0.4-96.9+) months for the estramustine + radiotherapy group.
  • In grade IV the corresponding median survival time was 12.3 (2.1-89.2) and 10.3 (0.3-91.7+) months, respectively.
  • Median time to progress for radiotherapy only and radiotherapy and estramustin group in grade III tumours was 6.5 and 10.1 months, respectively.
  • In grade IV tumours the corresponding figures were 5.1 and 3.3 months, respectively.
  • Although there was a tendency for improved survival in grade III, no statistical significant differences were found between the treatment groups.
  • In conclusion, this first randomized study did not demonstrate any significant improvement of using estramustine in addition to conventional radiotherapy, however, a trend for a positive response for the estramustine group was found in patients with grade III glioma.
  • [MeSH-major] Antineoplastic Agents, Alkylating / administration & dosage. Astrocytoma / drug therapy. Astrocytoma / radiotherapy. Brain Neoplasms / drug therapy. Brain Neoplasms / radiotherapy. Estramustine / administration & dosage
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Combined Modality Therapy. Female. Humans. Male. Middle Aged. Quality of Life. Radiotherapy Dosage. Severity of Illness Index. Survival Analysis. Treatment Outcome

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Anticancer Res. 1989 Nov-Dec;9(6):1713-6 [2697186.001]
  • [Cites] Neurosurgery. 1996 Aug;39(2):360-6 [8832674.001]
  • [Cites] Br J Cancer. 1988 Sep;58(3):326-9 [3052561.001]
  • [Cites] Cancer. 1991 Sep 15;68(6):1394-400 [1873791.001]
  • [Cites] Cancer. 2000 Aug 1;89(3):640-6 [10931464.001]
  • [Cites] Prostate. 1989;14(1):27-43 [2648345.001]
  • [Cites] Anticancer Res. 1990 May-Jun;10(3):693-6 [2369085.001]
  • [Cites] J Neurooncol. 2004 Mar-Apr;67(1-2):215-20 [15072470.001]
  • [Cites] J Clin Oncol. 2001 Feb 15;19(4):1111-7 [11181676.001]
  • [Cites] J Neurosurg. 1991 Jun;74(6):962-4 [1709687.001]
  • [Cites] Br J Cancer. 1993 Feb;67(2):358-61 [8431366.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1999 Jun 1;44(3):535-43 [10348282.001]
  • [Cites] J Natl Cancer Inst. 1993 Mar 3;85(5):365-76 [8433390.001]
  • [Cites] Br J Cancer. 1999 Apr;80(1-2):142-8 [10389990.001]
  • [Cites] J Clin Oncol. 2000 Mar;18(6):1254-9 [10715295.001]
  • [Cites] J Neurooncol. 1994;22(2):111-26 [7745464.001]
  • [Cites] Br J Cancer. 1995 Apr;71(4):717-20 [7710934.001]
  • [Cites] Clin Cancer Res. 1998 Jan;4(1):87-91 [9516956.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1994 Jun 15;29(3):555-7 [8005815.001]
  • [Cites] Clin Pharmacokinet. 1998 Feb;34(2):163-72 [9515186.001]
  • [Cites] Cancer Res. 1994 Mar 15;54(6):1415-7 [8137240.001]
  • [Cites] Neurosurgery. 1993 Mar;32(3):422-30; discussion 430-1 [8384327.001]
  • [Cites] Clin Cancer Res. 1998 Sep;4(9):2079-84 [9748122.001]
  • [Cites] J Neurooncol. 1995;23(3):191-200 [7673981.001]
  • [Cites] Cancer Res. 1994 Sep 15;54(18):4974-9 [8069865.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10 ):987-96 [15758009.001]
  • [Cites] J Neurol. 1975 Jul 2;209(3):217-24 [51062.001]
  • (PMID = 16598426.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Randomized Controlled Trial; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 35LT29625A / Estramustine
  •  go-up   go-down


6. Lee EJ, Lee SK, Agid R, Bae JM, Keller A, Terbrugge K: Preoperative grading of presumptive low-grade astrocytomas on MR imaging: diagnostic value of minimum apparent diffusion coefficient. AJNR Am J Neuroradiol; 2008 Nov;29(10):1872-7
MedlinePlus Health Information. consumer health - MRI Scans.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Preoperative grading of presumptive low-grade astrocytomas on MR imaging: diagnostic value of minimum apparent diffusion coefficient.
  • BACKGROUND AND PURPOSE: Histopathologic grade of glial tumors is inversely correlated with the minimum apparent diffusion coefficient (ADC).
  • We assessed the diagnostic values of minimum ADC for preoperative grading of supratentorial astrocytomas that were diagnosed as low-grade astrocytomas on conventional MR imaging.
  • MATERIALS AND METHODS: Among 118 patients with astrocytomas (WHO grades II-IV), 16 who showed typical MR imaging findings of low-grade supratentorial astrocytomas on conventional MR imaging were included.
  • The minimum ADC value of each tumor was determined from several regions of interest in the tumor on ADC maps.
  • To assess the relationship between the minimum ADC and tumor grade, we performed the Mann-Whitney U test.
  • A receiver operating characteristic (ROC) analysis was used to determine the cutoff value of the minimum ADC that had the best combination of sensitivity and specificity for distinguishing low- and high-grade astrocytomas.
  • RESULTS: Eight of the 16 patients (50%) were confirmed as having high-grade astrocytomas (WHO grades III and IV), and the other 8 patients were confirmed as having low-grade astrocytomas (WHO grade II).
  • The median minimum ADC of the high-grade astrocytoma (1.035 x 10(-3) mm(2) .
  • sec(-1)) group was significantly lower than that of the low-grade astrocytoma group (1.19 x 10(-3) mm(2) .
  • CONCLUSION: Measuring minimum ADC can provide valuable diagnostic information for the preoperative grading of presumptive low-grade supratentorial astrocytomas.
  • [MeSH-major] Algorithms. Astrocytoma / diagnosis. Brain Neoplasms / diagnosis. Image Interpretation, Computer-Assisted / methods. Magnetic Resonance Imaging / methods
  • [MeSH-minor] Adult. Aged. Female. Humans. Male. Middle Aged. Reproducibility of Results. Sensitivity and Specificity

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18719036.001).
  • [ISSN] 1936-959X
  • [Journal-full-title] AJNR. American journal of neuroradiology
  • [ISO-abbreviation] AJNR Am J Neuroradiol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


7. Tehrani M, Friedman TM, Olson JJ, Brat DJ: Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioblastoma. Brain Pathol; 2008 Apr;18(2):164-71
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioblastoma.
  • Intravascular thrombosis is a frequent finding in glioblastoma [GBM; World Health Organization (WHO) grade IV] specimens and could potentially be involved in astrocytoma progression to GBM or represent a surrogate marker of GBM histology.
  • We investigated whether intravascular thrombosis was more frequent or prominent in GBM than other central nervous system (CNS) malignancies and considered its prognostic significance in anaplastic astrocytoma (AA; WHO grade III), which lacks necrosis.
  • Histologic sections were examined for thrombosis, necrosis and microvascular hyperplasia from each of 297 CNS tumors, including 103 GBMs, 46 AAs, 20 diffuse astrocytoma (DAs; WHO grade II), eight anaplastic oligodendrogliomas (AOs; WHO grade III), 20 oligodendrogliomas (ODs; WHO grade II), 49 metastatic carcinomas (METs), 31 primary central nervous system lymphomas (PCNSLs) and 20 medulloblastomas (MBs).
  • Among newly diagnosed tumors, thrombosis was present in 92% of GBM resections, significantly greater than other types of CNS malignancies.
  • Thus, intravascular thrombosis is more frequent in GBM than other CNS malignancies.

  • Genetic Alliance. consumer health - Glioblastoma.
  • Genetic Alliance. consumer health - Thrombosis.
  • MedlinePlus Health Information. consumer health - Blood Clots.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neuropathol Exp Neurol. 2005 Jun;64(6):479-89 [15977639.001]
  • [Cites] Cancer Res. 2006 Mar 1;66(5):2584-91 [16510576.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 Jun;65(6):529-39 [16783163.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 Sep;65(9):846-54 [16957578.001]
  • [Cites] Cancer Res. 2006 Nov 15;66(22):10643-6 [17108099.001]
  • [Cites] Crit Rev Oncol Hematol. 2007 May;62(2):126-36 [17293122.001]
  • [Cites] Acta Neuropathol. 2007 Aug;114(2):97-109 [17618441.001]
  • [Cites] Proc Staff Meet Mayo Clin. 1949 Feb 2;24(3):71-5 [18111063.001]
  • [Cites] Cancer. 2000 Jun 1;88(11):2606-18 [10861440.001]
  • [Cites] J Neuropathol Exp Neurol. 2001 Mar;60(3):248-62 [11245209.001]
  • [Cites] Thromb Res. 2001 Jun 15;102(6):V215-24 [11516455.001]
  • [Cites] Curr Opin Pulm Med. 2001 Sep;7(5):326-31 [11584184.001]
  • [Cites] J Neurosurg. 1991 Mar;74(3):480-6 [1899696.001]
  • [Cites] Nature. 1992 Oct 29;359(6398):845-8 [1279432.001]
  • [Cites] Neurosurgery. 1995 Feb;36(2):375-80; discussion 380-1 [7731519.001]
  • [Cites] Cancer. 1996 Mar 15;77(6):1161-6 [8635139.001]
  • [Cites] Noshuyo Byori. 1996 Nov;13(2):115-8 [8958516.001]
  • [Cites] J Pathol Bacteriol. 1954 Jul;68(1):231-3 [13212575.001]
  • [Cites] Acta Pathol Microbiol Scand. 1950;27(1):51-64 [15406242.001]
  • [Cites] Cancer Res. 2005 Feb 15;65(4):1406-13 [15735028.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):987-96 [15758009.001]
  • [Cites] Neuro Oncol. 2005 Apr;7(2):122-33 [15831231.001]
  • [Cites] Trends Mol Med. 2002;8(4 Suppl):S62-7 [11927290.001]
  • [Cites] Clin Biochem. 2002 Jun;35(4):321-5 [12135696.001]
  • [Cites] Neurosurgery. 2002 Jul;51(1):2-12; discussion 12-3 [12182418.001]
  • [Cites] Ann Intern Med. 2003 Apr 15;138(8):659-68 [12693889.001]
  • [Cites] Cancer Res. 2004 Feb 1;64(3):920-7 [14871821.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2004 Mar 15;58(4):1147-52 [15001257.001]
  • [Cites] Lab Invest. 2004 Apr;84(4):397-405 [14990981.001]
  • [Cites] Cancer. 1983 Aug 1;52(3):550-4 [6305479.001]
  • [Cites] Cancer. 1987 May 1;59(9):1617-25 [3030531.001]
  • [Cites] Cancer. 1988 Nov 15;62(10):2152-65 [3179928.001]
  • (PMID = 18093251.001).
  • [ISSN] 1015-6305
  • [Journal-full-title] Brain pathology (Zurich, Switzerland)
  • [ISO-abbreviation] Brain Pathol.
  • [Language] ENG
  • [Grant] United States / NINDS NIH HHS / NS / NS053727-01; United States / NINDS NIH HHS / NS / R01 NS053727; United States / NINDS NIH HHS / NS / NS053727; United States / NINDS NIH HHS / NS / R01 NS053727-01
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] Switzerland
  • [Other-IDs] NLM/ NIHMS82090; NLM/ PMC2610479
  •  go-up   go-down


8. Mahzouni P, Mohammadizadeh F, Mougouei K, Moghaddam NA, Chehrei A, Mesbah A: Determining the relationship between "microvessel density" and different grades of astrocytoma based on immunohistochemistry for "factor VIII-related antigen" (von Willebrand factor) expression in tumor microvessels. Indian J Pathol Microbiol; 2010 Oct-Dec;53(4):605-10
Hazardous Substances Data Bank. FORMALDEHYDE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Determining the relationship between "microvessel density" and different grades of astrocytoma based on immunohistochemistry for "factor VIII-related antigen" (von Willebrand factor) expression in tumor microvessels.
  • BACKGROUND: Astrocytic brain tumors are the most common primary central nervous system tumors, which are classified into four grades.
  • One of the most important pathologic criteria for the diagnosis of higher-grade astrocytomas (especially glioblastoma multiforme) is microvessel proliferation, particularly in the form of glomeruloid complex.
  • Because tumor angiogenesis is a necessary factor for growth and invasiveness of malignancies, microvessel density (MVD) and intensity of angiogenesis may be used to determine the grade of astrocytomas and plan therapy accordingly.
  • We have planned this study to evaluate the relationship between vwf expression in microvessels and different grades of astrocytoma.
  • MATERIALS AND METHODS: Sixty-four formalin-fixed and paraffin-embedded blocks of surgical specimens with diagnosis of astrocytoma (grades I to IV, each of them 16 blocks) were selected in a simple-nonrandom sampling.
  • Scores 0 and 1 of microvessel staining intensity were not observed in any grades studied, but severe staining intensity (score 3) was observed in 18.8%, 37.5%, 56.3%, and 87.5% of grades I, II, III, and IV astrocytomas, respectively.
  • "Vwf vessel index" (MVD staining intensity of microvessels) was 23.84, 25.62, 31.62, and 62.43 in grades I, II, III, and IV astrocytomas, respectively.
  • The intensity of microvessel stain increases in parallel with increasing tumor grade.
  • Regarding "microvessel density" and "vwf vessel index," the difference is predominantly between grade IV and all other grades.
  • [MeSH-major] Astrocytoma / pathology. Microvessels / pathology. Neovascularization, Pathologic. Severity of Illness Index. von Willebrand Factor / analysis
  • [MeSH-minor] Adult. Child. Female. Formaldehyde. Humans. Immunohistochemistry / methods. Male. Microscopy. Middle Aged. Paraffin Embedding. Pathology / methods. Statistics as Topic. Tissue Fixation

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 21045378.001).
  • [ISSN] 0974-5130
  • [Journal-full-title] Indian journal of pathology & microbiology
  • [ISO-abbreviation] Indian J Pathol Microbiol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] India
  • [Chemical-registry-number] 0 / von Willebrand Factor; 1HG84L3525 / Formaldehyde
  •  go-up   go-down


9. Hales RK, Shokek O, Burger PC, Paynter NP, Chaichana KL, Quiñones-Hinojosa A, Jallo GI, Cohen KJ, Song DY, Carson BS, Wharam MD: Prognostic factors in pediatric high-grade astrocytoma: the importance of accurate pathologic diagnosis. J Neurooncol; 2010 Aug;99(1):65-71
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Prognostic factors in pediatric high-grade astrocytoma: the importance of accurate pathologic diagnosis.
  • To characterize a population of pediatric high-grade astrocytoma (HGA) patients by confirming the proportion with a correct diagnosis, and determine prognostic factors for survival in a subset diagnosed with uniform pathologic criteria.
  • Log-rank analysis was used to compare survival by patient, tumor, and treatment factors.
  • At initial diagnosis, 27 patients were grade III (43%) and 36 grade IV (57%).
  • Pathologic misdiagnosis should be suspected in patients who are long term survivors of a pediatric high grade astrocytoma.
  • [MeSH-major] Brain / pathology. Brain Neoplasms / diagnosis. Neoplasms, Neuroepithelial / diagnosis. Pediatrics
  • [MeSH-minor] Adolescent. Age Factors. Child. Child, Preschool. Cohort Studies. Female. Humans. Infant. Kaplan-Meier Estimate. Male. Multivariate Analysis. Prognosis. Retrospective Studies. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • MedlinePlus Health Information. consumer health - Children's Health.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer. 2003 Sep 15;98(6):1243-52 [12973849.001]
  • [Cites] Brain Pathol. 1993 Jul;3(3):255-68 [8293185.001]
  • [Cites] Clin Cancer Res. 1999 Jul;5(7):1786-92 [10430083.001]
  • [Cites] J Natl Cancer Inst. 1993 May 5;85(9):704-10 [8478956.001]
  • [Cites] Br J Cancer. 2004 Aug 2;91(3):425-9 [15266331.001]
  • [Cites] Pediatr Neurosurg. 1994;20(4):226-32 [8043460.001]
  • [Cites] Curr Treat Options Oncol. 2001 Dec;2(6):529-36 [12057098.001]
  • [Cites] J Clin Oncol. 2000 Mar;18(6):1246-53 [10715294.001]
  • [Cites] J Neurol. 2000 Jun;247(6):455-60 [10929275.001]
  • [Cites] Cancer J. 2003 Mar-Apr;9(2):107-12 [12784876.001]
  • [Cites] J Clin Oncol. 2006 Jun 1;24(16):2563-9 [16735709.001]
  • [Cites] J Clin Oncol. 2002 May 1;20(9):2267-76 [11980997.001]
  • [Cites] AJR Am J Roentgenol. 2001 Aug;177(2):449-54 [11461881.001]
  • [Cites] Arch Neurol. 1999 Apr;56(4):421-5 [10199329.001]
  • [Cites] J Clin Oncol. 2002 Apr 15;20(8):2076-84 [11956268.001]
  • [Cites] J Neurosurg. 1978 Sep;49(3):333-43 [355604.001]
  • [Cites] Acta Neuropathol. 2007 Aug;114(2):97-109 [17618441.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1996 Oct 1;36(3):549-56 [8948338.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1998 Jan 1;40(1):51-5 [9422557.001]
  • [Cites] Neuro Oncol. 1999 Jan;1(1):14-25 [11554386.001]
  • [Cites] Cancer. 2000 Jun 15;88(12):2887 [10870076.001]
  • [Cites] Am J Pathol. 2001 Apr;158(4):1525-32 [11290570.001]
  • [Cites] Neuro Oncol. 2003 Jul;5(3):197-207 [12816726.001]
  • [Cites] Cancer Res. 2001 Mar 1;61(5):2124-8 [11280776.001]
  • [Cites] Cancer. 1987 Oct 1;60(7):1651-6 [3621134.001]
  • [Cites] Cancer Res. 2001 Oct 15;61(20):7404-7 [11606370.001]
  • [Cites] Cancer. 2004 Aug 15;101(4):817-24 [15305415.001]
  • [Cites] Childs Nerv Syst. 2008 Apr;24(4):467-75 [17978821.001]
  • [Cites] Neurosurgery. 2002 Jun;50(6):1238-44; discussion 1244-5 [12015841.001]
  • [Cites] Brain Pathol. 2000 Apr;10 (2):249-59 [10764044.001]
  • [Cites] Lancet Oncol. 2008 Jan;9(1):29-38 [18082451.001]
  • [Cites] Clin Cancer Res. 2004 Dec 15;10(24):8220-8 [15623597.001]
  • [Cites] J Neurosurg. 1998 Jan;88(1):1-10 [9420066.001]
  • [Cites] Neurosurgery. 1996 Feb;38(2):258-64 [8869052.001]
  • [Cites] Cancer. 2000 Nov 15;89(10):2131-7 [11066055.001]
  • [Cites] J Neurosurg. 2003 Sep;99(3):467-73 [12959431.001]
  • [Cites] Neuroradiology. 1980;19(2):59-66 [6245388.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1979 Oct;5(10):1725-31 [231022.001]
  • [Cites] Cancer Res. 2006 Dec 1;66(23):11172-8 [17145861.001]
  • (PMID = 20043190.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


10. Yue WY, Yu SH, Zhao SG, Chen ZP: Molecular markers relating to malignant progression in Grade II astrocytoma. J Neurosurg; 2009 Apr;110(4):709-14
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Molecular markers relating to malignant progression in Grade II astrocytoma.
  • OBJECT: Astrocytoma may progress rapidly or remain stable for many years.
  • To clarify whether molecular characteristics could be prognostic factors, several cell cycling-associated molecular alterations in the diffuse astrocytoma have been investigated.
  • METHODS: Thirty-three patients in whom WHO Grade II astrocytoma had been initially diagnosed were assigned to 1 of 3 groups.
  • Group 1 consisted of 10 patients with malignant progression; the tumor had recurred within 5 years and histological analysis had confirmed that the tumor progressed to Grade III or IV.
  • Group 2 consisted of 10 patients in whom there was no malignant progression; the tumor recurred within 5 years, but histological analysis confirmed that the tumor remained at Grade II.
  • Expression of Ki 67, TP53, p27, and p21 was examined using immunohistochemical analysis for the tumor samples obtained during the first and second (in recurrent cases) surgeries.
  • [MeSH-major] Astrocytoma / chemistry. Astrocytoma / pathology. Biomarkers, Tumor / analysis. Brain Neoplasms / chemistry. Brain Neoplasms / pathology. Cyclin-Dependent Kinase Inhibitor p21 / analysis. Ki-67 Antigen / analysis. Proliferating Cell Nuclear Antigen / analysis. Tumor Suppressor Protein p53 / analysis
  • [MeSH-minor] Adult. Base Sequence. Disease Progression. Female. Humans. Immunohistochemistry. Male. Neoplasm Recurrence, Local. Polymerase Chain Reaction

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19025355.001).
  • [ISSN] 0022-3085
  • [Journal-full-title] Journal of neurosurgery
  • [ISO-abbreviation] J. Neurosurg.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / CDKN1A protein, human; 0 / Cyclin-Dependent Kinase Inhibitor p21; 0 / Ki-67 Antigen; 0 / Proliferating Cell Nuclear Antigen; 0 / Tumor Suppressor Protein p53; 0 / p27 antigen
  •  go-up   go-down


11. Jayawardena S, Sooriabalan D, Indulkar S, Kim HH, Matin A, Maini A: Regression of grade III astrocytoma during the treatment of CML with imatinib mesylate. Am J Ther; 2006 Sep-Oct;13(5):458-9
Hazardous Substances Data Bank. IMATINIB MESYLATE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Regression of grade III astrocytoma during the treatment of CML with imatinib mesylate.
  • Astrocytomas are central nervous system neoplasms, which are derived predominately from astrocytes.
  • On the basis of the histopathologic characteristics astrocytomas are graded from I to IV.
  • The cells that demonstrate the greatest degree of anaplasia are used to determine the histologic grade of the tumor.
  • The mean age of survival are approximately 10 years from the time of diagnosis for pilocystic astrocytomas (World Health Organization grade I), more than 5 years for patients with low-grade diffuse astrocytomas (WHO grade II), 2 to 5 years for those with anaplastic astrocytomas (WHO grade III), and less than 1 year for patients with glioblastoma (WHO grade IV).
  • The treatment is a combination of surgery, radiation, and chemotherapy depending of the grade of astrocytoma.
  • We present a case of 31-year-old man with grade III astrocytoma with subsequent chronic myelogenous leukemia treated with imatinib mesylate as part of his chronic myelogenous leukemia treatment failing to show recurrence of the astrocytoma 10 years after standard treatment for astrocytoma.
  • [MeSH-major] Antineoplastic Agents / therapeutic use. Astrocytoma / drug therapy. Brain Neoplasms / drug therapy. Leukemia, Myeloid, Acute / drug therapy. Piperazines / therapeutic use. Pyrimidines / therapeutic use
  • [MeSH-minor] Adult. Benzamides. Combined Modality Therapy. Humans. Imatinib Mesylate. Magnetic Resonance Imaging. Male

  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Cancer Chemotherapy.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16988542.001).
  • [ISSN] 1075-2765
  • [Journal-full-title] American journal of therapeutics
  • [ISO-abbreviation] Am J Ther
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Benzamides; 0 / Piperazines; 0 / Pyrimidines; 8A1O1M485B / Imatinib Mesylate
  •  go-up   go-down


12. Zhou W, Jiang Z, Song X, Liu Y, Wen P, Guo Y, Xu F, Kong L, Zhang P, Han A, Yu J: Promoter hypermethylation-mediated down-regulation of CXCL12 in human astrocytoma. J Neurosci Res; 2008 Oct;86(13):3002-10
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Promoter hypermethylation-mediated down-regulation of CXCL12 in human astrocytoma.
  • However, the role of CXCL12/CXCR4 axis, especially CXCL12, in the regulation of tumor invasiveness is largely still unknown.
  • Using real-time quantitative RT-PCR assays, we observed that CXCR4 expression increased with increasing WHO grade in astrocytoma, suggesting that CXCR4 may be a marker of aggressive biological behavior of astrocytoma.
  • Epigenetic inactivation of CXCL12 was implicated mainly in low-grade astrocytomas, via DNA hypermethylation by DNMT1, -3A, and -3B; 21.1% (16/76) of the astrocytomas showed reduced or lack of CXCL12 expression, in line with epigenetic silencing of gene transcripts.
  • However, it is interesting to note that 61.8% (47/76) of tumors, mainly high-grade astrocytomas, displayed elevated transcription of CXCL12.
  • The expression levels of CXCL12 mRNA in glioblastomas (WHO grade IV) were significantly higher than in normal brain tissues.
  • In summary, our data show that CXCL12 promoter hypermethylation is an early event in astrocytoma development.
  • However, the high expressions of CXCR4 and CXCL12 in glioblastomas, the more invasive astrocytomas, suggest a different role of CXCL12/CXCR4 signaling axis in astrocytoma progression.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Chemokine CXCL12 / genetics. DNA Methylation. Promoter Regions, Genetic
  • [MeSH-minor] Adult. Down-Regulation. Epigenesis, Genetic. Female. Gene Expression. Gene Expression Regulation, Neoplastic. Humans. Male. Middle Aged. RNA, Messenger / analysis. Receptors, CXCR4 / biosynthesis. Reverse Transcriptase Polymerase Chain Reaction

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2008 Wiley-Liss, Inc.
  • (PMID = 18512766.001).
  • [ISSN] 1097-4547
  • [Journal-full-title] Journal of neuroscience research
  • [ISO-abbreviation] J. Neurosci. Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / CXCL12 protein, human; 0 / CXCR4 protein, human; 0 / Chemokine CXCL12; 0 / RNA, Messenger; 0 / Receptors, CXCR4
  •  go-up   go-down


13. Xu P, Pu PY, Kang CS, Jia ZF, Zhou X, Wang GX: [Differential expression of Notch1 and Notch2 in astrocytoma and medulloblastoma]. Zhonghua Bing Li Xue Za Zhi; 2008 Jul;37(7):450-3
Genetic Alliance. consumer health - Medulloblastoma.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Differential expression of Notch1 and Notch2 in astrocytoma and medulloblastoma].
  • OBJECTIVE: To detect the differential expression of Notch1 and Notch2 in human astrocytoma and medulloblastoma; and to study the role of Notch1 and Notch2 in the development of both tumors.
  • METHODS: Immunohistochemical staining (SP method) and Western blot analysis were used to detect Notch1 and Notch2 expression in tissue arrays and freshly resected samples of normal brain tissue, astrocytoma and medulloblastoma.
  • RESULTS: Notch1 and Notch2 were negative in normal human brain tissue.
  • Notch1 was highly expressed (total positive rate 80.0%, 48/60) while Notch2 was not detected in grade IV astrocytomas and sporadically observed in lower grade astrocytomas (total positive rate 10.0%, 6/60).
  • The percentage of positive tumor cells and expression level of Notch1 increased with higher histologic grade (r = 0.859, P < 0.05).
  • CONCLUSIONS: Notch1 and Notch2 show differential expression in astrocytoma and medulloblastoma.
  • This may be related to their different functional activities during the process of brain development.
  • [MeSH-major] Astrocytoma / metabolism. Biomarkers, Tumor / metabolism. Medulloblastoma / metabolism. Receptor, Notch1 / metabolism. Receptor, Notch2 / metabolism
  • [MeSH-minor] Adolescent. Adult. Aged. Brain / metabolism. Brain Neoplasms / metabolism. Child. Child, Preschool. Female. Gene Expression Regulation, Neoplastic. Humans. Male. Middle Aged. Young Adult

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19035115.001).
  • [ISSN] 0529-5807
  • [Journal-full-title] Zhonghua bing li xue za zhi = Chinese journal of pathology
  • [ISO-abbreviation] Zhonghua Bing Li Xue Za Zhi
  • [Language] chi
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] China
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Receptor, Notch1; 0 / Receptor, Notch2
  •  go-up   go-down


14. Christensen K, Schrøder HD, Kristensen BW: CD133 identifies perivascular niches in grade II-IV astrocytomas. J Neurooncol; 2008 Nov;90(2):157-70
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] CD133 identifies perivascular niches in grade II-IV astrocytomas.
  • The aim of the present study was to investigate the localization and distribution of the putative brain tumour stem cell marker CD133 in formalin fixed paraffin embedded astrocytomas.
  • A retrospective analysis of 114 grade II, III and IV astrocytomas was undertaken.
  • There was no correlation between the mean volume fraction of CD133(+) niches and all CD133(+) tumour cells and tumour grade.
  • CD133(+) tumour vessels may play an important role in a brain tumour stem cell context, while CD133 alone does not appear to be a specific tumour stem cell marker related to patient survival.
  • [MeSH-major] Antigens, CD / metabolism. Astrocytoma / pathology. Brain Neoplasms / pathology. Endothelium, Vascular / metabolism. Glycoproteins / metabolism. Peptides / metabolism
  • [MeSH-minor] AC133 Antigen. Adolescent. Adult. Aged. Analysis of Variance. Child. Child, Preschool. Female. Humans. Indoles. Intermediate Filament Proteins / metabolism. Male. Middle Aged. Nerve Tissue Proteins / metabolism. Nestin. Retrospective Studies. Survival Analysis. Ubiquitin-Protein Ligases / metabolism. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Mod Pathol. 2004 Jul;17(7):790-7 [15073602.001]
  • [Cites] Cancer Res. 2007 Feb 1;67(3):1030-7 [17283135.001]
  • [Cites] J Comp Neurol. 2000 Oct 2;425(4):479-94 [10975875.001]
  • [Cites] Cell Tissue Res. 2005 Jan;319(1):15-26 [15558321.001]
  • [Cites] Nature. 1994 Feb 17;367(6464):645-8 [7509044.001]
  • [Cites] Am J Clin Pathol. 2008 Mar;129(3):358-66 [18285257.001]
  • [Cites] Clin Cancer Res. 2008 Jan 1;14 (1):123-9 [18172261.001]
  • [Cites] Nature. 2007 Jan 4;445(7123):106-10 [17122772.001]
  • [Cites] Arch Pathol Lab Med. 2002 Jun;126(6):702-5 [12033959.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15178-83 [14645703.001]
  • [Cites] Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16466-71 [17056721.001]
  • [Cites] Science. 2004 May 28;304(5675):1338-40 [15060285.001]
  • [Cites] Cell. 2004 Mar 19;116(6):769-78 [15035980.001]
  • [Cites] Cancer Res. 2007 Apr 15;67(8):3560-4 [17440065.001]
  • [Cites] Int J Cancer. 2004 Oct 10;111(6):921-8 [15300804.001]
  • [Cites] Cancer Res. 2005 Dec 1;65(23 ):10946-51 [16322242.001]
  • [Cites] Nat Rev Cancer. 2007 Oct;7(10 ):733-6 [17882276.001]
  • [Cites] PLoS One. 2008 Apr 09;3(4):e1936 [18398462.001]
  • [Cites] Acta Cytol. 1989 Sep-Oct;33(5):576-82 [2476903.001]
  • [Cites] Cancer Cell. 2007 Jan;11(1):69-82 [17222791.001]
  • [Cites] Cancer Res. 2001 Dec 15;61(24):8664-7 [11751382.001]
  • [Cites] Br J Cancer. 1992 Aug;66(2):373-85 [1503912.001]
  • [Cites] APMIS. 1988 May;96(5):379-94 [3288247.001]
  • [Cites] Cancer Res. 2003 Sep 15;63(18):5821-8 [14522905.001]
  • [Cites] J Histochem Cytochem. 2002 Feb;50(2):147-58 [11799134.001]
  • [Cites] Nature. 2004 Nov 18;432(7015):396-401 [15549107.001]
  • [Cites] Acta Neurol Scand Suppl. 1992;137:8-13 [1357908.001]
  • [Cites] Neurosurgery. 2008 Feb;62(2):505-14; discussion 514-5 [18382330.001]
  • [Cites] Cancer Res. 2006 May 1;66(9):4553-7 [16651403.001]
  • [Cites] Biochem Biophys Res Commun. 2007 Jul 6;358(3):908-13 [17512905.001]
  • [Cites] Cancer Res. 2006 Aug 15;66(16):7843-8 [16912155.001]
  • [Cites] J Histochem Cytochem. 1997 Nov;45(11):1455-9 [9358847.001]
  • [Cites] Acta Neurochir (Wien). 1986;81(3-4):132-4 [3751697.001]
  • [Cites] Clin Neuropathol. 2004 Mar-Apr;23(2):47-52 [15074577.001]
  • [Cites] Nature. 2007 Jan 4;445(7123):111-5 [17122771.001]
  • [Cites] Nat Med. 1997 Jul;3(7):730-7 [9212098.001]
  • [Cites] Cancer Res. 2007 May 1;67(9):4010-5 [17483311.001]
  • [Cites] Nature. 2006 Dec 7;444(7120):756-60 [17051156.001]
  • [Cites] J Clin Pathol. 2004 Sep;57(9):965-9 [15333659.001]
  • [Cites] Stem Cells. 2005 Jun-Jul;23 (6):791-804 [15917475.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3983-8 [12629218.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 Sep;65(9):846-54 [16957578.001]
  • [Cites] J Microsc. 1986 Jul;143(Pt 1):3-45 [3761363.001]
  • [Cites] Nature. 2004 Feb 19;427(6976):740-4 [14973487.001]
  • [Cites] J Microsc. 1987 Sep;147(Pt 3):229-63 [3430576.001]
  • [Cites] J Neurooncol. 2008 Jan;86(1):31-45 [17611714.001]
  • [Cites] Differentiation. 2001 Sep;68(2-3):141-52 [11686236.001]
  • [Cites] Cancer Res. 2007 Jun 15;67(12 ):5727-36 [17575139.001]
  • (PMID = 18612800.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / AC133 Antigen; 0 / Antigens, CD; 0 / Glycoproteins; 0 / Indoles; 0 / Intermediate Filament Proteins; 0 / NES protein, human; 0 / Nerve Tissue Proteins; 0 / Nestin; 0 / PROM1 protein, human; 0 / Peptides; 47165-04-8 / DAPI; EC 2.3.2.27 / MIB1 ligase, human; EC 2.3.2.27 / Ubiquitin-Protein Ligases
  •  go-up   go-down


15. Krzyszkowski T, Dziedzic T, Czepko R, Szczudlik A: Decreased levels of interleukin-10 and transforming growth factor-beta 2 in cerebrospinal fluid of patients with high grade astrocytoma. Neurol Res; 2008 Apr;30(3):294-6

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Decreased levels of interleukin-10 and transforming growth factor-beta 2 in cerebrospinal fluid of patients with high grade astrocytoma.
  • It is unknown if production of these cytokines is limited to the site of tumor or these molecules are also released to cerebrospinal fluid and blood.
  • The goal of our study was to determine if patients with astrocytoma have increased levels of IL-10 and TGF-beta 2 in cerebrospinal fluid (CSF) and serum.
  • METHODS: CSF and serum samples were taken from 16 patients with astrocytoma of grade III or grade IV according to the WHO classification and from 28 age- and gender-matched controls (patients with normal pressure hydrocephalus or with lumbar disk herniation).
  • Patients with astrocytoma had decreased levels of IL-10 (0.9 +/- 1.2 versus 3.5 +/- 9.2 pg/ml, p=0.01) and TGF-beta 2 (0.0 +/- 0.0 versus 5.4 +/- 9.4 pg/ml, p=0.05) in CSF compared to controls.
  • Because serum IL-10 and TGF-beta 2 levels are similar in patients with astrocytoma and in controls, these cytokines are probably not directly involved in peripheral monocyte and T cell deactivation.
  • [MeSH-major] Astrocytoma / blood. Astrocytoma / cerebrospinal fluid. Interleukin-10 / blood. Interleukin-10 / cerebrospinal fluid. Transforming Growth Factor beta2 / blood. Transforming Growth Factor beta2 / cerebrospinal fluid
  • [MeSH-minor] Adult. Aged. Case-Control Studies. Enzyme-Linked Immunosorbent Assay / methods. Female. Humans. Hydrocephalus, Normal Pressure / blood. Hydrocephalus, Normal Pressure / cerebrospinal fluid. Intervertebral Disc Displacement / blood. Intervertebral Disc Displacement / cerebrospinal fluid. Lumbosacral Region. Male. Middle Aged

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17848206.001).
  • [ISSN] 0161-6412
  • [Journal-full-title] Neurological research
  • [ISO-abbreviation] Neurol. Res.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Transforming Growth Factor beta2; 130068-27-8 / Interleukin-10
  •  go-up   go-down


16. Chen J, Xia J, Zhou YC, Xia LM, Zhu WZ, Zou ML, Feng DY, Wang CY: [Correlation between magnetic resonance diffusion weighted imaging and cell density in astrocytoma]. Zhonghua Zhong Liu Za Zhi; 2005 May;27(5):309-11
MedlinePlus Health Information. consumer health - Childhood Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Correlation between magnetic resonance diffusion weighted imaging and cell density in astrocytoma].
  • OBJECTIVE: To evaluate the apparent diffusion coefficients (ADC) in magnetic resonance diffusion weighted imaging with echo-planar technique in depicting the tumor cellularity and grading of astrocytoma.
  • METHODS: Thirty-four astrocytoma patients including 18 male and 16 female with age from 10 to 73 years (mean 38.4 years) were examined by MRI and eventually proved by surgical resection and pathological examination.
  • Of them, 26 had low-grade (grade I, II) astrocytoma and 8 high-grade (grade III, IV) astrocytoma.
  • ADC value of astrocytoma was determined on magnetic resonance diffusion weighted images.
  • Cellularity of the astrocytoma was analyzed using Adobe Photoshop 7.0.1 software.
  • RESULTS: The mean ADC value (in units of 10(-4) mm(2)/s) of the high-grade astrocytomas (7.34 +/- 2.95) was significantly lower than that of the low-grade astrocytomas (13.76 +/- 3.31) (t = 4.91, P < 0.001).
  • The mean cellularity of the high-grade astrocytomas (19.81 +/- 9.73)% was significantly higher than that of the low-grade astrocytomas (4.74 +/- 2.96)% (t = 4.32, P = 0.003).
  • ADC value of the astrocytoma was significantly and negatively correlated with its cellularity (r = -0.535, P = 0.001).
  • CONCLUSION: ADC value of astrocytoma is significantly and negatively correlated with its cellularity.
  • Magnetic resonance diffusion weighted imaging may well be highly potential in predicting the degree of astrocytoma.
  • [MeSH-major] Astrocytoma / diagnosis. Brain Neoplasms / diagnosis. Diffusion Magnetic Resonance Imaging
  • [MeSH-minor] Adolescent. Adult. Aged. Cell Count. Child. Female. Glioblastoma / diagnosis. Glioblastoma / pathology. Humans. Image Processing, Computer-Assisted. Male. Middle Aged

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15996330.001).
  • [ISSN] 0253-3766
  • [Journal-full-title] Zhonghua zhong liu za zhi [Chinese journal of oncology]
  • [ISO-abbreviation] Zhonghua Zhong Liu Za Zhi
  • [Language] chi
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] China
  •  go-up   go-down


17. Lu Z, Wang Y, Zhang Q, Zhang X, Wang S, Xie H, Li Y, Jiao B, Zhang J: Association between the functional polymorphism in the matrix metalloproteinase-7 promoter and susceptibility to adult astrocytoma. Brain Res; 2006 Nov 6;1118(1):6-12
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Association between the functional polymorphism in the matrix metalloproteinase-7 promoter and susceptibility to adult astrocytoma.
  • To study the association between the A to G transition at the -181-bp position in the promoter of matrix metalloproteinase-7 gene (MMP-7-181A/G) and susceptibility to adult astrocytoma, the MMP-7-181A/G polymorphism was genotyped by PCR-RFLP analysis among 221 adult astrocytoma patients and 366 healthy controls in a population of northern China.
  • The result showed that the overall distribution of the MMP-7 genotypes among astrocytoma patients and healthy controls was significantly different (P<0.001).
  • Compared with the A/A genotype, the G/G genotype significantly increased the risk to the development of astrocytoma (age and gender adjusted OR=2.77, 95% CI=1.27-6.02), while the MMP-7 A/G genotype only marginally increased the risk of developing this cancer (age and gender adjusted OR=1.66, 95% CI=0.99-2.84).
  • Stratification analysis showed that the G/G genotype significantly increased the risk of astrocytoma only among male subjects (age adjusted OR=3.24, 95% CI=1.12-9.41) and individuals younger than 45 years (age and gender adjusted OR=3.16, 95% CI=1.09-9.16).
  • When stratified by histological grades, a significant higher risk for developing grade II astrocytoma was observed among individuals harboring the A/G genotype (age and gender adjusted OR=2.06, 95% CI=1.05-4.05), while an about 3-fold elevation of risk to develop grades II, III, and IV astrocytomas was observed among individuals with the G/G genotype.
  • The present result, for the first time, suggested that the MMP-7-181A/G polymorphism might be associated with the susceptibility to adult astrocytoma.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Genetic Predisposition to Disease / genetics. Matrix Metalloproteinase 7 / genetics. Polymorphism, Genetic / genetics. Promoter Regions, Genetic / genetics
  • [MeSH-minor] Adult. Age Factors. Biomarkers, Tumor / genetics. DNA Mutational Analysis. Female. Gene Frequency. Genetic Markers / genetics. Genetic Testing. Genotype. Humans. Male. Middle Aged. Sex Factors

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16956593.001).
  • [ISSN] 0006-8993
  • [Journal-full-title] Brain research
  • [ISO-abbreviation] Brain Res.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Genetic Markers; EC 3.4.24.23 / Matrix Metalloproteinase 7
  •  go-up   go-down


18. Jiang Z, Hu J, Li X, Jiang Y, Zhou W, Lu D: Expression analyses of 27 DNA repair genes in astrocytoma by TaqMan low-density array. Neurosci Lett; 2006 Dec 1;409(2):112-7
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression analyses of 27 DNA repair genes in astrocytoma by TaqMan low-density array.
  • The mRNA expressions of 27 genes of the DNA repair system as well as their correlation with the clinical characteristics were studied in human astrocytoma.
  • We applied TaqMan low-density array to investigate the mRNA expressions of 27 DNA repair genes in 40 astrocytoma tissues (10 of grade II, 10 of grade III, and 20 of grade IV, according to the WHO Grading System).
  • And the normal brain tissues from 10 non-astrocytoma patients were collected as the control.
  • We found that the expression of the 13 genes were significantly (P<0.01) down-regulated in grade II, III, IV of astrocytoma compared to normal brain tissues, including ERCC1, ERCC2, ERCC3, ERCC4, MGMT, MLH1, MLH3, NTHL1, OGG1, RAD50, SMUG1, XRCC4 and XRCC5.
  • Meanwhile, we found that the expression of MSH2, MSH6, NUDT1 and XRCC3 were only significantly lower in grade II and III of astrocytoma, and the expression of MRE11A and MUS81 were only significantly lower in grade III and IV.
  • But the expression of MPG, MSH3, MUTHY and RAD51 were not changed in any grade of astrocytoma.
  • We suggest that TaqMan low-density array is an effective multivariate technique to examine the expression of DNA repair genes in astrocytomas, which can be applied to identify tumor-specific genes.
  • We also suggest that the down-regulation of some DNA repair genes may be associated with pathogenesis and poor prognosis of astrocytoma.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. DNA Repair / genetics. Gene Expression Regulation, Neoplastic / genetics
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. DNA, Complementary / biosynthesis. DNA, Complementary / genetics. Female. Gene Expression / physiology. Humans. Male. Middle Aged. Oligonucleotide Array Sequence Analysis. Prognosis. RNA, Messenger / biosynthesis. RNA, Messenger / genetics. Reverse Transcriptase Polymerase Chain Reaction. Survival

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17034947.001).
  • [ISSN] 0304-3940
  • [Journal-full-title] Neuroscience letters
  • [ISO-abbreviation] Neurosci. Lett.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Ireland
  • [Chemical-registry-number] 0 / DNA, Complementary; 0 / RNA, Messenger
  •  go-up   go-down


19. Keles GE, Chang EF, Lamborn KR, Tihan T, Chang CJ, Chang SM, Berger MS: Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma. J Neurosurg; 2006 Jul;105(1):34-40
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma.
  • OBJECT: To investigate the prognostic significance of the volumetrically assessed extent of resection on time to tumor progression (TTP), overall survival (OS), and tumor recurrence patterns, the authors retrospectively analyzed preoperative and postoperative tumor volumes in 102 adult patients from the time of the initial resection of a hemispheric anaplastic astrocytoma (AA).
  • METHODS: The quantification of tumor volumes was based on a previously described method involving computerized analysis of magnetic resonance (MR) images.
  • Analysis of contrast-enhancing tumor volumes on T1-weighted MR images was conducted for 67 patients who had contrast-enhancing tumors.
  • The presence or absence of preresection enhancement, actual volume of this enhancement, and the percentage of preoperative enhancement as it relates to the total T2 tumor volume did not have a statistically significant relationship to TTP or OS.
  • In addition to age, the volume of residual disease measured on T2-weighted MR images was the most significant predictor of TTP (p < 0.001), and residual contrast-enhancing tumor volume was the most significant predictor of OS (p = 0.003) on multivariate analysis.
  • In contrast to low-grade gliomas, there was no statistically significant relationship between the extent of resection and histological characteristics at the time of recurrence, that is, tumor Grade III compared with Grade IV.
  • CONCLUSIONS: Data from this retrospective analysis of a histologically uniform group of hemispheric AAs treated in the MR imaging era suggest that residual tumor volumes, as documented on postoperative imaging studies, may be a prognostic factor for TTP and OS for this patient population.
  • [MeSH-major] Astrocytoma / pathology. Astrocytoma / surgery. Brain Neoplasms / pathology. Brain Neoplasms / surgery. Neoplasm Recurrence, Local / pathology
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Contrast Media. Female. Humans. Magnetic Resonance Imaging. Male. Middle Aged. Neoplasm, Residual. Predictive Value of Tests. Retrospective Studies. Survival Rate. Time Factors. Treatment Outcome

  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16871879.001).
  • [ISSN] 0022-3085
  • [Journal-full-title] Journal of neurosurgery
  • [ISO-abbreviation] J. Neurosurg.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Contrast Media
  •  go-up   go-down


20. Ward SJ, Karakoula K, Phipps KP, Harkness W, Hayward R, Thompson D, Jacques TS, Harding B, Darling JL, Thomas DG, Warr TJ: Cytogenetic analysis of paediatric astrocytoma using comparative genomic hybridisation and fluorescence in-situ hybridisation. J Neurooncol; 2010 Jul;98(3):305-18
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Cytogenetic analysis of paediatric astrocytoma using comparative genomic hybridisation and fluorescence in-situ hybridisation.
  • Little is known about the cytogenetic and molecular genetic events that lead to the formation of paediatric astrocytoma.
  • We have analysed 57 paediatric astrocytoma (WHO grades I-IV) using comparative genomic hybridisation in order to identify common regions of abnormality.
  • The presence of copy number alterations was significantly associated with increasing grade of malignancy, and gain of 12q and the presence of high-copy number amplification were associated with a poor outcome in patients with malignant astrocytoma (P = 0.0039 and 0.0085, respectively).
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Comparative Genomic Hybridization / methods. In Situ Hybridization, Fluorescence / methods
  • [MeSH-minor] Adolescent. Analysis of Variance. Child. Child, Preschool. Chromosome Aberrations. Chromosome Disorders / genetics. Chromosomes, Human, Pair 1 / genetics. Chromosomes, Human, Pair 12 / genetics. Chromosomes, Human, Pair 7 / genetics. Chromosomes, Human, Pair 8 / genetics. Female. Humans. Infant. Male. Pediatrics. Survival Analysis. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Hum Pathol. 1995 Sep;26(9):979-86 [7672798.001]
  • [Cites] Genes Chromosomes Cancer. 2001 May;31(1):15-22 [11284031.001]
  • [Cites] Genes Chromosomes Cancer. 1995 Jan;12(1):63-5 [7534113.001]
  • [Cites] J Neurooncol. 1987;4(3):293-308 [3559666.001]
  • [Cites] Childs Nerv Syst. 1998 Nov;14 (11):636-48 [9840364.001]
  • [Cites] Neurosurgery. 1992 Jan;30(1):58-62; discussion 62-3 [1738456.001]
  • [Cites] Brain Pathol. 1993 Jul;3(3):255-68 [8293185.001]
  • [Cites] Clin Cancer Res. 1999 Jul;5(7):1786-92 [10430083.001]
  • [Cites] J Neurosurg. 1999 Feb;90(2):265-73 [9950497.001]
  • [Cites] Clin Cancer Res. 1999 Dec;5(12 ):4085-90 [10632344.001]
  • [Cites] Cancer Genet Cytogenet. 1993 Nov;71(1):40-9 [8275451.001]
  • [Cites] Genes Chromosomes Cancer. 2002 May;34(1):69-77 [11921284.001]
  • [Cites] Am J Pathol. 1994 Nov;145(5):1175-90 [7977648.001]
  • [Cites] J Neurooncol. 2002 Sep;59(2):117-22 [12241104.001]
  • [Cites] Pol J Pathol. 1998;49(4):267-71 [10323080.001]
  • [Cites] Lab Invest. 1996 Jan;74(1):108-19 [8569172.001]
  • [Cites] Cancer Genet Cytogenet. 1997 Aug;97(1):39-53 [9242217.001]
  • [Cites] Cancer Res. 2000 Jan 15;60(2):417-24 [10667596.001]
  • [Cites] Cancer. 1993 Aug 15;72 (4):1404-13 [8339231.001]
  • [Cites] Cancer Genet Cytogenet. 2000 Aug;121(1):67-72 [10958944.001]
  • [Cites] Hum Pathol. 1999 Nov;30(11):1284-90 [10571506.001]
  • [Cites] Cancer Genet Cytogenet. 2003 Apr 1;142(1):1-7 [12660025.001]
  • [Cites] Genes Chromosomes Cancer. 1994 Aug;10(4):231-43 [7522536.001]
  • [Cites] Cancer Genet Cytogenet. 1992 Nov;64(1):75-9 [1333880.001]
  • [Cites] Childs Nerv Syst. 2001 Jan;17(1-2):31-6 [11219620.001]
  • [Cites] Cancer Genet Cytogenet. 1992 May;60(1):67-73 [1591709.001]
  • [Cites] Cancer. 1980 Jun 1;45(11):2787-92 [7379009.001]
  • [Cites] J Neurosurg. 1988 Aug;69(2):171-6 [3392563.001]
  • [Cites] J Neurosurg. 1986 Dec;65(6):751-5 [3772472.001]
  • [Cites] Curr Opin Neurol. 1994 Dec;7(6):484-91 [7866579.001]
  • [Cites] Med Pediatr Oncol. 2002 Mar;38(3):173-7 [11836716.001]
  • [Cites] Cancer Genet Cytogenet. 1995 Jun;81(2):125-34 [7621408.001]
  • [Cites] Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8241-6 [8710854.001]
  • [Cites] J Neurosurg. 1995 Apr;82(4):536-47 [7897512.001]
  • [Cites] Cancer Res. 2006 Dec 1;66(23):11502-13 [17114236.001]
  • [Cites] Acta Neurochir (Wien). 1982;62(3-4):219-32 [7102387.001]
  • [Cites] Genes Chromosomes Cancer. 1994 Dec;11(4):205-15 [7533523.001]
  • [Cites] Cancer Genet Cytogenet. 1996 Oct 1;91(1):13-27 [8908162.001]
  • [Cites] Cancer Res. 2009 Jul 15;69(14):5630-3 [19567670.001]
  • [Cites] J Natl Cancer Inst. 2001 Aug 15;93(16):1246-56 [11504770.001]
  • [Cites] Neuropathol Appl Neurobiol. 2002 Aug;28(4):325-33 [12175345.001]
  • [Cites] Cancer Genet Cytogenet. 2001 Nov;131(1):1-12 [11734311.001]
  • [Cites] Genes Chromosomes Cancer. 1997 May;19(1):6-13 [9135989.001]
  • [Cites] Oncogene. 2008 Mar 27;27(14):2091-6 [17934519.001]
  • [Cites] Brain Pathol. 2003 Oct;13(4):431-9 [14655749.001]
  • [Cites] Cell. 1997 Mar 21;88(6):747-56 [9118218.001]
  • [Cites] Br J Cancer. 2000 Mar;82(6):1218-22 [10735509.001]
  • [Cites] Cancer Genet Cytogenet. 1997 Sep;97(2):125-34 [9283596.001]
  • [Cites] J Neurol Neurosurg Psychiatry. 1981 Sep;44(9):820-8 [7310422.001]
  • [Cites] Am J Pathol. 2001 Apr;158(4):1525-32 [11290570.001]
  • [Cites] Cancer Res. 1994 Mar 1;54(5):1324-30 [8118823.001]
  • [Cites] Brain Tumor Pathol. 2000;17(1):21-7 [10982006.001]
  • [Cites] J Neuropathol Exp Neurol. 2000 Jun;59(6):544-58 [10850867.001]
  • [Cites] Brain Pathol. 2000 Apr;10 (2):249-59 [10764044.001]
  • [Cites] Pediatr Hematol Oncol. 1992 Jul-Sep;9(3):223-35 [1525001.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2001 Nov 1;51(3):704-10 [11597812.001]
  • [Cites] Folia Biol (Praha). 2000;46(5):187-90 [11055797.001]
  • [Cites] J Neurosurg. 1998 Jan;88(1):1-10 [9420066.001]
  • [Cites] Acta Neurochir (Wien). 1994;126(1):17-26 [8154317.001]
  • [Cites] Eur J Cancer. 2000 Oct;36(15):1955-64 [11000577.001]
  • [Cites] Mutat Res. 2005 Jun 3;573(1-2):70-82 [15829238.001]
  • [Cites] Science. 1992 Oct 30;258(5083):818-21 [1359641.001]
  • [Cites] Cancer Genet Cytogenet. 1992 Mar;59(1):12-9 [1313329.001]
  • [Cites] Cancer Res. 1988 Jan 1;48(1):175-80 [3334992.001]
  • [Cites] Cancer Res. 2006 Dec 1;66(23):11172-8 [17145861.001]
  • [Cites] Genes Chromosomes Cancer. 1996 Apr;15(4):199-205 [8703845.001]
  • [Cites] Cancer Res. 1993 Jun 15;53(12 ):2736-9 [8504413.001]
  • (PMID = 20052518.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


21. Zhang L, Zhang WP, Hu H, Wang ML, Sheng WW, Yao HT, Ding W, Chen Z, Wei EQ: Expression patterns of 5-lipoxygenase in human brain with traumatic injury and astrocytoma. Neuropathology; 2006 Apr;26(2):99-106
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression patterns of 5-lipoxygenase in human brain with traumatic injury and astrocytoma.
  • The levels of leukotrienes increase after brain injury and when tumors are present.
  • It has been reported that 5-LOX is widely expressed in the brain and that 5-LOX inhibition provides neuroprotection.
  • However, there is still no information available for the expression patterns of 5-LOX in human brain following trauma or with astrocytomas.
  • In traumatic brain injury, 5-LOX expression increased in glial cells and neutrophils.
  • No 5-LOX expression was found in brain microvessel endothelia, except in the regenerated endothelia of a patient 8 days following brain trauma.
  • Furthermore, 5-LOX expression increased and showed a granular pattern in high-grade (grade III/IV) astrocytoma.
  • These results indicate that 5-LOX has multiple expression patterns, and can be induced by brain injury, which implies that 5-LOX might have pathophysiological roles in the human brain.
  • [MeSH-major] Arachidonate 5-Lipoxygenase / biosynthesis. Astrocytoma / metabolism. Brain / metabolism. Brain Injuries / metabolism. Brain Neoplasms / metabolism
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Female. Glial Fibrillary Acidic Protein / metabolism. Humans. Immunohistochemistry. Male. Middle Aged. Neuroglia / metabolism. Neurons / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16708542.001).
  • [ISSN] 0919-6544
  • [Journal-full-title] Neuropathology : official journal of the Japanese Society of Neuropathology
  • [ISO-abbreviation] Neuropathology
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Australia
  • [Chemical-registry-number] 0 / Glial Fibrillary Acidic Protein; EC 1.13.11.34 / Arachidonate 5-Lipoxygenase
  •  go-up   go-down


22. Stremenova J, Krepela E, Mares V, Trim J, Dbaly V, Marek J, Vanickova Z, Lisa V, Yea C, Sedo A: Expression and enzymatic activity of dipeptidyl peptidase-IV in human astrocytic tumours are associated with tumour grade. Int J Oncol; 2007 Oct;31(4):785-92
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression and enzymatic activity of dipeptidyl peptidase-IV in human astrocytic tumours are associated with tumour grade.
  • Alterations in dipeptidyl peptidase-IV (DPP-IV) enzymatic activity are characteristic of malignant transformation.
  • Through its well-characterized functionality in regulating the activity of bioactive peptides by removal of the N-terminal dipeptide, DPP-IV activity may have profound effects upon metastatic potential and cell growth.
  • Although DPP-IV/CD26 (EC 3.4.14.5) is the canonical representative of the group, a number of other proteins including DPP-7, 8, 9, and seprase/fibroblast activation protein-alpha (FAP-alpha) have been shown to have similar enzymatic activity.
  • This study was set up to address the relative representation and enzymatic activity of plasma membrane localized DPP-IV/CD26 and FAP-alpha in human brain and astrocytic tumours.
  • In parallel, expression of CXCR4, receptor for glioma cell growth stimulator chemokine SDF-1alpha known to be a DPP-IV substrate, was investigated.
  • This is the first report showing that non-malignant brain tissue contains a DPP-IV-like enzymatic activity attributable mostly to DPP-8/9, while the substantial part of the activity in glioma is due to increased DPP-IV/CD26, localized in both the vascular and parenchymal compartments.
  • DPP-IV enzymatic activity increased dramatically with tumour grade severity.
  • A grade-related increase in CXCR4 receptor paralleled the rise in DPP-IV expression and activity.
  • These data might support a role for DPP-IV regulation of the CXCR4-SDF-1alpha axis in glioma development.
  • [MeSH-major] Astrocytoma / enzymology. Astrocytoma / genetics. Dipeptidyl Peptidase 4 / genetics. Dipeptidyl Peptidase 4 / metabolism. Gene Expression Regulation, Enzymologic / physiology
  • [MeSH-minor] Adult. Aged. Antigens, Neoplasm / genetics. Antigens, Neoplasm / metabolism. Biomarkers, Tumor / genetics. Biomarkers, Tumor / metabolism. Brain Neoplasms / enzymology. Brain Neoplasms / genetics. Brain Neoplasms / pathology. Cell Membrane / metabolism. Female. Gelatinases. Humans. Immunoenzyme Techniques. Male. Membrane Proteins. Middle Aged. RNA, Messenger / genetics. RNA, Messenger / metabolism. RNA, Neoplasm / genetics. RNA, Neoplasm / metabolism. Receptors, CXCR4 / genetics. Receptors, CXCR4 / metabolism. Reverse Transcriptase Polymerase Chain Reaction. Serine Endopeptidases / genetics. Serine Endopeptidases / metabolism. Tumor Cells, Cultured

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17786309.001).
  • [ISSN] 1019-6439
  • [Journal-full-title] International journal of oncology
  • [ISO-abbreviation] Int. J. Oncol.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / Antigens, Neoplasm; 0 / Biomarkers, Tumor; 0 / Membrane Proteins; 0 / RNA, Messenger; 0 / RNA, Neoplasm; 0 / Receptors, CXCR4; EC 3.4.14.5 / Dipeptidyl Peptidase 4; EC 3.4.21.- / Serine Endopeptidases; EC 3.4.21.- / fibroblast activation protein alpha; EC 3.4.24.- / Gelatinases
  •  go-up   go-down


23. MacDonald TJ, Pollack IF, Okada H, Bhattacharya S, Lyons-Weiler J: Progression-associated genes in astrocytoma identified by novel microarray gene expression data reanalysis. Methods Mol Biol; 2007;377:203-22
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Progression-associated genes in astrocytoma identified by novel microarray gene expression data reanalysis.
  • Astrocytoma is graded as pilocytic (WHO grade I), diffuse (WHO grade II), anaplastic (WHO grade III), and glioblastoma multiforme (WHO grade IV).
  • The progression from low- to high-grade astrocytoma is associated with distinct molecular changes that vary with patient age, yet the prognosis of high-grade tumors in children and adults is equally dismal.
  • Whether specific gene expression changes are consistently associated with all high-grade astrocytomas, independent of patient age, is not known.
  • We identified nine genes consistently dysregulated in high-grade tumors, using four novel tests for identifying differentially expressed genes.
  • Four genes encoding ribosomal proteins (RPS2, RPS8, RPS18, RPL37A) were upregulated, and five genes (APOD, SORL1, SPOCK2, PRSS11, ID3) were downregulated in high-grade by all tests.
  • Expression results were validated using a third astrocytoma dataset.
  • APOD, the most differentially expressed gene, has been shown to inhibit tumor cell and vascular smooth muscle cell proliferation.
  • This suggests that dysregulation of APOD may be critical for malignant astrocytoma formation, and thus a possible novel universal target for therapeutic intervention.
  • Further investigation is needed to evaluate the role of APOD, as well as the other genes identified, in malignant astrocytoma development.
  • [MeSH-major] Astrocytoma / genetics. Biomarkers, Tumor / genetics. Brain Neoplasms / genetics. Gene Expression. Oligonucleotide Array Sequence Analysis / methods
  • [MeSH-minor] Adult. Child. Chromosomes, Human. Cluster Analysis. Data Interpretation, Statistical. Disease Progression. Gene Expression Regulation, Neoplastic. Humans. Models, Genetic. Neoplasm Recurrence, Local. Reproducibility of Results

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17634619.001).
  • [ISSN] 1064-3745
  • [Journal-full-title] Methods in molecular biology (Clifton, N.J.)
  • [ISO-abbreviation] Methods Mol. Biol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor
  • [Number-of-references] 49
  •  go-up   go-down


24. Jager B, Schuhmann MU, Schober R, Kortmann RD, Meixensberger J: Induction of gliosarcoma and atypical meningioma 13 years after radiotherapy of residual pilocytic astrocytoma in childhood. Pediatr Neurosurg; 2008;44(2):153-8
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Induction of gliosarcoma and atypical meningioma 13 years after radiotherapy of residual pilocytic astrocytoma in childhood.
  • METHODS AND RESULTS: We report a patient who underwent subtotal resection of a right temporal and insular pilocytic astrocytoma at age 8 in 1988 followed by high-dose radiation therapy.
  • A local recurrence, grade WHO III, with signs of focal sarcomatous transformation, was subtotally resected 13 years later in 2001.
  • A new and fast growing right frontal meningioma, grade WHO II, was removed in 2003.
  • In 2004 a second glioma recurrence was partially resected, this time graded gliosarcoma WHO IV.
  • Another tumor mass reduction in 2005 was followed by stereotactic radiotherapy.
  • Irradiation-induced meningiomas in children are known to occur, however not following radiotherapy of low-grade hemispheric gliomas.
  • The presented case illustrates why adjuvant radiotherapy of residual pilocytic astrocytoma in children is not recommended anymore.
  • [MeSH-major] Astrocytoma / radiotherapy. Gliosarcoma / etiology. Meningeal Neoplasms / etiology. Meningioma / etiology. Neoplasms, Radiation-Induced / etiology
  • [MeSH-minor] Adult. Humans. Male. Radiotherapy / adverse effects


25. Hlobilkova A, Ehrmann J, Knizetova P, Krejci V, Kalita O, Kolar Z: Analysis of VEGF, Flt-1, Flk-1, nestin and MMP-9 in relation to astrocytoma pathogenesis and progression. Neoplasma; 2009;56(4):284-90
MedlinePlus Health Information. consumer health - Childhood Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Analysis of VEGF, Flt-1, Flk-1, nestin and MMP-9 in relation to astrocytoma pathogenesis and progression.
  • Astrocytomas, particularly high grade astrocytoma, are brain tumors with potent angiogenic activity.
  • Our immnunohistochemical study assessed vascular endothelial growth factor (VEGF), VEGF receptors (Flk-1, and Flt-1), the intermediate filamental protein nestin which plays a role in central nervous system development, and MMP-9, which belongs the family of matrix metalloproteinases implicated in tumor invasion and angiogenesis regulation.
  • We investigated the expression of VEGF, its receptors, nestin and MMP-9 in astrocytomas and their correlation with tumor grade.
  • We used paraffin-embedded samples from 66 patients, 29 with low grade (WHO-grade II) and 37 with high grade (WHO-grade III and IV) astrocytomas.
  • Expression of Flt-1 and Flk-1 showed no significant differences between low and high grade tumor groups.
  • Expression of VEGF and MMP-9 was increased in the high grade group (p equal to or less than 0.026 and 0.024).
  • Nestin expression in tumor astrocytes and endothelial cells increased in high grade group (p same 0.007 and 0.003).
  • Higher expression of VEGF in high grade astrocytomas may subsequently lead to activation of survival, angiogenesis and migration.
  • Expression of nestin and MMP-9 also suggest their likely role in astrocytoma vascular development and proliferation.
  • [MeSH-major] Astrocytoma / etiology. Brain Neoplasms / etiology. Intermediate Filament Proteins / metabolism. Matrix Metalloproteinase 9 / metabolism. Nerve Tissue Proteins / metabolism. Vascular Endothelial Growth Factor A / metabolism. Vascular Endothelial Growth Factor Receptor-1 / metabolism. Vascular Endothelial Growth Factor Receptor-2 / metabolism
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. Child. Disease Progression. Female. Humans. Immunoenzyme Techniques. Male. Middle Aged. Nestin. Prognosis. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19473053.001).
  • [ISSN] 0028-2685
  • [Journal-full-title] Neoplasma
  • [ISO-abbreviation] Neoplasma
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Slovakia
  • [Chemical-registry-number] 0 / Intermediate Filament Proteins; 0 / NES protein, human; 0 / Nerve Tissue Proteins; 0 / Nestin; 0 / VEGFA protein, human; 0 / Vascular Endothelial Growth Factor A; EC 2.7.10.1 / FLT1 protein, human; EC 2.7.10.1 / Vascular Endothelial Growth Factor Receptor-1; EC 2.7.10.1 / Vascular Endothelial Growth Factor Receptor-2; EC 3.4.24.35 / Matrix Metalloproteinase 9
  •  go-up   go-down


26. Miyajima Y, Sato Y, Oka H, Utsuki S, Kondo K, Tanizaki Y, Nagashio R, Tsuchiya B, Okayasu I, Fujii K: Prognostic significance of nuclear DJ-1 expression in astrocytoma. Anticancer Res; 2010 Jan;30(1):265-9
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Prognostic significance of nuclear DJ-1 expression in astrocytoma.
  • The present study was conducted to determine whether any correlation exists between the expression of DJ-1 and WHO grading of the tumor or patient prognosis, and to analyze the function of this oncogene in astrocytomas.
  • Twenty-nine formalin-fixed and paraffin-embedded glioblastomas (grade IV), 21 anaplastic astorocytomas (grade III), and 14 diffuse astrocytomas (grade II) were immunohistochemically studied to identify the expression of DJ-1 protein.
  • The expression of DJ-1 was detected both in the nucleus and cytoplasm of tumor cells; however, such expression varied from case to case.
  • The present study demonstrated that the survival of patients with astrocytomas was correlated with the nuclear DJ-1 status of the tumor.
  • We herein demonstrated for the first time that the DJ-1 molecule might therefore play an important role as a tumor suppressor in astrocytomas.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Oncogene Proteins / biosynthesis
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. Cell Nucleus / metabolism. Female. Humans. Immunohistochemistry. Intracellular Signaling Peptides and Proteins. Male. Middle Aged. Predictive Value of Tests. Prognosis. Young Adult

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20150646.001).
  • [ISSN] 1791-7530
  • [Journal-full-title] Anticancer research
  • [ISO-abbreviation] Anticancer Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / Intracellular Signaling Peptides and Proteins; 0 / Oncogene Proteins; 0 / PARK7 protein, human
  •  go-up   go-down


27. Gathinji M, McGirt MJ, Attenello FJ, Chaichana KL, Than K, Olivi A, Weingart JD, Brem H, Quinones-Hinojosa A: Association of preoperative depression and survival after resection of malignant brain astrocytoma. Surg Neurol; 2009 Mar;71(3):299-303, discussion 303
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Association of preoperative depression and survival after resection of malignant brain astrocytoma.
  • It remains unclear if clinical depression affects survival after surgical management of malignant brain astrocytoma.
  • METHODS: One thousand fifty-two patients undergoing surgical management for malignant brain astrocytoma (WHO grade 3 or 4) performed at a single institution from 1995 to 2006 were retrospectively reviewed.
  • Pathology was WHO grade IV in 829 (79%) and grade III in 223 (21%).
  • Adjusting for all variables associated with survival in this model, age (P < .001), KPS (P < .001), WHO grade III vs IV (P < .001), primary versus secondary resection (P < .001), gross-total resection (P < .001), Gliadel wafer implantation (P = .048), postoperative temozolomide therapy (P < .001), and subsequent resection at time of recurrence (P < .001); preoperative depression was independently associated with decreased survival (relative risk [95% CI]: 1.41 [1.1-1.96], P < .05).
  • CONCLUSION: In our experience, patients who are actively depressed at the time of surgery were associated with decreased survival after surgical management of malignant astrocytoma, independent of degree of disability, tumor grade, or subsequent treatment modalities.
  • [MeSH-major] Astrocytoma / mortality. Brain Neoplasms / mortality. Depression / mortality
  • [MeSH-minor] Adult. Aged. Female. Humans. Kaplan-Meier Estimate. Male. Middle Aged. Morbidity. Preoperative Care. Retrospective Studies. Severity of Illness Index

  • Genetic Alliance. consumer health - Depression.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Depression.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18786716.001).
  • [ISSN] 0090-3019
  • [Journal-full-title] Surgical neurology
  • [ISO-abbreviation] Surg Neurol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


28. Chen J, Huang SL, Li T, Chen XL: In vivo research in astrocytoma cell proliferation with 1H-magnetic resonance spectroscopy: correlation with histopathology and immunohistochemistry. Neuroradiology; 2006 May;48(5):312-8
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] In vivo research in astrocytoma cell proliferation with 1H-magnetic resonance spectroscopy: correlation with histopathology and immunohistochemistry.
  • INTRODUCTION: Assessment of brain tumor proliferative potential provides important prognostic information that supplements standard histopathologic grading.
  • Proton magnetic resonance spectroscopy ((1)H-MRS) gives completely different information, relating to cell membrane proliferation, neuronal damage, energy metabolism and necrotic transformation of brain or tumor tissues.
  • The aim of this study was to investigate the relationship between (1)H-MRS and tumor proliferative potential in astrocytomas.
  • The tumor in 26 of these patients was classified as grade I/II (low grade), and the tumor in the remaining patients as grade III/IV (high grade) according to the World Health Organization classification criteria of nervous system tumors (2000).
  • The tumor in 21 patients was homogeneous astrocytoma, and of these 17 were classified as low grade and 4 as high grade.
  • RESULTS: The ratios of choline (Cho) to N-acetylaspartate (NAA) and Cho to creatine (Cr) in those with high-grade astrocytomas (n=4) were significantly higher than in those with low-grade astrocytomas (n=17) (t=2.899, P=0.009; t=3.96, P=0.001, respectively), and were found to be significantly correlated with the expression of PCNA in 21 patients with homogeneous astrocytomas (r=0.455, P=0.038; r=0.633, P=0.002, respectively).
  • CONCLUSIONS: We conclude that (1)H-MRS may be a valuable method for predicting preoperatively the degree of malignancy of homogeneous astrocytomas by enabling the calculation of the Cho/NAA and Cho/Cr ratios in vivo, and indirect evaluation of the tumor proliferative potential and prognosis, which are not available using conventional magnetic resonance imaging (MRI).
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Magnetic Resonance Spectroscopy / methods
  • [MeSH-minor] Adolescent. Adult. Aged. Aspartic Acid / analogs & derivatives. Aspartic Acid / metabolism. Child. Choline / metabolism. Creatine / metabolism. Female. Humans. Immunoenzyme Techniques. Magnetic Resonance Imaging. Male. Middle Aged. Predictive Value of Tests

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • Hazardous Substances Data Bank. (L)-ASPARTIC ACID .
  • Hazardous Substances Data Bank. CREATINE .
  • Hazardous Substances Data Bank. CHOLINE CHLORIDE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Pathology. 2004 Apr;36(2):139-44 [15203749.001]
  • [Cites] Radiology. 1993 Mar;186(3):745-52 [8430183.001]
  • [Cites] Am J Clin Pathol. 1998 Jan;109(1):69-74 [9426520.001]
  • [Cites] J Comput Assist Tomogr. 1993 Mar-Apr;17(2):206-10 [8454746.001]
  • [Cites] World J Gastroenterol. 2003 Feb;9(2):377-80 [12532471.001]
  • [Cites] Neuroradiology. 2002 Aug;44(8):656-66 [12185543.001]
  • [Cites] Anal Quant Cytol Histol. 2000 Dec;22(6):429-37 [11147296.001]
  • [Cites] Neuropathology. 2004 Sep;24(3):172-82 [15484695.001]
  • [Cites] Radiology. 1990 Sep;176(3):791-9 [2389038.001]
  • [Cites] J Neurooncol. 2002 Jul;58(3):217-36 [12187957.001]
  • [Cites] Brain Tumor Pathol. 2004;21(1):39-46 [15696968.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):9023-7 [12853570.001]
  • [Cites] Stereotact Funct Neurosurg. 2004;82(2-3):90-7 [15305081.001]
  • [Cites] Neuroradiology. 2002 May;44(5):371-81 [12012120.001]
  • [Cites] NMR Biomed. 2005 Oct;18(6):371-82 [15959923.001]
  • [Cites] Histopathology. 1994 Oct;25(4):349-55 [7835840.001]
  • [Cites] AJNR Am J Neuroradiol. 2000 Apr;21(4):659-65 [10782774.001]
  • [Cites] J Neurosurg. 1997 Oct;87(4):516-24 [9322842.001]
  • [Cites] Acad Radiol. 2005 Jan;12(1):51-7 [15691725.001]
  • (PMID = 16552583.001).
  • [ISSN] 0028-3940
  • [Journal-full-title] Neuroradiology
  • [ISO-abbreviation] Neuroradiology
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 30KYC7MIAI / Aspartic Acid; 997-55-7 / N-acetylaspartate; MU72812GK0 / Creatine; N91BDP6H0X / Choline
  •  go-up   go-down


29. Ebinger M, Senf L, Wachowski O, Scheurlen W: No aberrant methylation of neurofibromatosis 1 gene (NF1) promoter in pilocytic astrocytoma in childhood. Pediatr Hematol Oncol; 2005 Jan-Feb;22(1):83-7
Genetic Alliance. consumer health - Pilocytic astrocytoma.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] No aberrant methylation of neurofibromatosis 1 gene (NF1) promoter in pilocytic astrocytoma in childhood.
  • Tumors of the central nervous system are the most frequent solid tumors in childhood.
  • With 30-40% of this heterogenous group, low-grade astrocytomas represent the most common subtype.
  • Neurofibromatosis type 1 (NF1) is strongly associated with the development of pilocytic astrocytoma (PA), frequently appearing as optic glioma.
  • Neurofibromatosis 1 gene (NF1 ) fulfills the criteria of a tumor suppressor gene and is deleted or mutated heterozygously in patients with NF1.
  • To rule out that silencing of NF1 by promoter methylation is restricted to higher-grade astrocytomas, 15 pediatric WHO II degree and IV degree astrocytomas were analyzed: 12 astrocytomas II and 3 glioblastomas displayed no NF1 promoter methylation.
  • The authors conclude that NF1 silencing by methylation plays no role in low-grade astrocytoma.
  • [MeSH-major] DNA Methylation. Gene Silencing. Glioblastoma / genetics. Neurofibromin 1 / genetics. Promoter Regions, Genetic
  • [MeSH-minor] Adolescent. Adult. Child. Child, Preschool. Female. Humans. Infant. Male

  • Genetic Alliance. consumer health - Neurofibromatosis.
  • Genetic Alliance. consumer health - Neurofibromatosis type 1.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15770836.001).
  • [ISSN] 0888-0018
  • [Journal-full-title] Pediatric hematology and oncology
  • [ISO-abbreviation] Pediatr Hematol Oncol
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Neurofibromin 1
  •  go-up   go-down


30. Lu ZQ, Wang YM, Cao YY, Zhang QJ, Zhang XH, Li YH, Wang HS, Xie HL, Jiao BH, Zhang JH: [Correlations of polymorphisms in matrix metalloproteinase-3 and -7 promoters to susceptibility to brain astrocytoma]. Ai Zheng; 2007 May;26(5):463-8
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Correlations of polymorphisms in matrix metalloproteinase-3 and -7 promoters to susceptibility to brain astrocytoma].
  • BACKGROUND & OBJECTIVE: Matrix metalloproteinases (MMPs) are key enzymes involved in tumor development, invasion and metastasis.
  • The single nucleotide polymorphisms (SNPs) in the promoter regions of MMP genes may influence tumor development and progression via modulating mRNA transcription and protein expression.
  • This study was to explore the correlations of the promoter SNPs in MMP-3 and MMP-7 genes to susceptibility to brain astrocytoma.
  • METHODS: The genotype of MMP-3 -1171 5A/6A and MMP-7 -181A/G polymorphisms in 236 patients with brain astrocytoma and 366 healthy controls was detected by polymerase chain reaction-restrictive fragment length polymorphism (PCR-RFLP).
  • RESULTS: The allelotype and overall genotype distribution of MMP-3 SNP among the astrocytoma patients and healthy controls were similar (P>0.05).
  • Stratified by sex, age, and histological grade, the susceptibility to brain astrocytoma among the subjects with 5A/5A and 5A/6A genotypes and the subjects with 6A/6A genotype were similar(P>0.05).
  • The overall genotype distribution of MMP-7 SNP among the astrocytoma patients and healthy controls were significantly different (P = 0.001).
  • Compared with the A/A genotype, both the G/G and the A/G genotypes significantly increased the susceptibility to astrocytoma [sex-and age-adjusted odds ratio (OR) = 2.77 and 1.69, 95% confidence interval (CI)=1.27-6.02 and 1.01-2.84, respectively].
  • Stratification analysis showed that the G/G genotype significantly increased the susceptibility to astrocytoma in men (adjusted OR = 3.24, 95% CI = 1.12-9.41) and in the individuals younger than 45 years (adjusted OR = 3.16, 95% CI = 1.09-9.16).
  • When stratified by histological grade, the A/G genotype increased the susceptibility to grade II astrocytoma by about 2 folds (adjusted OR = 2.06, 95% CI = 1.05 - 4.05), while the G/G genotype increased the susceptibility to grade II-IV astrocytoma by about 3 folds.
  • CONCLUSION: MMP-7 -181A/G polymorphism may influence the susceptibility to astrocytoma, while MMP-3-1171 5A/6A polymorphism has no correlation to the susceptibility.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Genetic Predisposition to Disease. Matrix Metalloproteinase 3 / genetics. Matrix Metalloproteinase 7 / genetics. Polymorphism, Single Nucleotide
  • [MeSH-minor] Adult. Aged. Alleles. Confidence Intervals. Female. Gene Frequency. Genotype. Humans. Male. Middle Aged. Odds Ratio. Polymerase Chain Reaction. Polymorphism, Restriction Fragment Length. Promoter Regions, Genetic. Young Adult

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17672933.001).
  • [Journal-full-title] Ai zheng = Aizheng = Chinese journal of cancer
  • [ISO-abbreviation] Ai Zheng
  • [Language] chi
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] China
  • [Chemical-registry-number] EC 3.4.24.17 / MMP3 protein, human; EC 3.4.24.17 / Matrix Metalloproteinase 3; EC 3.4.24.23 / MMP7 protein, human; EC 3.4.24.23 / Matrix Metalloproteinase 7
  •  go-up   go-down


31. Hara A, Saegusa M, Ichinoe M, Okayasu I: Diagnostic and prognostic significance of cyclin A expression in low-grade astrocytomas: comparison with astrogliosis and high-grade tumours. J Clin Pathol; 2008 Mar;61(3):287-92
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Diagnostic and prognostic significance of cyclin A expression in low-grade astrocytomas: comparison with astrogliosis and high-grade tumours.
  • AIM: Definitive distinction between low-grade astrocytoma and astrogliosis is a long-standing difficulty due to their similar histopathological characteristics.
  • To clarify differences in biological significance, this study focused on various components of the cell cycle machinery and proliferation as key parameters, comparing expression in astrogliosis, as well as low- and high-grade astrocytomas.
  • METHODS: The expression of p16, p21 and p27, and cyclin A, cyclin D1, cyclin E, Rb and Ki-67 was immunohistochemically examined in 40 cases of astrogliosis and 48 cases of low-grade astrocytomas (grade II), as well as 50 high-grade tumours (grades III and IV).
  • RESULTS: Cell proliferation determined by Ki-67 immunoreactivity did not differ between astrogliosis and low-grade tumours.
  • Average labelling indices (LIs) for p16, p21, Rb, cyclin A and cyclin E showed a stepwise increase from astrogliosis, through low- to high-grade astrocytomas, indicating the possibility that over 9%, 6% and 4% of LIs for p16, p21 and cyclin A, respectively, may be useful predictors in the case of the latter, in contrast to significant decrease in p27 LIs.
  • Significantly higher mean LI values for cyclin D1 were also evident in astrogliosis (12.42) as compared with astrocytomas (low grade, 2.26; high grade, 4.60).
  • Positive correlations between LIs for Rb and Ki-67 were observed with astrogliosis and low- but not high-grade tumours.
  • In addition, high cyclin A LI values were independently associated with poor outcome in low-grade tumours.
  • CONCLUSION: These findings provide evidence that expression of cell-cycle-related molecules may be a reliable parameter for differential diagnosis of low-grade astrocytomas and astrogliosis.
  • Moreover, detection of cyclin A appears to be useful for predicting behaviour of low-grade astrocytomas.
  • [MeSH-major] Astrocytoma / genetics. Biomarkers, Tumor. Cyclin A / genetics. Gene Expression Regulation, Neoplastic
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Case-Control Studies. Cell Proliferation. Cyclin D1 / analysis. Cyclin D1 / genetics. Cyclin-Dependent Kinase Inhibitor p16 / analysis. Cyclin-Dependent Kinase Inhibitor p16 / genetics. Cyclin-Dependent Kinase Inhibitor p21 / analysis. Cyclin-Dependent Kinase Inhibitor p21 / genetics. Cyclin-Dependent Kinase Inhibitor p27 / analysis. Cyclin-Dependent Kinase Inhibitor p27 / genetics. Diagnosis, Differential. Female. Humans. Immunohistochemistry. Ki-67 Antigen / analysis. Ki-67 Antigen / genetics. Male. Middle Aged. Precancerous Conditions / genetics. Precancerous Conditions / mortality. Precancerous Conditions / pathology. Proportional Hazards Models. Retinoblastoma Protein / analysis. Retinoblastoma Protein / genetics. Statistics, Nonparametric. Survival Rate

  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18156430.001).
  • [ISSN] 1472-4146
  • [Journal-full-title] Journal of clinical pathology
  • [ISO-abbreviation] J. Clin. Pathol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Cyclin A; 0 / Cyclin-Dependent Kinase Inhibitor p16; 0 / Cyclin-Dependent Kinase Inhibitor p21; 0 / Ki-67 Antigen; 0 / Retinoblastoma Protein; 136601-57-5 / Cyclin D1; 147604-94-2 / Cyclin-Dependent Kinase Inhibitor p27
  •  go-up   go-down


32. Pipas JM, Meyer LP, Rhodes CH, Cromwell LD, McDonnell CE, Kingman LS, Rigas JR, Fadul CE: A Phase II trial of paclitaxel and topotecan with filgrastim in patients with recurrent or refractory glioblastoma multiforme or anaplastic astrocytoma. J Neurooncol; 2005 Feb;71(3):301-5
Hazardous Substances Data Bank. TAXOL .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] A Phase II trial of paclitaxel and topotecan with filgrastim in patients with recurrent or refractory glioblastoma multiforme or anaplastic astrocytoma.
  • PURPOSE: Therapy for high-grade gliomas remains unsatisfactory.
  • We conducted a Phase II trial of these agents in combination with filgrastim (G-CSF) in patients with recurrent or refractory glioblastoma multiforme or anaplastic astrocytoma.
  • PATIENTS AND METHODS: Adult patients with radiographic evidence of recurrent or progressive tumor following primary therapy were eligible for study.
  • Patients received paclitaxel 175 mg/m2 IV over 3 h on day 1 and topotecan 1.0 mg/m2 IV over 30 min on days 1-5.
  • Hematologic toxicity was common with 25 /% of patients experiencing grade III or IV leukopenia despite G-CSF support.
  • CONCLUSION: Paclitaxel and topotecan with G-CSF support exhibits modest activity in adults with recurrent or refractory glioblastoma and anaplastic astrocytoma.
  • The significant hematotoxicity encountered, however, cannot justify further investigation of this combination in patients with high grade brain tumors.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Astrocytoma / drug therapy. Brain Neoplasms / drug therapy. Glioblastoma / drug therapy. Neoplasm Recurrence, Local / drug therapy
  • [MeSH-minor] Adult. Aged. Anemia / chemically induced. Disease-Free Survival. Drug Resistance, Neoplasm / drug effects. Female. Filgrastim. Granulocyte Colony-Stimulating Factor / administration & dosage. Humans. Leukopenia / chemically induced. Male. Middle Aged. Paclitaxel / administration & dosage. Recombinant Proteins. Thrombocytopenia / chemically induced. Topotecan / administration & dosage. Treatment Outcome

  • Genetic Alliance. consumer health - Glioblastoma.
  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. Filgrastim .
  • Hazardous Substances Data Bank. Topotecan .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Int J Radiat Oncol Biol Phys. 2002 Jul 15;53(4):980-6 [12095566.001]
  • [Cites] J Natl Cancer Inst. 1994 Oct 19;86(20):1517-24 [7932806.001]
  • [Cites] Cancer Chemother Pharmacol. 1994;34(2):171-4 [8194169.001]
  • [Cites] Oncologist. 2003;8(1):76-82 [12604734.001]
  • [Cites] J Clin Oncol. 1997 Sep;15(9):3121-8 [9294475.001]
  • [Cites] J Clin Oncol. 1996 Jun;14(6):1964-5 [8656268.001]
  • [Cites] Ann Oncol. 2001 Jul;12(7):923-7 [11521796.001]
  • [Cites] J Clin Oncol. 2001 Apr 1;19(7):1893-900 [11283120.001]
  • [Cites] Cancer Res. 1993 Feb 15;53(4):725-7 [8428353.001]
  • [Cites] J Clin Oncol. 1995 Sep;13(9):2230-7 [7545219.001]
  • [Cites] J Clin Oncol. 1990 Jul;8(7):1277-80 [2358840.001]
  • [Cites] Cancer Chemother Pharmacol. 2001 Sep;48(3):188-96 [11592339.001]
  • [Cites] Ann Oncol. 1996 Feb;7(2):205-7 [8777179.001]
  • [Cites] J Natl Cancer Inst. 1992 Dec 2;84(23):1816-20 [1331485.001]
  • [Cites] J Clin Oncol. 1998 Jun;16(6):2032-7 [9626200.001]
  • [Cites] J Clin Oncol. 1995 Aug;13(8):2066-71 [7636549.001]
  • [Cites] Biometrics. 1993 Sep;49(3):741-52 [8241370.001]
  • [Cites] J Clin Oncol. 1994 Mar;12(3):539-43 [8120551.001]
  • [Cites] J Clin Oncol. 1996 Feb;14(2):600-9 [8636777.001]
  • [Cites] Cancer Res. 1994 Oct 1;54(19):5118-22 [7923128.001]
  • [Cites] Drugs. 1995 Jan;49(1):11-9 [7705211.001]
  • [Cites] Cancer. 2001 Jan 15;91(2):417-22 [11180089.001]
  • [Cites] J Clin Oncol. 1998 Jun;16(6):2188-94 [9626220.001]
  • [Cites] Cancer. 1993 Apr 15;71(8):2585-97 [8453582.001]
  • [Cites] Expert Opin Pharmacother. 2001 Mar;2(3):491-505 [11336601.001]
  • [Cites] J Clin Oncol. 1994 Oct;12(10):2013-21 [7931469.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2001 Sep 1;51(1):113-9 [11516860.001]
  • (PMID = 15735921.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Clinical Trial; Clinical Trial, Phase II; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Recombinant Proteins; 143011-72-7 / Granulocyte Colony-Stimulating Factor; 7M7YKX2N15 / Topotecan; P88XT4IS4D / Paclitaxel; PVI5M0M1GW / Filgrastim
  •  go-up   go-down


33. Cho KH, Kim JY, Lee SH, Yoo H, Shin SH, Moon SH, Kim TH, Shin KH, Yoon M, Lee DH, Pyo HR: Simultaneous integrated boost intensity-modulated radiotherapy in patients with high-grade gliomas. Int J Radiat Oncol Biol Phys; 2010 Oct 1;78(2):390-7
Hazardous Substances Data Bank. DACARBAZINE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Simultaneous integrated boost intensity-modulated radiotherapy in patients with high-grade gliomas.
  • PURPOSE: We analyzed outcomes of simultaneous integrated boost (SIB) intensity-modulated radiotherapy (IMRT) in patients with high-grade gliomas, compared with a literature review.
  • METHODS AND MATERIALS: Forty consecutive patients (WHO grade III, 14 patients; grade IV, 26 patients) treated with SIB-IMRT were analyzed.
  • A dose of 2.0 Gy was delivered to the planning target volume with a SIB of 0.4 Gy to the gross tumor volume with a total dose of 60 Gy to the gross tumor volume and 50 Gy to the planning target volume in 25 fractions during 5 weeks.
  • One- and 2-year survival rates were 78% and 65%, respectively, for patients with grade III tumors and 56% and 31%, respectively, for patients with grade IV tumors.
  • Age (≤50 vs. >50), grade (III vs. IV), subtype (astrocytoma vs. oligodendroglioma or mixed), and a Zubrod performance score (0-1 vs. >2) were predictive of survival.
  • [MeSH-major] Astrocytoma / radiotherapy. Brain Neoplasms / radiotherapy. Oligodendroglioma / radiotherapy. Radiotherapy, Intensity-Modulated / methods
  • [MeSH-minor] Adult. Aged. Antineoplastic Agents, Alkylating / therapeutic use. Dacarbazine / analogs & derivatives. Dacarbazine / therapeutic use. Female. Humans. Male. Middle Aged. Radiotherapy Dosage. Retrospective Studies. Survival Rate. Tumor Burden. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] 2010 Elsevier Inc. All rights reserved.
  • (PMID = 20097489.001).
  • [ISSN] 1879-355X
  • [Journal-full-title] International journal of radiation oncology, biology, physics
  • [ISO-abbreviation] Int. J. Radiat. Oncol. Biol. Phys.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide
  • [Number-of-references] 20
  •  go-up   go-down


34. Sharma S, Sharma MC, Gupta DK, Sarkar C: Angiogenic patterns and their quantitation in high grade astrocytic tumors. J Neurooncol; 2006 Aug;79(1):19-30
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Angiogenic patterns and their quantitation in high grade astrocytic tumors.
  • BACKGROUND: The objectives of this study on high grade astrocytic tumors were (i) to establish differences, if any, between grades III & IV tumors among angiogenic parameters, both qualitative and quantitative, and (ii) to correlate angiogenic parameters with proliferation indices, namely T2a and MIB1 labeling indices.
  • DESIGN: Twenty nine consecutive cases of WHO grades III (11) and IV (18) astrocytic tumors diagnosed in the year-2004 were studied, using H&E and CD34, MIB1 and T2a immunostaining by streptavidin biotin technique.
  • Statistically significant differences (P<0.05) were seen between grades III and IV in iMVD, aspect, MD and FD, but not in angiogenic patterns or MVA (P = 0.27).
  • Intratumoral endothelial MIB1 LI was significantly higher in grade IV as compared to grade III, but did not correlate with angiogenic parameters.
  • Limited follow up data showed all recurrent grade IV tumors to be of glomeruloid type.
  • CONCLUSION: Increased angiogenesis in grade IV, as compared to grade III, astrocytic tumors is characterized by an increased number/density of vessels: an increase in vessels characterized by disproportionate lengthening and likely associated with the infiltrative properties of the tumors; and an increase in pliable, irregularly shaped or structured vessels.
  • The lack of correlation of these angiogenesis parameters with the MIB1 and T2a proliferation indices reflects the complexity of angiogenesis parameters in high grade gliomas.
  • Further studies are needed to determine the usefulness of the angiogenic parameters in the improved diagnosis (grading) and prognosis of astrocytic tumors.
  • [MeSH-major] Astrocytoma / blood supply. Astrocytoma / pathology. Brain Neoplasms / blood supply. Brain Neoplasms / pathology. Neovascularization, Pathologic
  • [MeSH-minor] Adolescent. Adult. Aged. Cell Proliferation. Female. Humans. Image Processing, Computer-Assisted. Immunohistochemistry. Male. Middle Aged. Retrospective Studies

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Hum Pathol. 1998 Apr;29(4):352-8 [9563784.001]
  • [Cites] Br J Cancer. 2004 Mar 22;90(6):1216-21 [15026804.001]
  • [Cites] Brain Pathol. 1993 Jul;3(3):255-68 [8293185.001]
  • [Cites] Clin Neurosurg. 1976;23:440-53 [975695.001]
  • [Cites] Am J Pathol. 1993 Aug;143(2):401-9 [7688183.001]
  • [Cites] J Natl Cancer Inst. 1993 May 5;85(9):704-10 [8478956.001]
  • [Cites] Acta Neuropathol. 1989;77(4):369-78 [2469286.001]
  • [Cites] Histopathology. 2001 Oct;39(4):402-8 [11683942.001]
  • [Cites] Brain Pathol. 1994 Jul;4(3):207-18 [7524960.001]
  • [Cites] Ai Zheng. 2005 Jan;24(1):19-22 [15642194.001]
  • [Cites] Lung Cancer. 2003 Mar;39(3):289-96 [12609567.001]
  • [Cites] Anal Cell Pathol. 1992 Nov;4(6):409-19 [1457384.001]
  • [Cites] J Neurooncol. 1996 Jan;27(1):75-85 [8699229.001]
  • [Cites] Am J Clin Pathol. 2004 Nov;122(5):675-7 [15491962.001]
  • [Cites] J Pathol. 1992 Nov;168(3):257-62 [1281874.001]
  • [Cites] J Neurosurg. 1999 Sep;91(3):477-82 [10470824.001]
  • [Cites] J Neurosurg. 1998 Mar;88(3):513-20 [9488306.001]
  • [Cites] J Neurosurg. 1989 Oct;71(4):487-93 [2552044.001]
  • [Cites] Pathol Oncol Res. 1999;5(2):134-41 [10393366.001]
  • [Cites] Brain Pathol. 2005 Oct;15(4):297-310 [16389942.001]
  • [Cites] Tumori. 2001 Jan-Feb;87(1):47-53 [11669558.001]
  • [Cites] Tumori. 2005 Jan-Feb;91(1):46-52 [15850004.001]
  • [Cites] J Neurooncol. 2000 Oct-Nov;50(1-2):165-72 [11245275.001]
  • [Cites] J Clin Pathol. 2002 Jul;55(7):530-4 [12101201.001]
  • [Cites] Leukemia. 2003 Jan;17(1):89-97 [12529665.001]
  • [Cites] Endocr Pathol. 2003 Fall;14(3):239-47 [14586069.001]
  • [Cites] Neuropathol Appl Neurobiol. 2002 Feb;28(1):57-66 [11849564.001]
  • [Cites] Med Pediatr Oncol. 2003 Dec;41(6):516-26 [14595708.001]
  • [Cites] Biochem J. 1994 Nov 1;303 ( Pt 3):681-95 [7980433.001]
  • [Cites] Histopathology. 2003 Apr;42(4):395-402 [12653952.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1993 Jan 15;25(2):193-207 [8380567.001]
  • [Cites] J Neurooncol. 1997 May;32(3):253-65 [9049887.001]
  • [Cites] Clin Exp Dermatol. 2003 May;28(3):310-4 [12780721.001]
  • [Cites] Arch Pathol Lab Med. 2004 Apr;128(4):426-9 [15043465.001]
  • [Cites] Am J Pathol. 1988 Nov;133(2):419-23 [3189515.001]
  • [Cites] J Neurosurg. 1994 Dec;81(6):902-9 [7525899.001]
  • [Cites] Adv Pharmacol. 1990;21:149-83 [2176094.001]
  • [Cites] Cancer. 1996 Jan 15;77(2):362-72 [8625246.001]
  • [Cites] Leukemia. 2001 Sep;15(9):1369-76 [11516097.001]
  • [Cites] Lancet. 1992 Jul 18;340(8812):145-6 [1378165.001]
  • [Cites] Histopathology. 2005 May;46(5):481-9 [15842629.001]
  • [Cites] Acta Neuropathol. 2000 Jul;100(1):101-5 [10912927.001]
  • [Cites] N Engl J Med. 1991 Jan 3;324(1):1-8 [1701519.001]
  • [Cites] Brain Pathol. 2003 Apr;13(2):133-43 [12744467.001]
  • [Cites] Cancer Res. 2004 May 1;64(9):2941-55 [15126324.001]
  • [Cites] Acta Neuropathol. 1993;85(5):508-14 [7684179.001]
  • (PMID = 16807783.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


35. Rorive S, Maris C, Debeir O, Sandras F, Vidaud M, Bièche I, Salmon I, Decaestecker C: Exploring the distinctive biological characteristics of pilocytic and low-grade diffuse astrocytomas using microarray gene expression profiles. J Neuropathol Exp Neurol; 2006 Aug;65(8):794-807
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Exploring the distinctive biological characteristics of pilocytic and low-grade diffuse astrocytomas using microarray gene expression profiles.
  • Although World Health Organization (WHO) grade I pilocytic astrocytomas and grade II diffuse astrocytomas have been classified for decades as different clinicopathologic entities, few, if any, data are available on the biologic features explaining these differences.
  • Although more than 50 microarray-related studies have been carried out to characterize the molecular profiles of astrocytic tumors, we have identified only 11 that provide sound data on low-grade astrocytomas.
  • We have incorporated these data into a comparative analysis for the purpose of identifying the most relevant molecular markers characterizing grade I pilocytic and grade II diffuse astrocytomas.
  • Our analysis has identified various interesting genes that are differentially expressed in either grade I or grade II astrocytomas when compared with normal tissue and/or high-grade (WHO grade III and IV) astrocytomas.
  • Interestingly, a group of 6 genes (TIMP4, C1NH, CHAD, THBS4, IGFBP2, and TLE2) constitute an expression profile characteristic of grade I astrocytomas as compared with all other categories of tissue (normal brain, grade II, and high-grade astrocytomas).
  • The end products (proteins) of these genes act as antimigratory compounds, a fact that could explain why pilocytic astrocytomas behave as compact (well-circumscribed) tumors as opposed to all the other astrocytic tumor types that diffusely invade the brain parenchyma.
  • [MeSH-major] Astrocytoma / genetics. Biomarkers, Tumor / genetics. Brain Neoplasms / genetics. Gene Expression Profiling / methods. Gene Expression Regulation, Neoplastic / genetics. Genetic Predisposition to Disease / genetics
  • [MeSH-minor] Adult. Cell Adhesion / genetics. Cell Movement / genetics. Child. Extracellular Matrix Proteins / genetics. Extracellular Matrix Proteins / metabolism. Humans. Models, Neurological. Neoplasm Invasiveness / genetics. Neoplasm Invasiveness / physiopathology. Oligonucleotide Array Sequence Analysis / methods. Reverse Transcriptase Polymerase Chain Reaction

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16896313.001).
  • [ISSN] 0022-3069
  • [Journal-full-title] Journal of neuropathology and experimental neurology
  • [ISO-abbreviation] J. Neuropathol. Exp. Neurol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Extracellular Matrix Proteins
  •  go-up   go-down


36. Antonelli M, Buttarelli FR, Arcella A, Nobusawa S, Donofrio V, Oghaki H, Giangaspero F: Prognostic significance of histological grading, p53 status, YKL-40 expression, and IDH1 mutations in pediatric high-grade gliomas. J Neurooncol; 2010 Sep;99(2):209-15
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Prognostic significance of histological grading, p53 status, YKL-40 expression, and IDH1 mutations in pediatric high-grade gliomas.
  • The objective of this study was to evaluate, in a series of 43 pediatric high-grade gliomas (21 anaplastic astrocytoma WHO grade III and 22 glioblastoma WHO grade IV), the prognostic value of histological grading and expression of p53 and YKL-40.
  • TP53 mutations were detected in five of 27 (18%) cases (four glioblastomas and one anaplastic astrocytoma).
  • Our results suggest that in pediatric high-grade gliomas: (i) histological grading does not have strong prognostic significance, (ii) YKL-40 overexpression is less frequent than adult high-grade gliomas and does not correlate with a more aggressive behavior, (iii) TP53 mutations but not p53 expression may correlate with a more aggressive behavior, and (iv) IDH1 mutations are absent.
  • These observations support the concept that, despite identical histological features, the biology of high-grade gliomas in children differs from that in adults, and therefore different prognostic factors are needed.
  • [MeSH-major] Astrocytoma / genetics. Astrocytoma / metabolism. Glycoproteins / metabolism. Isocitrate Dehydrogenase / genetics. Lectins / metabolism. Mutation / genetics. Tumor Suppressor Protein p53 / genetics
  • [MeSH-minor] Adipokines. Adolescent. Adult. Brain Neoplasms / genetics. Brain Neoplasms / metabolism. Brain Neoplasms / pathology. Child. Child, Preschool. Chitinase-3-Like Protein 1. DNA, Neoplasm / genetics. Female. Humans. Immunoenzyme Techniques. Infant. Infant, Newborn. Male. Neoplasm Staging. Polymerase Chain Reaction. Prognosis. Young Adult

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Curr Oncol Rep. 2009 Jan;11(1):68-72 [19080744.001]
  • [Cites] Am J Pathol. 2007 May;170(5):1445-53 [17456751.001]
  • [Cites] J Neurooncol. 2005 Dec;75(3):267-72 [16195804.001]
  • [Cites] Cancer. 2001 Dec 15;92(12):3155-64 [11753995.001]
  • [Cites] Neuro Oncol. 2009 Aug;11(4):341-7 [19435942.001]
  • [Cites] Pediatr Blood Cancer. 2007 Dec;49(7):888-93 [17554787.001]
  • [Cites] Science. 2008 Sep 26;321(5897):1807-12 [18772396.001]
  • [Cites] J Clin Oncol. 2009 Sep 1;27(25):4150-4 [19636000.001]
  • [Cites] Cancer Cell. 2006 Mar;9(3):157-73 [16530701.001]
  • [Cites] Biochem J. 2002 Jul 1;365(Pt 1):119-26 [12071845.001]
  • [Cites] Hum Pathol. 1999 Nov;30(11):1284-90 [10571506.001]
  • [Cites] Cancer Res. 2004 Oct 1;64(19):6892-9 [15466178.001]
  • [Cites] Acta Neuropathol. 2007 Aug;114(2):97-109 [17618441.001]
  • [Cites] Acta Neuropathol. 2008 Dec;116(6):597-602 [18985363.001]
  • [Cites] N Engl J Med. 2009 May 21;360(21):2248; author reply 2249 [19458374.001]
  • [Cites] Neuro Oncol. 2009 Jun;11(3):274-80 [18981259.001]
  • [Cites] Clin Cancer Res. 2005 May 1;11(9):3326-34 [15867231.001]
  • [Cites] Acta Neuropathol. 2004 Jul;108(1):49-56 [15118874.001]
  • [Cites] J Neurosurg. 1991 Jan;74(1):27-37 [1984503.001]
  • [Cites] Clin Cancer Res. 2006 Jul 1;12 (13):3935-41 [16818690.001]
  • [Cites] Clin Cancer Res. 2009 Oct 1;15(19):6002-7 [19755387.001]
  • [Cites] Curr Probl Cancer. 2008 May-Jun;32(3):97-123 [18501774.001]
  • [Cites] Recent Results Cancer Res. 2009;171:67-81 [19322538.001]
  • [Cites] N Engl J Med. 2009 Feb 19;360(8):765-73 [19228619.001]
  • [Cites] Am J Pathol. 2001 Apr;158(4):1525-32 [11290570.001]
  • [Cites] J Clin Oncol. 2007 Apr 1;25(10):1196-208 [17401009.001]
  • [Cites] Cancer Res. 2001 Oct 15;61(20):7404-7 [11606370.001]
  • [Cites] J Neurosurg. 1997 Jan;86(1):121-30 [8988090.001]
  • [Cites] Cancer. 2002 Jan 1;94(1):264-71 [11815986.001]
  • [Cites] Neurosurgery. 1995 Aug;37(2):246-54 [7477776.001]
  • [Cites] Exp Cell Res. 1999 Jul 10;250(1):168-73 [10388530.001]
  • [Cites] N Engl J Med. 2002 Feb 7;346(6):420-7 [11832530.001]
  • [Cites] Clin Cancer Res. 2007 Nov 1;13(21):6284-92 [17975139.001]
  • (PMID = 20174854.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Adipokines; 0 / CHI3L1 protein, human; 0 / Chitinase-3-Like Protein 1; 0 / DNA, Neoplasm; 0 / Glycoproteins; 0 / Lectins; 0 / TP53 protein, human; 0 / Tumor Suppressor Protein p53; EC 1.1.1.41 / Isocitrate Dehydrogenase; EC 1.1.1.42. / IDH1 protein, human
  •  go-up   go-down


37. Grau SJ, Trillsch F, Herms J, Thon N, Nelson PJ, Tonn JC, Goldbrunner R: Expression of VEGFR3 in glioma endothelium correlates with tumor grade. J Neurooncol; 2007 Apr;82(2):141-50
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of VEGFR3 in glioma endothelium correlates with tumor grade.
  • While VEGFR2 is thought to play a central role in tumor angiogenesis, anti-angiogenic therapies targeting VEGFR2 in glioma models can show escape phenomena with secondary onset of angiogenesis.
  • The purpose of this study was to find explanations for these processes by searching for alternative pathways regulating glioma angiogenesis and reveal a correlation with tumor grade.
  • Thus, VEGFR3, which is not expressed in normal brain, and its ligands VEGF-C and -D, were assessed in high grade (WHO degrees IV, glioblastomas, GBM) and low grade gliomas [WHO degrees II astrocytomas (AII)].
  • In all GBM, a strong protein expression of VEGFR3 was found on tumor endothelium, VEGF-C and -D expression was found on numerous cells in areas of high vascularization.
  • On RNA level, a significant up-regulation of VEGFR3 was detected in GBM compared to AII and non-neoplastic brain.
  • In AII, only very moderate VEGFR3, VEGF-C and -D expression was found on protein and RNA level indicating a correlation of VEGFR3 expression with tumor grade.
  • The demonstration of a complete angiogenic signaling system that is dependent on tumor grade may influence the traditional paradigm of glioma angiogenesis and may provide a basis for more effective anti-angiogenic treatment strategies.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Endothelium, Vascular / metabolism. Vascular Endothelial Growth Factor Receptor-3 / metabolism
  • [MeSH-minor] Adult. Aged. Antigens, CD31 / metabolism. Female. Humans. Male. Middle Aged. Neoplasm Staging. Neovascularization, Pathologic. Tumor Cells, Cultured. Vascular Endothelial Growth Factor C / metabolism. Vascular Endothelial Growth Factor D / metabolism. Vascular Endothelial Growth Factor Receptor-2 / metabolism

  • Genetic Alliance. consumer health - Glioma.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Invest Ophthalmol Vis Sci. 2002 Mar;43(3):849-57 [11867607.001]
  • [Cites] Mol Med. 2001 Sep;7(9):598-608 [11778649.001]
  • [Cites] Clin Cancer Res. 2004 Dec 15;10(24):8548-53 [15623638.001]
  • [Cites] Exp Cell Res. 2006 Mar 10;312(5):527-37 [16330026.001]
  • [Cites] Oncologist. 2005 Jun-Jul;10(6):382-91 [15967832.001]
  • [Cites] J Histochem Cytochem. 2002 Jun;50(6):767-77 [12019293.001]
  • [Cites] Microsc Res Tech. 2004 Jun 15;64(3):279-86 [15452895.001]
  • [Cites] EMBO J. 2001 Sep 3;20(17):4762-73 [11532940.001]
  • [Cites] Cancer Cell. 2002 Apr;1(3):219-27 [12086857.001]
  • [Cites] Biochem Biophys Res Commun. 2004 Nov 12;324(2):909-15 [15474514.001]
  • [Cites] Blood. 2003 Jan 1;101(1):168-72 [12393704.001]
  • [Cites] Clin Cancer Res. 2006 Mar 1;12(5):1525-32 [16533777.001]
  • [Cites] FASEB J. 2001 Apr;15(6):1028-36 [11292664.001]
  • [Cites] J Histochem Cytochem. 2003 Mar;51(3):331-8 [12588961.001]
  • [Cites] Science. 1998 Oct 30;282(5390):946-9 [9794766.001]
  • [Cites] J Gastroenterol Hepatol. 2004 Jun;19(6):648-54 [15151619.001]
  • [Cites] Ann Oncol. 2005 Jul;16(7):999-1004 [15939715.001]
  • [Cites] Placenta. 2000 Mar-Apr;21 Suppl A:S11-5 [10831116.001]
  • [Cites] Int J Cancer. 2004 Aug 20;111(2):184-91 [15197769.001]
  • [Cites] Pathol Res Pract. 2005;201(2):93-9 [15901129.001]
  • [Cites] Eur J Cancer. 2002 Jul;38(10):1413-9 [12091074.001]
  • [Cites] Br J Cancer. 2000 Oct;83(7):887-91 [10970690.001]
  • [Cites] Histol Histopathol. 2005 Jan;20(1):155-75 [15578435.001]
  • [Cites] Clin Cancer Res. 1999 Jul;5(7):1823-9 [10430087.001]
  • [Cites] Cancer Cell. 2004 Dec;6(6):553-63 [15607960.001]
  • [Cites] J Biol Chem. 2004 Aug 20;279(34):36148-57 [15215251.001]
  • [Cites] Anticancer Res. 2005 Sep-Oct;25(5):3619-23 [16101190.001]
  • [Cites] Cold Spring Harb Symp Quant Biol. 2002;67:189-96 [12858540.001]
  • [Cites] Mod Pathol. 2000 Feb;13(2):180-5 [10697276.001]
  • [Cites] J Pathol. 2001 Nov;195(4):490-7 [11745682.001]
  • [Cites] Blood. 2003 Feb 15;101(4):1367-74 [12393458.001]
  • [Cites] Clin Cancer Res. 2004 Nov 1;10(21):7171-8 [15534089.001]
  • [Cites] Cancer Res. 2004 Jun 1;64(11):3731-6 [15172975.001]
  • [Cites] Biochem Biophys Res Commun. 2005 Jul 29;333(2):328-35 [15961063.001]
  • [Cites] Clin Cancer Res. 2004 Aug 1;10(15):5137-44 [15297417.001]
  • [Cites] Ann Endocrinol (Paris). 2000 Feb;61(1):70-4 [10790595.001]
  • [Cites] J Neurooncol. 2006 Jan;76(1):39-48 [16155723.001]
  • [Cites] Kidney Int. 2002 Jan;61(1):133-40 [11786093.001]
  • [Cites] J Biol Chem. 1996 Nov 8;271(45):28220-8 [8910439.001]
  • [Cites] Clin Breast Cancer. 2003 Dec;4(5):354-60 [14715111.001]
  • [Cites] Ann N Y Acad Sci. 2002 Dec;979:120-30 [12543722.001]
  • [Cites] J Med Chem. 2005 Mar 10;48(5):1359-66 [15743179.001]
  • [Cites] Blood. 2000 Jul 15;96(2):546-53 [10887117.001]
  • [Cites] Cancer Res. 2001 Aug 15;61(16):6020-4 [11507045.001]
  • [Cites] Angiogenesis. 2005;8(3):263-71 [16328159.001]
  • [Cites] J Biol Chem. 2003 Oct 17;278(42):40973-9 [12881528.001]
  • [Cites] J Neurooncol. 2000 Oct-Nov;50(1-2):149-63 [11245274.001]
  • [Cites] Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14389-94 [9826710.001]
  • [Cites] Recent Prog Horm Res. 2000;55:15-35; discussion 35-6 [11036931.001]
  • [Cites] J Pathol. 2006 May;209(1):34-43 [16523449.001]
  • (PMID = 17115285.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, CD31; 0 / VEGFC protein, human; 0 / Vascular Endothelial Growth Factor C; 0 / Vascular Endothelial Growth Factor D; EC 2.7.10.1 / Vascular Endothelial Growth Factor Receptor-2; EC 2.7.10.1 / Vascular Endothelial Growth Factor Receptor-3
  •  go-up   go-down


38. Frenay MP, Fontaine D, Vandenbos F, Lebrun C: First-line nitrosourea-based chemotherapy in symptomatic non-resectable supratentorial pure low-grade astrocytomas. Eur J Neurol; 2005 Sep;12(9):685-90
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] First-line nitrosourea-based chemotherapy in symptomatic non-resectable supratentorial pure low-grade astrocytomas.
  • At the present time, there are no proven beneficial effects of chemotherapy (CT) for the treatment of pure low-grade astrocytomas.
  • Brain radiotherapy (RT) still remains the standard treatment in order to reduce or delay tumor progression or symptoms, despite possible long-term neurologic complications.
  • We report 10 patients, with histologically proven pure low-grade fibrillary astrocytomas, to which we administered a first-line nitrosourea-based CT.
  • CT was well tolerated; all patients developed myelosuppression with 40% of grade III/IV hematotoxicity.
  • These results demonstrate that some patients with symptomatic non-resectable fibrillary low-grade astrocytomas can be treated with up-front CT to improve their neurologic status.
  • [MeSH-major] Astrocytoma / therapy. Brain Neoplasms / therapy. Drug Therapy / methods. Nitrosourea Compounds / therapeutic use
  • [MeSH-minor] Adult. Cerebral Cortex / drug effects. Cerebral Cortex / pathology. Combined Modality Therapy. Epilepsy / complications. Epilepsy / drug therapy. Female. Follow-Up Studies. Humans. Magnetic Resonance Imaging / methods. Male. Middle Aged. Retrospective Studies

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16128869.001).
  • [ISSN] 1351-5101
  • [Journal-full-title] European journal of neurology
  • [ISO-abbreviation] Eur. J. Neurol.
  • [Language] eng
  • [Publication-type] Clinical Trial; Comparative Study; Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Nitrosourea Compounds
  •  go-up   go-down


39. Watanabe Y, Yamasaki F, Kajiwara Y, Saito T, Nishimoto T, Bartholomeusz C, Ueno NT, Sugiyama K, Kurisu K: Expression of phosphoprotein enriched in astrocytes 15 kDa (PEA-15) in astrocytic tumors: a novel approach of correlating malignancy grade and prognosis. J Neurooncol; 2010 Dec;100(3):449-57
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of phosphoprotein enriched in astrocytes 15 kDa (PEA-15) in astrocytic tumors: a novel approach of correlating malignancy grade and prognosis.
  • Phosphoprotein enriched in astrocytes 15 kDa (PEA-15) is a multifunctional protein that was first identified in brain astrocytes and that has subsequently been shown to be expressed in different tissues.
  • Despite its many important roles, the clinical significance of PEA-15 expression levels in astrocytic tumors has yet to be properly defined.
  • We studied the PEA-15 expression pattern of 65 patients [diagnosed according to World Health Organization (WHO) criteria] with diffuse astrocytoma (WHO grade II), anaplastic astrocytoma (grade III), and glioblastoma (grade IV).
  • In grade II astrocytoma (diffuse astrocytoma) and grade III astrocytoma (anaplastic astrocytoma), 100% and 88.9% of patients expressed high PEA-15 levels, respectively, while a smaller number (50%) of patients with grade IV astrocytoma (glioblastoma) expressed high PEA-15 levels.
  • PEA-15 expression level was inversely associated with WHO grade (P = 0.0006).
  • Next, we evaluated prognosis and PEA-15 expression levels in 43 patients with high-grade astrocytomas based on the following parameters: age, gender, WHO grade, surgical resection extent, MIB-1 labeling index (LI), and PEA-15 expression level.
  • Multivariable analyses revealed that high PEA-15 expression level displayed a significant correlation with longer overall survival (OS) in high-grade astrocytomas (P = 0.0024).
  • In conclusion, PEA-15 expression level was inversely associated with WHO grade and may serve as an important prognostic factor for high-grade astrocytomas.
  • [MeSH-major] Astrocytoma / diagnosis. Astrocytoma / metabolism. Brain Neoplasms / diagnosis. Brain Neoplasms / metabolism. Intracellular Signaling Peptides and Proteins / metabolism. Phosphoproteins / metabolism. Statistics as Topic
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Female. Follow-Up Studies. Humans. Ki-67 Antigen / metabolism. Magnetic Resonance Imaging / methods. Male. Middle Aged. Retrospective Studies. Severity of Illness Index. Statistics, Nonparametric. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Health Statistics.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer. 1988 Nov 15;62(10):2152-65 [3179928.001]
  • [Cites] J Neurosci. 1999 Oct 1;19(19):8244-51 [10493725.001]
  • [Cites] J Biol Chem. 2002 Jul 12;277(28):25020-5 [11976344.001]
  • [Cites] Radiother Oncol. 2007 Dec;85(3):371-8 [18035440.001]
  • [Cites] Mol Cancer Ther. 2008 May;7(5):1013-24 [18445660.001]
  • [Cites] Oncogene. 2005 Oct 27;24(47):7012-21 [16044159.001]
  • [Cites] Oncogene. 2008 Feb 14;27(8):1155-66 [17700518.001]
  • [Cites] Mol Biol Cell. 2006 Dec;17(12):5141-52 [16987961.001]
  • [Cites] Mol Cell Biol. 2004 Jun;24(11):5005-15 [15143191.001]
  • [Cites] J Neurochem. 1998 Sep;71(3):1307-14 [9721757.001]
  • [Cites] Lancet Oncol. 2005 May;6(5):322-7 [15863380.001]
  • [Cites] Mol Cell Biol. 2003 Jul;23(13):4511-21 [12808093.001]
  • [Cites] Cancer Res. 2001 Feb 1;61(3):1162-70 [11221847.001]
  • [Cites] Biochem J. 2005 Sep 15;390(Pt 3):729-35 [15916534.001]
  • [Cites] Cancer Res. 2007 Feb 15;67(4):1536-44 [17308092.001]
  • [Cites] Oncogene. 1999 Aug 5;18(31):4409-15 [10442631.001]
  • [Cites] J Cell Mol Med. 2008 Dec;12(6A):2416-26 [18284607.001]
  • [Cites] Dev Cell. 2001 Aug;1(2):239-50 [11702783.001]
  • [Cites] Mol Biol Cell. 2005 Aug;16(8):3552-61 [15917297.001]
  • [Cites] Lancet. 2002 Mar 23;359(9311):1011-8 [11937180.001]
  • [Cites] Cancer Res. 2008 Nov 15;68(22):9302-10 [19010903.001]
  • [Cites] Neuropathology. 2008 Oct;28(5):507-15 [18410277.001]
  • [Cites] J Biol Chem. 1993 Mar 15;268(8):5911-20 [8449955.001]
  • [Cites] J Biol Chem. 2004 Mar 26;279(13):12840-7 [14707138.001]
  • [Cites] Cancer Res. 2006 Feb 1;66(3):1491-9 [16452205.001]
  • [Cites] Int J Cancer. 2007 Mar 15;120(6):1215-22 [17192900.001]
  • (PMID = 20455002.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Intracellular Signaling Peptides and Proteins; 0 / Ki-67 Antigen; 0 / PEA15 protein, human; 0 / Phosphoproteins
  •  go-up   go-down


40. Faria MH, Gonçalves BP, do Patrocínio RM, de Moraes-Filho MO, Rabenhorst SH: Expression of Ki-67, topoisomerase IIalpha and c-MYC in astrocytic tumors: correlation with the histopathological grade and proliferative status. Neuropathology; 2006 Dec;26(6):519-27
MedlinePlus Health Information. consumer health - Childhood Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of Ki-67, topoisomerase IIalpha and c-MYC in astrocytic tumors: correlation with the histopathological grade and proliferative status.
  • Astrocytomas represent the most frequent primary tumors of the central nervous system.
  • Recently, the determination of the proliferative index of astrocytic tumors by different methods has been proposed as a valuable tool for tumor grading and also as a prognostic marker.
  • The aim of the present study was to evaluate the expression of cell proliferation-related proteins in human astrocytic tumors of different histopathological grades (WHO).
  • An immunohistochemical study of the Ki-67, Topoisomerase IIalpha (Topo IIalpha) and c-MYC proteins using the avidin-biotin-peroxidase method was performed in 55 astrocytomas (13 grade I, 14 grade II, 7 grade III and 21 grade IV) and five samples of non-tumor brain tissue (control group).
  • Ki-67, Topo IIalpha and c-MYC positive indices tended to increase according to malignant progression, were absent in non-tumor brain tissue and showed maximum values in high-grade astrocytomas (III and IV).
  • Ki-67 antigen detection in more than 8.0% of the tumor cells distinguished astrocytoma grade IV, while a labeling index between 1.5 and 8.0% characterized astrocytomas grade III and values below 1.5% discriminated low-grade tumors (I and II).
  • Moreover, Ki-67 antigen was found to be the best marker of cellular proliferation, and its expression predicts the grade of astrocytic tumors.
  • [MeSH-major] Astrocytoma / metabolism. Astrocytoma / pathology. Biomarkers, Tumor / metabolism. Brain Neoplasms / metabolism. Brain Neoplasms / pathology
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. Antigens, Neoplasm / metabolism. Cell Division. Child. Child, Preschool. DNA Topoisomerases, Type II / metabolism. DNA-Binding Proteins / metabolism. Female. Glioblastoma / metabolism. Glioblastoma / pathology. Humans. Immunohistochemistry. Infant. Ki-67 Antigen / metabolism. Male. Middle Aged. Prognosis. Proto-Oncogene Proteins c-myc / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17203587.001).
  • [ISSN] 0919-6544
  • [Journal-full-title] Neuropathology : official journal of the Japanese Society of Neuropathology
  • [ISO-abbreviation] Neuropathology
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Australia
  • [Chemical-registry-number] 0 / Antigens, Neoplasm; 0 / Biomarkers, Tumor; 0 / DNA-Binding Proteins; 0 / Ki-67 Antigen; 0 / Proto-Oncogene Proteins c-myc; EC 5.99.1.3 / DNA Topoisomerases, Type II; EC 5.99.1.3 / DNA topoisomerase II alpha
  •  go-up   go-down


41. Narayana A, Yamada J, Berry S, Shah P, Hunt M, Gutin PH, Leibel SA: Intensity-modulated radiotherapy in high-grade gliomas: clinical and dosimetric results. Int J Radiat Oncol Biol Phys; 2006 Mar 1;64(3):892-7
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Intensity-modulated radiotherapy in high-grade gliomas: clinical and dosimetric results.
  • METHODS AND MATERIALS: Fifty-eight consecutive high-grade gliomas were treated between January 2001 and December 2003 with dynamic multileaf collimator IMRT, planned with the inverse approach.
  • Glioblastoma accounted for 70% of the cases, and anaplastic oligodendroglioma histology (pure or mixed) was seen in 15% of the cases.
  • The median progression-free survival time for anaplastic astrocytoma and glioblastoma histology was 5.6 and 2.5 months, respectively.
  • The overall survival time for anaplastic glioma and glioblastoma was 36 and 9 months, respectively.
  • No Grade IV/V late neurologic toxicities were noted.
  • A comparative dosimetric analysis revealed that regardless of tumor location, IMRT did not significantly improve target coverage compared with three-dimensional planning.
  • Intensity-modulated radiotherapy delivered with a limited number of beams did not result in an increased dose to the normal brain.
  • CONCLUSIONS: It is unlikely that IMRT will improve local control in high-grade gliomas without further dose escalation compared with conventional radiotherapy.
  • [MeSH-major] Brain Neoplasms / radiotherapy. Glioma / radiotherapy. Radiotherapy, Intensity-Modulated
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Brain / radiation effects. Disease Progression. Female. Glioblastoma / radiotherapy. Humans. Male. Middle Aged. Neoplasm Recurrence, Local. Oligodendroglioma / radiotherapy. Radiotherapy Dosage. Retrospective Studies

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16458777.001).
  • [ISSN] 0360-3016
  • [Journal-full-title] International journal of radiation oncology, biology, physics
  • [ISO-abbreviation] Int. J. Radiat. Oncol. Biol. Phys.
  • [Language] eng
  • [Publication-type] Evaluation Studies; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


42. Ritz R, Müller M, Dietz K, Duffner F, Bornemann A, Roser F, Tatagiba M: Hypericin uptake: a prognostic marker for survival in high-grade glioma. J Clin Neurosci; 2008 Jul;15(7):778-83
Hazardous Substances Data Bank. PERYLENE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Hypericin uptake: a prognostic marker for survival in high-grade glioma.
  • Currently adjuvant chemotherapy for glioblastoma patients can prolong survival time relative to patients who receive only surgery and radiotherapy.
  • Despite these improvements and experimental and clinical efforts the prognosis for glioblastoma patients remains poor.
  • Photodynamic therapy may be a promising therapeutic option in the treatment of glioblastoma.
  • In this investigation we examined whether uptake of hypericin (HY), a fluorescent photosensitization agent, by ex vivo glioblastoma cell lines correlates with prognosis of the individual from which the cell lines were derived.
  • Three patients suffered from an anaplastic astrocytoma, WHO grade III, nine had a glioblastoma, WHO grade IV.
  • In summary, HY uptake by ex vivo glioblastoma cell cultures seems to be positively associated with survival of patients with malignant glioma.
  • [MeSH-major] Brain Neoplasms / drug therapy. Drug Resistance, Neoplasm / genetics. Glioma / drug therapy. Perylene / analogs & derivatives. Photochemotherapy / methods
  • [MeSH-minor] Adult. Aged. Astrocytoma / drug therapy. Astrocytoma / metabolism. Astrocytoma / physiopathology. Cell Line, Tumor. Cell Proliferation. Disease-Free Survival. Drug Therapy. Female. Fluorescence. Glioblastoma / drug therapy. Glioblastoma / metabolism. Glioblastoma / physiopathology. Humans. Light. Lipoproteins, LDL / metabolism. Male. Microscopy, Fluorescence / methods. Middle Aged. Models, Statistical. Predictive Value of Tests. Prognosis. Radiation-Sensitizing Agents / metabolism. Radiotherapy. Survival Rate

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentIn] J Clin Neurosci. 2009 Oct;16(10):1381-2 [19595595.001]
  • (PMID = 18394904.001).
  • [ISSN] 0967-5868
  • [Journal-full-title] Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
  • [ISO-abbreviation] J Clin Neurosci
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Scotland
  • [Chemical-registry-number] 0 / Lipoproteins, LDL; 0 / Radiation-Sensitizing Agents; 5QD5427UN7 / Perylene; 7V2F1075HD / hypericin
  •  go-up   go-down


43. Chang EF, Potts MB, Keles GE, Lamborn KR, Chang SM, Barbaro NM, Berger MS: Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J Neurosurg; 2008 Feb;108(2):227-35
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Seizure characteristics and control following resection in 332 patients with low-grade gliomas.
  • OBJECT: Seizures play an important role in the clinical presentation and postoperative quality of life of patients who undergo surgical resection of low-grade gliomas (LGGs).
  • METHODS: The authors performed a retrospective chart review of all cases involving adult patients who underwent initial surgery for LGGs at the University of California, San Francisco between 1997 and 2003.
  • Cortical location and oligodendroglioma and oligoastrocytoma subtypes were significantly more likely to be associated with seizures compared with deeper midline locations and astrocytoma, respectively (p=0.017 and 0.001, respectively; multivariate analysis).
  • For the cohort of patients that presented with seizures, 12-month outcome after surgery (Engel class) was as follows: seizure free (I), 67%; rare seizures (II), 17%; meaningful seizure improvement (III), 8%; and no improvement or worsening (IV), 9%.
  • Seizure recurrence after initial postoperative seizure control was associated with tumor progression (p=0.001).
  • [MeSH-major] Brain Neoplasms / complications. Glioma / complications. Seizures / etiology
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. Anticonvulsants / therapeutic use. Cohort Studies. Disease Progression. Epilepsies, Partial / etiology. Epilepsies, Partial / prevention & control. Epilepsy, Complex Partial / etiology. Epilepsy, Complex Partial / prevention & control. Female. Follow-Up Studies. Humans. Male. Middle Aged. Oligodendroglioma / complications. Oligodendroglioma / surgery. Quality of Life. Recurrence. Retrospective Studies. Temporal Lobe / pathology. Time Factors. Treatment Outcome

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Seizures.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentIn] Epilepsy Curr. 2009 Jul-Aug;9(4):98-100 [19693324.001]
  • (PMID = 18240916.001).
  • [ISSN] 0022-3085
  • [Journal-full-title] Journal of neurosurgery
  • [ISO-abbreviation] J. Neurosurg.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Anticonvulsants
  •  go-up   go-down


44. Gimenez M, Souza VC, Izumi C, Barbieri MR, Chammas R, Oba-Shinjo SM, Uno M, Marie SK, Rosa JC: Proteomic analysis of low- to high-grade astrocytomas reveals an alteration of the expression level of raf kinase inhibitor protein and nucleophosmin. Proteomics; 2010 Aug;10(15):2812-21
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Proteomic analysis of low- to high-grade astrocytomas reveals an alteration of the expression level of raf kinase inhibitor protein and nucleophosmin.
  • The aim of this study was to identify differentially expressed proteins in diffuse astrocytoma grade II, anaplastic astrocytoma grade III and glioblastoma multiforme grade IV in human tumor samples and in non-neoplastic brain tissue as control using 2-DE and MS.
  • Tumor and control brain tissue dissection was guided by histological hematoxylin/eosin tissue sections to provide more than 90% of tumor cells and astrocytes.
  • Six proteins were detected as up-regulated in higher grade astrocytomas and the most important finding was nucleophosmin (NPM) (p<0.05), whereas four proteins were down-regulated, among them raf kinase inhibitor protein (RKIP) (p<0.05).
  • We report here for the first time the alteration of NPM and RKIP expression in brain cancer.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Gene Expression Regulation, Neoplastic. Nuclear Proteins / genetics. Phosphatidylethanolamine Binding Protein / genetics. Proteomics
  • [MeSH-minor] Adult. Amino Acid Sequence. Brain / metabolism. Brain / pathology. Electrophoresis, Gel, Two-Dimensional. Female. Humans. Male. Middle Aged. Molecular Sequence Data. Proteins / genetics. Proteins / isolation & purification


45. Mehling M, Simon P, Mittelbronn M, Meyermann R, Ferrone S, Weller M, Wiendl H: WHO grade associated downregulation of MHC class I antigen-processing machinery components in human astrocytomas: does it reflect a potential immune escape mechanism? Acta Neuropathol; 2007 Aug;114(2):111-9
MedlinePlus Health Information. consumer health - Childhood Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] WHO grade associated downregulation of MHC class I antigen-processing machinery components in human astrocytomas: does it reflect a potential immune escape mechanism?
  • We investigated the expression of APM components in astrocytomas without detectable defects in HLA class I antigen expression and correlated it with grade of malignancy.
  • Quantitative immunohistochemical analysis of astrocytomas revealed reduced expression of the cytosolic proteasome subunit low molecular weight protein 2 (LMP2), the endoplasmatic reticulum (ER) transporter associated with antigen processing-1 (TAP1), and the ER chaperone beta2-microglobulin (beta2m) in astrocytoma cells when compared to astrocytes from nonpathological brain.
  • Among human WHO grade II-IV astrocytomas, downregulation of LMP2, TAP1 and beta2m correlated with grade of malignancy.
  • Furthermore, astrocytoma cell lines (n = 12) expressed all APM components analyzed at levels comparable to dendritic cells (DC), which were used for comparative purposes.
  • However, upregulation of beta2m after stimulation with inflammatory cytokines was significantly lower in astrocytoma cell lines than in control cells.
  • Our results support the hypothesis that coordinated downregulation or impaired upregulation of certain HLA class I APM components may serve as a mechanism for astrocytoma cells to evade the host's immune response, even if HLA class I antigen surface expression is not altered.
  • [MeSH-major] Antigen Presentation / immunology. Astrocytoma / immunology. Brain Neoplasms / immunology. Histocompatibility Antigens Class I / metabolism. Tumor Escape / immunology
  • [MeSH-minor] ATP-Binding Cassette Transporters / biosynthesis. Adolescent. Adult. Aged. Aged, 80 and over. Cell Line, Tumor. Child. Child, Preschool. Cysteine Endopeptidases / biosynthesis. Down-Regulation. Female. Flow Cytometry. Gene Expression. Humans. Immunohistochemistry. Male. Middle Aged. World Health Organization. beta 2-Microglobulin / biosynthesis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17541610.001).
  • [ISSN] 0001-6322
  • [Journal-full-title] Acta neuropathologica
  • [ISO-abbreviation] Acta Neuropathol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Histocompatibility Antigens Class I; 0 / TAP1 protein, human; 0 / beta 2-Microglobulin; 144416-78-4 / LMP-2 protein; EC 3.4.22.- / Cysteine Endopeptidases
  •  go-up   go-down


46. Caltabiano R, Torrisi A, Condorelli D, Albanese V, Lanzafame S: High levels of connexin 43 mRNA in high grade astrocytomas. Study of 32 cases with in situ hybridization. Acta Histochem; 2010 Nov;112(6):529-35
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] High levels of connexin 43 mRNA in high grade astrocytomas. Study of 32 cases with in situ hybridization.
  • The aims of the research reported here were (1) to evaluate the Cx43 protein and mRNA of both low histological grade and high histological grade astrocyte tumors;.
  • (2) to evaluate if the immunohistochemistry of the Cx43 protein in astrocytomas could be correlated to histological grade, to proliferative activity (Ki67/Mib1-index) and to immunolabelling of the epidermal growth factor receptor (EGFR);.
  • This study showed that the immunohistochemical labelling of Cx43 is reduced in grade III and grade IV.
  • This study demonstrated also the persistence in high grade astrocytomas of elevated levels of Cx43 mRNA.
  • [MeSH-major] Astrocytoma / genetics. Connexin 43 / analysis. Connexin 43 / genetics. In Situ Hybridization. RNA, Messenger / analysis
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. Child. Child, Preschool. Female. Glioblastoma / genetics. Glioblastoma / metabolism. Humans. Immunohistochemistry. Male. Middle Aged

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2009 Elsevier GmbH. All rights reserved.
  • (PMID = 19604543.001).
  • [ISSN] 1618-0372
  • [Journal-full-title] Acta histochemica
  • [ISO-abbreviation] Acta Histochem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Connexin 43; 0 / RNA, Messenger
  •  go-up   go-down


47. El Andaloussi A, Lesniak MS: CD4+ CD25+ FoxP3+ T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas. J Neurooncol; 2007 Jun;83(2):145-52
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] CD4+ CD25+ FoxP3+ T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas.
  • We have previously shown that these cells are elevated in tumors and blood of patients with glioblastoma multiforme.
  • In this study, we investigated the correlation between FoxP3 and HO-1 expression in patients with various grades of astrocytoma (WHO grade II-IV).
  • Using qualitative and quantitative reverse transcriptase-polymerase chain reaction and quantitative flow cytometry analyses, we analyzed FoxP3 and HO-1 expression in 19 patients with different grades of astrocytoma.
  • We observed the highest level of FoxP3 expression in patients with grade IV tumors (11.54 +/- 1.95%) vs. grade III (6.74 +/- 0.19%) or grade II (2.53 +/- 0.11%) (P < 0.05).
  • Moreover, in grade IV tumors, the frequency of HO-1 mRNA expression in CD4+ CD25+ cells was 11.8 +/- 2.45% vs. 7.42 +/- 0.31% in grade III and 2.33 +/- 0.12% in grade II.
  • Tumor infiltrating Treg stained positively with anti-HO-1 antibody.
  • These findings support the suppressive role played by regulatory T-cells in the growth of malignant brain tumors.
  • [MeSH-major] Brain Neoplasms / immunology. Glioblastoma / immunology. Heme Oxygenase-1 / metabolism. Lymphocytes, Tumor-Infiltrating / metabolism. T-Lymphocytes, Regulatory / metabolism
  • [MeSH-minor] Adult. Aged. Antigens, CD4 / metabolism. Child, Preschool. Female. Forkhead Transcription Factors / genetics. Forkhead Transcription Factors / metabolism. Gene Expression Regulation. Gene Expression Regulation, Neoplastic / immunology. Humans. Interleukin-2 Receptor alpha Subunit / metabolism. Male. Middle Aged. RNA, Messenger / analysis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Biochem Biophys Res Commun. 2003 Jul 4;306(3):701-5 [12810075.001]
  • [Cites] J Biol Chem. 1997 Feb 28;272(9):5375-81 [9038135.001]
  • [Cites] Blood. 2006 Aug 1;108(3):804-11 [16861339.001]
  • [Cites] J Immunol. 2004 Jan 15;172(2):1220-6 [14707100.001]
  • [Cites] Neurosci Lett. 1995 Oct 20;199(2):127-30 [8584240.001]
  • [Cites] Am J Reprod Immunol. 2005 Dec;54(6):369-77 [16305662.001]
  • [Cites] Neuro Oncol. 2006 Jul;8(3):234-43 [16723631.001]
  • [Cites] Cancer Sci. 2005 Aug;96(8):527-33 [16108835.001]
  • [Cites] Mini Rev Med Chem. 2006 May;6(5):509-13 [16719824.001]
  • [Cites] Br J Cancer. 2005 Mar 14;92(5):913-20 [15714205.001]
  • [Cites] J Neurochem. 1992 Mar;58(3):1140-9 [1737989.001]
  • [Cites] Ann Neurol. 1995 Jun;37(6):758-68 [7778849.001]
  • [Cites] J Clin Invest. 1996 Oct 1;98(7):1667-75 [8833917.001]
  • [Cites] Brain Res Mol Brain Res. 1996 Jun;38(2):251-9 [8793113.001]
  • [Cites] Br J Cancer. 1999 Aug;80(12 ):1945-54 [10471043.001]
  • [Cites] J Biol Chem. 1989 Jan 15;264(2):1323-8 [2910857.001]
  • [Cites] Proc Natl Acad Sci U S A. 1987 Aug;84(16):5918-22 [3475708.001]
  • [Cites] FASEB J. 1988 Jul;2(10 ):2557-68 [3290025.001]
  • [Cites] Br J Cancer. 2003 Mar 24;88(6):902-9 [12644828.001]
  • [Cites] Brain Res. 2000 Nov 3;882(1-2):1-8 [11056178.001]
  • [Cites] Semin Cancer Biol. 2006 Feb;16(1):73-9 [16140545.001]
  • [Cites] Biochem Biophys Res Commun. 1996 Jul 5;224(1):153-8 [8694803.001]
  • [Cites] J Pathol. 2000 Apr;190(5):627-34 [10727990.001]
  • [Cites] Immunol Res. 2005;32(1-3):155-68 [16106066.001]
  • [Cites] Cancer Immunol Immunother. 2005 Dec;54(12):1153-61 [15868167.001]
  • [Cites] J Immunol. 2004 Apr 15;172(8):4744-51 [15067050.001]
  • [Cites] Brain Res Mol Brain Res. 1996 Apr;37(1-2):201-8 [8738152.001]
  • [Cites] Clin Cancer Res. 1999 May;5(5):1107-13 [10353745.001]
  • [Cites] Clin Cancer Res. 2003 Feb;9(2):606-12 [12576425.001]
  • [Cites] Free Radic Biol Med. 2004 Apr 1;36(7):858-71 [15019971.001]
  • [Cites] Transpl Immunol. 1998 Jun;6(2):84-93 [9777696.001]
  • [Cites] Semin Cancer Biol. 2006 Apr;16(2):106-14 [16423537.001]
  • [Cites] Biochem Biophys Res Commun. 2005 Feb 25;327(4):1066-71 [15652505.001]
  • [Cites] J Neurochem. 1999 Mar;72 (3):1187-203 [10037492.001]
  • [Cites] Science. 1987 Feb 27;235(4792):1043-6 [3029864.001]
  • [Cites] J Neurosurg. 2006 Sep;105(3):430-7 [16961139.001]
  • (PMID = 17216339.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, CD4; 0 / FOXP3 protein, human; 0 / Forkhead Transcription Factors; 0 / Interleukin-2 Receptor alpha Subunit; 0 / RNA, Messenger; EC 1.14.14.18 / Heme Oxygenase-1
  •  go-up   go-down


48. Mittelbronn M, Simon P, Löffler C, Capper D, Bunz B, Harter P, Schlaszus H, Schleich A, Tabatabai G, Goeppert B, Meyermann R, Weller M, Wischhusen J: Elevated HLA-E levels in human glioblastomas but not in grade I to III astrocytomas correlate with infiltrating CD8+ cells. J Neuroimmunol; 2007 Sep;189(1-2):50-8
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Elevated HLA-E levels in human glioblastomas but not in grade I to III astrocytomas correlate with infiltrating CD8+ cells.
  • To investigate HLA-E expression and immune cell infiltration in human astrocytic tumors in vivo, we analyzed normal CNS controls and astrocytomas of all WHO grades by immunohistochemistry.
  • Both, CD8(+) immune cell infiltration and HLA-E expression were significantly higher in astrocytic tumors than in normal brain.
  • Further, HLA-E expression levels and immune cell infiltration were significantly correlated in WHO grade IV glioblastomas.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. CD8-Positive T-Lymphocytes / physiology. Gene Expression Regulation, Neoplastic / physiology. Glioblastoma / metabolism. HLA Antigens / metabolism. Histocompatibility Antigens Class I / metabolism
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Female. Humans. Male. Middle Aged

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17675252.001).
  • [ISSN] 0165-5728
  • [Journal-full-title] Journal of neuroimmunology
  • [ISO-abbreviation] J. Neuroimmunol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / HLA Antigens; 0 / HLA-E antigen; 0 / Histocompatibility Antigens Class I
  •  go-up   go-down


49. Balzarotti M, Fontana F, Marras C, Boiardi A, Croci D, Ciusani E, Salmaggi A: In vitro study of low molecular weight heparin effect on cell growth and cell invasion in primary cell cultures of high-grade gliomas. Oncol Res; 2006;16(5):245-50
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] In vitro study of low molecular weight heparin effect on cell growth and cell invasion in primary cell cultures of high-grade gliomas.
  • In the last years results of preclinical and clinical studies have suggested that LMWH may be able to inhibit cell growth, cell invasion, and angiogenesis, which are key mechanisms involved in tumor progression, possibly influencing favorable clinical outcome in at least a proportion of cancer patients.
  • In this work we investigated the effect of LMWH (enoxaparin) on cell growth and cell invasion in primary cell cultures obtained from high-grade glioma specimens: 5 anaplastic astrocytoma (AA) and 13 glioblastoma multiforme (GBM).
  • A significant decrease in tumor cell growth was observed after treatment with 10 U/ml (-21%; p = 0.001) and 100 U/ml (-26%; p < 0.001); tumor cells from AA (grade III;.
  • WHO) were more affected by LMWH treatment compared to cell lines from GBM (grade IV; WHO).
  • In conclusion, our results confirm the antineoplastic effect of LMWH, suggesting a potential direct role on tumor cell growth in high grade gliomas.
  • [MeSH-major] Brain Neoplasms / drug therapy. Cell Proliferation / drug effects. Enoxaparin / pharmacology. Glioma / drug therapy
  • [MeSH-minor] Adolescent. Adult. Aged. Apoptosis / drug effects. Dose-Response Relationship, Drug. Drug Screening Assays, Antitumor. Female. Flow Cytometry. Gene Expression Regulation, Neoplastic / drug effects. Gene Expression Regulation, Neoplastic / genetics. Humans. Male. Middle Aged. Molecular Weight. Neoplasm Invasiveness. Receptor, PAR-1 / biosynthesis. Receptor, PAR-1 / drug effects. Receptor, PAR-1 / genetics. Sensitivity and Specificity. Structure-Activity Relationship. Tumor Cells, Cultured

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17294805.001).
  • [ISSN] 0965-0407
  • [Journal-full-title] Oncology research
  • [ISO-abbreviation] Oncol. Res.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Enoxaparin; 0 / Receptor, PAR-1
  •  go-up   go-down


50. Marcus HJ, Carpenter KL, Price SJ, Hutchinson PJ: In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines. J Neurooncol; 2010 Mar;97(1):11-23
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines.
  • This study's objective was to utilise microdialysis to monitor levels of glucose, lactate, pyruvate, glutamate and glycerol in patients following surgery for intrinsic brain tumours, and to assess the concentration of growth factors, cytokines and other proteins involved in the pathogenesis of high-grade gliomas in vivo.
  • Eight patients with suspected high-grade gliomas were studied.
  • Histology demonstrated WHO IV glioblastoma in five cases, WHO III anaplastic astrocytoma in two cases, and one cerebral lymphoma.
  • In the high-grade gliomas (WHO IV and III), tumour margin microdialysates consistently showed significantly lower glucose, higher lactate/pyruvate (L/P) ratio, higher glutamate and higher glycerol, relative to peritumour microdialysates (P < 0.05).
  • [MeSH-minor] Adult. Aged. Antineoplastic Agents, Hormonal / pharmacology. Dexamethasone / pharmacology. Female. Glucose / metabolism. Glutamic Acid / metabolism. Glycerol / metabolism. Humans. Lactic Acid / metabolism. Male. Matrix Metalloproteinase 9 / metabolism. Microdialysis / methods. Middle Aged. Pyruvic Acid / metabolism. Tissue Inhibitor of Metalloproteinase-1 / metabolism. Tissue Inhibitor of Metalloproteinase-2 / metabolism

  • Genetic Alliance. consumer health - Glioma.
  • Hazardous Substances Data Bank. GLUTAMIC ACID HYDROCHLORIDE .
  • Hazardous Substances Data Bank. DEXAMETHASONE .
  • Hazardous Substances Data Bank. LACTIC ACID .
  • Hazardous Substances Data Bank. GLUCOSE .
  • Hazardous Substances Data Bank. GLYCERIN .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Ann N Y Acad Sci. 1999;886:236-9 [10667228.001]
  • [Cites] Clin Cancer Res. 2006 Oct 1;12 (19):5698-704 [17020973.001]
  • [Cites] Brain Tumor Pathol. 2004;21(3):105-12 [15696970.001]
  • [Cites] Int J Dev Neurosci. 1999 Aug-Oct;17(5-6):495-502 [10571411.001]
  • [Cites] Neuro Oncol. 2005 Apr;7(2):122-33 [15831231.001]
  • [Cites] Nature. 1985 Jan 10-18;313(5998):144-7 [2981413.001]
  • [Cites] J Cell Sci. 1997 Oct;110 ( Pt 19):2473-82 [9410885.001]
  • [Cites] N Engl J Med. 2001 Jan 11;344(2):114-23 [11150363.001]
  • [Cites] Eur J Clin Pharmacol. 1983;24(1):103-8 [6832191.001]
  • [Cites] Neoplasia. 1999 Aug;1(3):208-19 [10935475.001]
  • [Cites] Physiol Meas. 2005 Aug;26(4):423-8 [15886437.001]
  • [Cites] Curr Med Chem. 2007;14(14):1525-37 [17584061.001]
  • [Cites] J Neuroimmunol. 1997 Sep;78(1-2):152-61 [9307240.001]
  • [Cites] J Neurosurg. 2001 Mar;94(3):464-73 [11235952.001]
  • [Cites] Science. 2006 May 26;312(5777):1158-9 [16728625.001]
  • [Cites] Clin Cancer Res. 2002 Sep;8(9):2894-901 [12231534.001]
  • [Cites] Int J Cancer. 1997 Jun 11;71(6):1066-76 [9185713.001]
  • [Cites] J Neurosurg. 1999 Feb;90(2):300-5 [9950501.001]
  • [Cites] J Physiol. 2007 May 1;580(Pt.3):937-49 [17317742.001]
  • [Cites] J Clin Neurosci. 2005 Nov;12(8):930-3 [16326273.001]
  • [Cites] Br J Neurosurg. 2007 Apr;21(2):204-9 [17453790.001]
  • [Cites] Brain Pathol. 2005 Oct;15(4):297-310 [16389942.001]
  • [Cites] J Neurooncol. 2005 Feb;71(3):287-93 [15735919.001]
  • [Cites] Biochim Biophys Acta. 2000 Mar 7;1477(1-2):267-83 [10708863.001]
  • [Cites] Cancer Res. 1996 Jul 15;56(14):3196-8 [8764105.001]
  • [Cites] J Neurooncol. 2006 Dec;80(3):285-93 [16773220.001]
  • [Cites] J Neurooncol. 2009 Jan;91(1):51-8 [18787762.001]
  • [Cites] Brain Tumor Pathol. 2003;20(2):39-45 [14756439.001]
  • [Cites] J Neurosurg. 1992 Jan;76(1):72-80 [1727172.001]
  • [Cites] Cancer Res. 1990 Oct 15;50(20):6683-8 [2208133.001]
  • [Cites] Bull Schweiz Akad Med Wiss. 1974 Jul;30(1-3):44-55 [4371656.001]
  • [Cites] J Neurosurg. 1987 Jun;66(6):865-74 [3033172.001]
  • [Cites] J Neurooncol. 2003 Jan;61(2):151-60 [12622454.001]
  • [Cites] Lancet. 1993 Jun 26;341(8861):1607-10 [8099987.001]
  • [Cites] Brain Pathol. 1990 Sep;1(1):12-8 [1669688.001]
  • [Cites] Acta Neurochir (Wien). 1993;121(3-4):199-205 [8512018.001]
  • [Cites] Eur J Anaesthesiol. 1996 May;13(3):269-78 [8737118.001]
  • [Cites] J Neurol Neurosurg Psychiatry. 1984 Oct;47(10):1087-90 [6502166.001]
  • [Cites] J Neurotrauma. 2007 Oct;24(10):1545-57 [17970618.001]
  • [Cites] Clin Exp Metastasis. 1999;17(7):555-66 [10845554.001]
  • [Cites] Int J Cancer. 2005 Jun 10;115(2):202-13 [15688401.001]
  • [Cites] Brain Tumor Pathol. 2001;18(1):13-21 [11517969.001]
  • [Cites] Proc Natl Acad Sci U S A. 1987 Oct;84(19):6899-903 [3477813.001]
  • [Cites] Eur J Pharmacol. 2008 Sep 28;593(1-3):1-9 [18652821.001]
  • [Cites] J Neurooncol. 2000 Mar;47(1):11-22 [10930095.001]
  • [Cites] Radiology. 1990 Sep;176(3):791-9 [2389038.001]
  • [Cites] Neoplasia. 2007 Sep;9(9):777-87 [17898873.001]
  • [Cites] Acta Neurochir (Wien). 2009 Jan;151(1):51-61; discussion 61 [19099177.001]
  • [Cites] Dev Biol. 1974 Dec;41(2):255-66 [4548877.001]
  • [Cites] Clin Cancer Res. 2003 Jul;9(7):2576-82 [12855633.001]
  • [Cites] J Neurosurg. 1995 Oct;83(4):657-64 [7674016.001]
  • [Cites] Trends Cell Biol. 2001 Nov;11(11):S37-43 [11684441.001]
  • [Cites] Am J Pathol. 1998 Aug;153(2):429-37 [9708803.001]
  • [Cites] J Neuroimmunol. 1994 Mar;50(2):187-94 [8120140.001]
  • [Cites] J Neurosurg. 2007 May;106(5):820-5 [17542525.001]
  • [Cites] Nature. 1974 Aug 2;250(465):422-4 [4368539.001]
  • [Cites] J Clin Endocrinol Metab. 1998 Feb;83(2):453-9 [9467557.001]
  • [Cites] Annu Rev Biochem. 1977;46:765-95 [197882.001]
  • [Cites] N Engl J Med. 2005 Oct 20;353(16):1711-23 [16236742.001]
  • [Cites] Ann Neurol. 1992 Mar;31(3):319-27 [1637139.001]
  • [Cites] Acta Neurochir (Wien). 1992;114(1-2):8-11 [1561943.001]
  • [Cites] J Neurooncol. 2003 Sep;64(3):227-37 [14558598.001]
  • [Cites] Am J Physiol Endocrinol Metab. 2000 Mar;278(3):E413-20 [10710495.001]
  • [Cites] J Neurosurg. 2000 Jul;93(1):37-43 [10883903.001]
  • [Cites] AJNR Am J Neuroradiol. 2006 Oct;27(9):1969-74 [17032877.001]
  • [Cites] J Neurosurg. 1996 Apr;84(4):606-16 [8613852.001]
  • [Cites] Biomed Pharmacother. 2005 Aug;59(7):359-64 [16084059.001]
  • [Cites] Brain Res Bull. 2000 Jan 1;51(1):29-34 [10654577.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10 ):987-96 [15758009.001]
  • [Cites] Cancer Res. 1991 Apr 15;51(8):2164-72 [2009534.001]
  • [Cites] Prostaglandins Leukot Essent Fatty Acids. 2008 Jul-Aug;79(1-2):59-65 [18762411.001]
  • [Cites] Biol Psychiatry. 1997 Mar 1;41(5):574-84 [9046990.001]
  • [Cites] Br J Cancer. 2001 Jul 6;85(1):55-63 [11437402.001]
  • [Cites] Neurosurgery. 2005 Jun;56(6):1264-8; discussion 1268-70 [15918942.001]
  • (PMID = 19714445.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Grant] United Kingdom / Medical Research Council / / G0600986; United Kingdom / Medical Research Council / / G9439390; United Kingdom / Medical Research Council / /
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Hormonal; 0 / Cytokines; 0 / Intercellular Signaling Peptides and Proteins; 0 / Tissue Inhibitor of Metalloproteinase-1; 127497-59-0 / Tissue Inhibitor of Metalloproteinase-2; 33X04XA5AT / Lactic Acid; 3KX376GY7L / Glutamic Acid; 7S5I7G3JQL / Dexamethasone; 8558G7RUTR / Pyruvic Acid; EC 3.4.24.35 / Matrix Metalloproteinase 9; IY9XDZ35W2 / Glucose; PDC6A3C0OX / Glycerol
  •  go-up   go-down


51. Maire JP, Huchet A, Catry-Thomas I: [Radiotherapy of adult glial tumors: new developments and perspectives]. Rev Neurol (Paris); 2008 Jun-Jul;164(6-7):531-41
MedlinePlus Health Information. consumer health - Radiation Therapy.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Radiotherapy of adult glial tumors: new developments and perspectives].
  • Adult gliomas (WHO grade II, III and IV) are heterogeneous primitive brain tumors.
  • Median survivals are different with regard to the tumor grade.
  • During the 1990s, temozolomide (TMZ) was specifically developed as a chemotherapy agent against primary brain tumors.
  • [MeSH-major] Brain Neoplasms / radiotherapy. Glioma / radiotherapy. Radiotherapy / trends
  • [MeSH-minor] Adult. Astrocytoma / radiotherapy. Glioblastoma / radiotherapy. Humans. Medical Oncology / trends. Prognosis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18565351.001).
  • [ISSN] 0035-3787
  • [Journal-full-title] Revue neurologique
  • [ISO-abbreviation] Rev. Neurol. (Paris)
  • [Language] fre
  • [Publication-type] English Abstract; Journal Article; Review
  • [Publication-country] France
  • [Number-of-references] 89
  •  go-up   go-down


52. Blumenthal DT, Rankin C, Eyre HJ, Livingston RB, Spence AM, Stelzer KJ, Rushing EJ, Berger MS, Rivkin SE, Cohn AL, Petersdorf SH: External beam irradiation and the combination of cisplatin and carmustine followed by carmustine alone for the treatment of high-grade glioma: a phase 2 Southwest Oncology Group trial. Cancer; 2008 Aug 1;113(3):559-65
Hazardous Substances Data Bank. CIS-DIAMINEDICHLOROPLATINUM .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] External beam irradiation and the combination of cisplatin and carmustine followed by carmustine alone for the treatment of high-grade glioma: a phase 2 Southwest Oncology Group trial.
  • BACKGROUND: The poor prognosis reported for patients with high-grade glial neoplasms indicates a need for the development of multimodality therapeutic approaches.
  • METHODS: SWOG 9016 study included 59 eligible patients with grade III or IV astrocytoma who received radiotherapy concurrently with carmustine/cisplatin chemotherapy.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Brain Neoplasms / drug therapy. Brain Neoplasms / radiotherapy. Carmustine / administration & dosage. Cisplatin / administration & dosage. Glioma / drug therapy. Glioma / radiotherapy
  • [MeSH-minor] Adolescent. Adult. Aged. Combined Modality Therapy. Female. Humans. Male. Middle Aged. Neoplasm Staging. Radiotherapy, Conformal / methods. Southwestern United States. Survival Analysis. Treatment Outcome

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. Carmustine .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2008 American Cancer Society
  • (PMID = 18521920.001).
  • [ISSN] 0008-543X
  • [Journal-full-title] Cancer
  • [ISO-abbreviation] Cancer
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / U10 CA038926
  • [Publication-type] Clinical Trial, Phase II; Journal Article; Multicenter Study
  • [Publication-country] United States
  • [Chemical-registry-number] Q20Q21Q62J / Cisplatin; U68WG3173Y / Carmustine
  •  go-up   go-down


53. Lucio-Eterovic AK, Cortez MA, Valera ET, Motta FJ, Queiroz RG, Machado HR, Carlotti CG Jr, Neder L, Scrideli CA, Tone LG: Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer; 2008;8:243
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas.
  • BACKGROUND: Glioblastoma is the most lethal primary malignant brain tumor.
  • Although considerable progress has been made in the treatment of this aggressive tumor, the clinical outcome for patients remains poor.
  • In the past several years, HDAC inhibitors (HDACis) have been used as radiosensitizers in glioblastoma treatment.
  • The purpose of this study was to evaluate and compare mRNA and protein levels of class I, II and IV of HDACs in low grade and high grade astrocytomas and normal brain tissue and to correlate the findings with the malignancy in astrocytomas.
  • METHODS: Forty-three microdissected patient tumor samples were evaluated.
  • The histopathologic diagnoses were 20 low-grade gliomas (13 grade I and 7 grade II) and 23 high-grade gliomas (5 grade III and 18 glioblastomas).
  • mRNA expression of class I, II, and IV HDACs was studied by quantitative real-time polymerase chain reaction and normalized to the housekeeping gene beta-glucuronidase.
  • RESULTS: We found that mRNA levels of class II and IV HDACs were downregulated in glioblastomas compared to low-grade astrocytomas and normal brain tissue (7 in 8 genes, p < 0.05).
  • The protein levels of class II HDAC9 were also lower in high-grade astrocytomas than in low-grade astrocytomas and normal brain tissue.
  • Additionally, we found that histone H3 (but not histone H4) was more acetylated in glioblastomas than normal brain tissue.
  • CONCLUSION: Our study establishes a negative correlation between HDAC gene expression and the glioma grade suggesting that class II and IV HDACs might play an important role in glioma malignancy.
  • Evaluation of histone acetylation levels showed that histone H3 is more acetylated in glioblastomas than normal brain tissue confirming the downregulation of HDAC mRNA in glioblastomas.
  • [MeSH-major] Astrocytoma / enzymology. Brain / enzymology. Brain Neoplasms / enzymology. Gene Expression Regulation, Enzymologic. Gene Expression Regulation, Neoplastic. Glioblastoma / enzymology. Histone Deacetylases / biosynthesis
  • [MeSH-minor] Adolescent. Adult. Aged. Child. Child, Preschool. Female. Humans. Infant. Male. Middle Aged. Radiation-Sensitizing Agents / pharmacology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cell Res. 2007 Mar;17(3):195-211 [17325692.001]
  • [Cites] Cell Death Differ. 2005 Apr;12(4):395-404 [15665816.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 2005;45:495-528 [15822187.001]
  • [Cites] EMBO J. 2005 Aug 17;24(16):2906-18 [16079916.001]
  • [Cites] Mol Pharmacol. 2005 Oct;68(4):917-32 [15955865.001]
  • [Cites] J Neurosurg. 2005 Dec;103(6 Suppl):549-56 [16383255.001]
  • [Cites] J Biol Chem. 2006 May 12;281(19):13548-58 [16533812.001]
  • [Cites] Proteomics. 2006 May;6(10):2964-71 [16619307.001]
  • [Cites] BMC Genomics. 2006;7:90 [16638127.001]
  • [Cites] Med Res Rev. 2006 Jul;26(4):397-413 [16450343.001]
  • [Cites] Folia Biol (Praha). 2006;52(1-2):21-33 [17007107.001]
  • [Cites] Neuro Oncol. 2007 Apr;9(2):82-8 [17347490.001]
  • [Cites] J Neurooncol. 2007 Jul;83(3):267-75 [17310267.001]
  • [Cites] Acta Neuropathol. 2007 Aug;114(2):97-109 [17618441.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2007 Sep 1;69(1):214-20 [17707275.001]
  • [Cites] Genes Dev. 2000 Jan 1;14(1):55-66 [10640276.001]
  • [Cites] Oncol Rep. 2000 Mar-Apr;7(2):401-12 [10671694.001]
  • [Cites] Nature. 2000 Feb 17;403(6771):795-800 [10693811.001]
  • [Cites] J Biol Chem. 2000 May 19;275(20):15594-9 [10748098.001]
  • [Cites] Exp Cell Res. 2001 Jan 15;262(2):75-83 [11139331.001]
  • [Cites] Hum Mol Genet. 2001 Apr;10(7):693-8 [11257101.001]
  • [Cites] J Biol Chem. 2001 Jun 22;276(25):22491-9 [11304533.001]
  • [Cites] Neuro Oncol. 1999 Jan;1(1):44-51 [11550301.001]
  • [Cites] Jpn J Cancer Res. 2001 Dec;92(12):1300-4 [11749695.001]
  • [Cites] J Biol Chem. 2002 Jul 12;277(28):25748-55 [11948178.001]
  • [Cites] Biochem J. 2003 Mar 15;370(Pt 3):737-49 [12429021.001]
  • [Cites] Trends Genet. 2003 May;19(5):286-93 [12711221.001]
  • [Cites] Cancer Cell. 2003 Jul;4(1):13-8 [12892709.001]
  • [Cites] Anal Biochem. 2003 Oct 15;321(2):202-8 [14511685.001]
  • [Cites] Acta Neuropathol. 2004 Jun;107(6):523-31 [15024582.001]
  • [Cites] Annu Rev Biochem. 2004;73:417-35 [15189148.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2004 Jul 15;59(4):1174-80 [15234053.001]
  • [Cites] Int J Cancer. 2004 Oct 20;112(1):26-32 [15305372.001]
  • [Cites] Biochem Soc Trans. 2004 Dec;32(Pt 6):904-9 [15506920.001]
  • [Cites] Nature. 1970 Aug 15;227(5259):680-5 [5432063.001]
  • [Cites] Pathology. 1998 May;30(2):196-202 [9643506.001]
  • [Cites] J Biol Chem. 1999 Jan 22;274(4):2440-5 [9891014.001]
  • [Cites] Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4868-73 [10220385.001]
  • [Cites] Biochemistry. 1999 May 25;38(21):6769-73 [10346897.001]
  • [Cites] Genes Dev. 1999 Aug 1;13(15):1924-35 [10444591.001]
  • [Cites] EMBO J. 1999 Sep 15;18(18):5099-107 [10487761.001]
  • [Cites] Mol Cell Biol. 1999 Nov;19(11):7816-27 [10523670.001]
  • [Cites] Int J Cancer. 2005 Apr 10;114(3):380-6 [15578701.001]
  • [Cites] Acta Neurol Belg. 2004 Dec;104(4):148-53 [15742604.001]
  • [Cites] Biochem Biophys Res Commun. 2007 Jun 1;357(2):439-45 [17428445.001]
  • (PMID = 18713462.001).
  • [ISSN] 1471-2407
  • [Journal-full-title] BMC cancer
  • [ISO-abbreviation] BMC Cancer
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Radiation-Sensitizing Agents; EC 3.5.1.98 / Histone Deacetylases
  • [Other-IDs] NLM/ PMC2536671
  •  go-up   go-down


54. Hur H, Jung S, Jung TY, Kim IY: Cerebellar glioblastoma multiforme in an adult. J Korean Neurosurg Soc; 2008 Apr;43(4):194-7

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Cerebellar glioblastoma multiforme in an adult.
  • Primary cerebellar glioblastoma multiforme (GBM) is a rare tumor in adults that accounts for just 1% of all cases of GBM.
  • After operation, glioblastoma was histologically confirmed.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Diagn Interv Radiol. 2005 Jun;11(2):83-6 [15957093.001]
  • [Cites] Radiology. 2002 Mar;222(3):715-21 [11867790.001]
  • [Cites] AJNR Am J Neuroradiol. 1995 Mar;16(3):583-9 [7793385.001]
  • [Cites] J Comput Assist Tomogr. 1991 Jan-Feb;15(1):160-2 [1987190.001]
  • [Cites] J Neurosurg. 1987 Dec;67(6):915-8 [2824720.001]
  • [Cites] J Neurosurg Sci. 1985 Jan-Mar;29(1):43-50 [2999352.001]
  • [Cites] Arq Neuropsiquiatr. 1985 Mar;43(1):102-7 [2990393.001]
  • [Cites] J Neurooncol. 1989 Nov;7(4):339-44 [2555454.001]
  • [Cites] Tumori. 1989 Dec 31;75(6):626-9 [2559527.001]
  • [Cites] Neurosurgery. 1987 Aug;21(2):251-5 [3309714.001]
  • [Cites] Br J Radiol. 1985 May;58(689):480-2 [4063702.001]
  • [Cites] Semin Roentgenol. 1990 Jul;25(3):263-78 [2385809.001]
  • [Cites] Semin Roentgenol. 1990 Apr;25(2):155-73 [2349487.001]
  • [Cites] J Neurosurg. 1983 Apr;58(4):589-92 [6298382.001]
  • [Cites] Surg Neurol. 1983 Apr;19(4):373-8 [6301087.001]
  • [Cites] Arq Neuropsiquiatr. 1981 Sep;39(3):350-4 [6275825.001]
  • [Cites] Cancer. 1982 Jul 15;50(2):308-11 [6282439.001]
  • [Cites] Acta Neurochir (Wien). 1980;53(1-2):107-16 [6254346.001]
  • [Cites] Surg Neurol. 1976 Jun;5(6):341-3 [180621.001]
  • [Cites] J Chin Med Assoc. 2004 Jun;67(6):301-4 [15366408.001]
  • [Cites] AJNR Am J Neuroradiol. 2002 Sep;23(8):1369-77 [12223380.001]
  • [Cites] J Neurosurg. 1999 Mar;90(3):546-50 [10067927.001]
  • (PMID = 19096643.001).
  • [ISSN] 2005-3711
  • [Journal-full-title] Journal of Korean Neurosurgical Society
  • [ISO-abbreviation] J Korean Neurosurg Soc
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Korea (South)
  • [Other-IDs] NLM/ PMC2588262
  • [Keywords] NOTNLM ; Cerebellum / Differential diagnosis / Glioblastoma multiforme / Pathogenesis
  •  go-up   go-down


55. Mattos JP, Marenco HA, Campos JM, Faria AV, Queiroz LS, Borges G, Oliveira Ed: Cerebellar glioblastoma multiforme in an adult. Arq Neuropsiquiatr; 2006 Mar;64(1):132-5
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Cerebellar glioblastoma multiforme in an adult.
  • Cerebellar glioblastoma multiforme (GBM) is a rare tumor.
  • In conjunction, we present a literature review including particular issues, clinical data, advances in imaging studies, pathological characteristics, treatment options and the behavior of such malignant tumor.
  • [MeSH-major] Cerebellar Neoplasms / pathology. Cerebellum / pathology. Glioblastoma / pathology

  • Genetic Alliance. consumer health - Glioblastoma.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16622570.001).
  • [ISSN] 0004-282X
  • [Journal-full-title] Arquivos de neuro-psiquiatria
  • [ISO-abbreviation] Arq Neuropsiquiatr
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article; Review
  • [Publication-country] Brazil
  • [Number-of-references] 16
  •  go-up   go-down


56. Lasky JL 3rd, Choe M, Nakano I: Cancer stem cells in pediatric brain tumors. Curr Stem Cell Res Ther; 2009 Dec;4(4):298-305
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Cancer stem cells in pediatric brain tumors.
  • Central nervous system (CNS) tumors remain the leading cause of death among pediatric neoplasms.
  • Although standard therapies cure many pediatric CNS tumors, the long-term cognitive and physical consequences of these therapies are devastating.
  • Although recent studies have focused on molecular mechanisms that underlie the initiation and progression of adult glioblastoma multiforme (GBM), these tumors differ phenotypically and at a molecular level from pediatric brain tumors.
  • Recent investigations have identified a stem cell population, termed "brain tumor stem cells" (BTSC) within the heterogeneous cell populations that comprise malignant brain tumors which may be partly responsible for the resistance to current therapies.
  • By exploiting molecular differences present within these heterogeneous populations of brain tumor cells, we may be able to achieve specific eradication of BTSC and long-lasting remissions, while causing less toxicity to normal tissues.
  • In this review, we describe the issues surrounding the identification and characterization of BTSC, the molecular biology of BTSC for different pediatric brain tumors, and suggest future avenues for the development of treatments for this devastating disease.
  • [MeSH-major] Brain Neoplasms / pathology. Ependymoma / pathology. Medulloblastoma / pathology. Neoplastic Stem Cells / pathology. Optic Nerve Glioma / pathology
  • [MeSH-minor] Adult Stem Cells / pathology. Biomarkers / metabolism. Cell Differentiation. Chemotherapy, Adjuvant. Child. Humans. Surgical Procedures, Operative


57. Potter NE, Phipps K, Harkness W, Hayward R, Thompson D, Jacques TS, Harding B, Thomas DG, Rees J, Darling JL, Warr TJ: Astrocytoma derived short-term cell cultures retain molecular signatures characteristic of the tumour in situ. Exp Cell Res; 2009 Oct 1;315(16):2835-46
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Astrocytoma derived short-term cell cultures retain molecular signatures characteristic of the tumour in situ.
  • We have characterised gene expression changes induced by short-term culture in astrocytoma in order to determine whether derived short-term cell cultures are representative of the tumour in situ.
  • We have used the Affymetrix GeneChip U133A to generate gene expression profiles of 6 paediatric pilocytic astrocytoma (PA) biopsies and derived short-term cell cultures and 3 adult glioblastoma multiforme (GBM) biopsies and derived short-term cultures.
  • This gene cohort can distinguish PA and GBM tumours, regardless of the sample source, suggesting that astrocytoma derived short-term cultures do retain key aspects of the global tumour expression profile and are representative of the tumour in situ.
  • Furthermore, these genes are involved in pathways and functions characteristic of adult GBM including VEGF signalling, hypoxia and TP53 signalling.
  • [MeSH-major] Astrocytoma. Biomarkers, Tumor / metabolism. Brain Neoplasms. Tumor Cells, Cultured / metabolism
  • [MeSH-minor] Adult. Animals. Child. Cluster Analysis. Gene Expression Profiling. Gene Expression Regulation, Neoplastic. Humans. Oligonucleotide Array Sequence Analysis. Signal Transduction / physiology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19523942.001).
  • [ISSN] 1090-2422
  • [Journal-full-title] Experimental cell research
  • [ISO-abbreviation] Exp. Cell Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor
  •  go-up   go-down


58. Tunici P, Yu JS: Pituitary adenoma stem cells. Methods Mol Biol; 2009;568:195-201
MedlinePlus Health Information. consumer health - Pituitary Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The identification of a subpopulation of brain tumor cells with potent tumorigenic capacity strengthens the cancer stem cell hypothesis of the origin of the tumors that has recently attracted the attention of many researchers.
  • Reports have been published on the identification of tumor cells with stem cells characteristics in different types of tumors (acute myelogenic leukemia, breast cancer, prostate cancer, bone sarcomas, liver cancer, and melanomas).
  • We and other groups have previously reported the isolation of cancer stem cells from adult glioblastoma multiforme.
  • In vivo they give a tumor that recapitulates the characteristics of the tumor in the patient.
  • More recently we have isolated tumor stem-like cells also from benign tumors like pituitary adenomas.
  • The immunocytochemical analysis revealed that pituitary tumor stem-like cells are positives for nestin and, when grown for ten days in differentiation medium they express GFAP, BIII tubulin, and S-100.
  • In vitro tumor stem-like cells derived from a patient with a somatotroph adenoma showed high production of growth hormone and prolactin, while cells derived from the same patient but grown in presence of fetal bovine serum showed no production of hormones.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19582428.001).
  • [ISSN] 1064-3745
  • [Journal-full-title] Methods in molecular biology (Clifton, N.J.)
  • [ISO-abbreviation] Methods Mol. Biol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 12629-01-5 / Human Growth Hormone; 9002-62-4 / Prolactin
  •  go-up   go-down


59. Umesh S, Tandon A, Santosh V, Anandh B, Sampath S, Chandramouli BA, Sastry Kolluri VR: Clinical and immunohistochemical prognostic factors in adult glioblastoma patients. Clin Neuropathol; 2009 Sep-Oct;28(5):362-72
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Clinical and immunohistochemical prognostic factors in adult glioblastoma patients.
  • OBJECTIVE: Glioblastomas are the commonest and the most malignant of all adult brain tumors, characterized by genetic instability, intratumoral histopathological variability, and unpredictable clinical behavior.
  • The utility of tumor markers that reflect their underlying biology is becoming increasingly important with respect to patient prognostication and their potential role as molecular targets of therapy is being recognized.
  • MATERIALS AND METHODS: We evaluated 54 cases of adult supratentorial glioblastomas operated over a span of 1 year, with respect to clinical features such as age, Karnofsky performance score (KPS), extent of resection, adjuvant therapy, and immunohistochemical expression of p53, EGFR (Epidermal Growth Factor Receptor) and PTEN (Phosphatase and Tensin homolog).
  • CONCLUSIONS: Our study shows that EGFR and p53 overexpression along with loss of PTEN expression are important adjuncts to clinical variables in prognosticating glioblastoma patients.
  • [MeSH-major] Glioblastoma / diagnosis. Supratentorial Neoplasms / diagnosis
  • [MeSH-minor] Adolescent. Adult. Age Factors. Aged. Aged, 80 and over. Female. Follow-Up Studies. Humans. Immunohistochemistry. Male. Middle Aged. PTEN Phosphohydrolase / metabolism. Prognosis. Receptor, Epidermal Growth Factor / metabolism. Severity of Illness Index. Treatment Outcome. Tumor Suppressor Protein p53 / metabolism. Young Adult

  • Genetic Alliance. consumer health - Glioblastoma.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19788052.001).
  • [ISSN] 0722-5091
  • [Journal-full-title] Clinical neuropathology
  • [ISO-abbreviation] Clin. Neuropathol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Tumor Suppressor Protein p53; EC 2.7.10.1 / EGFR protein, human; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 3.1.3.48 / PTEN protein, human; EC 3.1.3.67 / PTEN Phosphohydrolase
  •  go-up   go-down


60. McKean-Cowdin R, Barnholtz-Sloan J, Inskip PD, Ruder AM, Butler M, Rajaraman P, Razavi P, Patoka J, Wiencke JK, Bondy ML, Wrensch M: Associations between polymorphisms in DNA repair genes and glioblastoma. Cancer Epidemiol Biomarkers Prev; 2009 Apr;18(4):1118-26
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Associations between polymorphisms in DNA repair genes and glioblastoma.
  • A pooled analysis was conducted to examine the association between select variants in DNA repair genes and glioblastoma multiforme, the most common and deadliest form of adult brain tumors.
  • Genetic data for approximately 1,000 glioblastoma multiforme cases and 2,000 controls were combined from four centers in the United States that have conducted case-control studies on adult glioblastoma multiforme, including the National Cancer Institute, the National Institute for Occupational Safety and Health, the University of Texas M. D.
  • The C allele of the PARP1 rs1136410 variant was associated with a 20% reduction in risk for glioblastoma multiforme (odds ratio(CT or CC), 0.80; 95% confidence interval, 0.67-0.95).
  • A 44% increase in risk for glioblastoma multiforme was found for individuals homozygous for the G allele of the PRKDC rs7003908 variant (odds ratio(GG), 1.44; 95% confidence interval, 1.13-1.84); there was a statistically significant trend (P = 0.009) with increasing number of G alleles.
  • Few studies have reported on the associations between variants in DNA repair genes and brain tumors, and few specifically have examined their impact on glioblastoma multiforme.
  • Our results suggest that common variation in DNA repair genes may be associated with risk for glioblastoma multiforme.

  • Genetic Alliance. consumer health - Glioblastoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Proc Natl Acad Sci U S A. 2006 May 2;103(18):7136-41 [16627622.001]
  • [Cites] Neuro Oncol. 2006 Apr;8(2):145-55 [16598069.001]
  • [Cites] Clin Cancer Res. 2007 Jan 1;13(1):197-205 [17200355.001]
  • [Cites] Biochem Biophys Res Commun. 2007 Mar 2;354(1):122-6 [17214964.001]
  • [Cites] Neuroscience. 2007 Apr 14;145(4):1267-72 [17084037.001]
  • [Cites] Carcinogenesis. 2007 Sep;28(9):1906-13 [17389609.001]
  • [Cites] J Biol Chem. 2008 Jan 4;283(1):1-5 [17999957.001]
  • [Cites] Hum Mol Genet. 2008 Mar 15;17(6):800-5 [18048407.001]
  • [Cites] Cancer Epidemiol Biomarkers Prev. 2008 Mar;17(3):484-9 [18349266.001]
  • [Cites] Cancer Epidemiol Biomarkers Prev. 2008 Jun;17(6):1368-73 [18559551.001]
  • [Cites] Cancer Epidemiol Biomarkers Prev. 2000 Aug;9(8):843-7 [10952103.001]
  • [Cites] N Engl J Med. 2001 Jan 11;344(2):79-86 [11150357.001]
  • [Cites] Genet Epidemiol. 2001 Feb;20(2):258-70 [11180451.001]
  • [Cites] Science. 2001 Feb 16;291(5507):1284-9 [11181991.001]
  • [Cites] Maturitas. 2001 Feb 28;38(1):17-22; discussion 22-3 [11311581.001]
  • [Cites] Cancer Epidemiol Biomarkers Prev. 2001 Apr;10(4):355-60 [11319176.001]
  • [Cites] Am J Pathol. 2001 Sep;159(3):779-86 [11549567.001]
  • [Cites] Neurology. 2001 Nov 27;57(10):1751-5 [11723257.001]
  • [Cites] Nat Rev Cancer. 2001 Oct;1(1):22-33 [11900249.001]
  • [Cites] Int J Cancer. 2002 Apr 1;98(4):609-15 [11920623.001]
  • [Cites] Neuro Oncol. 2002 Oct;4(4):278-99 [12356358.001]
  • [Cites] Cancer Epidemiol Biomarkers Prev. 2002 Dec;11(12):1513-30 [12496039.001]
  • [Cites] Toxicology. 2003 Nov 15;193(1-2):3-34 [14599765.001]
  • [Cites] Cancer Res. 2004 Jun 15;64(12):4378-84 [15205355.001]
  • [Cites] Cancer Res. 2004 Aug 15;64(16):5560-3 [15313891.001]
  • [Cites] Cancer Res. 2004 Sep 1;64(17):6344-8 [15342424.001]
  • [Cites] Cell. 1986 Mar 28;44(6):913-23 [2420469.001]
  • [Cites] Nucleic Acids Res. 1987 Nov 25;15(22):9195-213 [3684592.001]
  • [Cites] N Engl J Med. 1988 Oct 20;319(16):1033-9 [3173432.001]
  • [Cites] Cancer Cells. 1990 Oct;2(10):311-20 [2282248.001]
  • [Cites] Br J Cancer. 1991 Jun;63(6):993-9 [2069856.001]
  • [Cites] Cancer Res. 1994 Sep 1;54(17):4760-3 [8062276.001]
  • [Cites] J Biol Chem. 1995 Feb 10;270(6):2415-8 [7852297.001]
  • [Cites] Cancer Res. 1995 Mar 15;55(6):1261-6 [7882319.001]
  • [Cites] Mol Biol Evol. 1995 Sep;12(5):921-7 [7476138.001]
  • [Cites] J Neurooncol. 1995 Oct;26(1):17-23 [8583241.001]
  • [Cites] J Biol Chem. 1996 Apr 5;271(14):8285-94 [8626523.001]
  • [Cites] Methods Enzymol. 1996;272:199-210 [8791778.001]
  • [Cites] Am J Epidemiol. 1997 Apr 1;145(7):581-93 [9098174.001]
  • [Cites] Cancer Genet Cytogenet. 1998 Jan 1;100(1):77-83 [9406586.001]
  • [Cites] Environ Mol Mutagen. 1999;33(1):3-20 [10037319.001]
  • [Cites] Oncogene. 1999 Jul 15;18(28):4144-52 [10435596.001]
  • [Cites] Genome Res. 2005 Feb;15(2):269-75 [15687290.001]
  • [Cites] Cancer Res. 2005 Feb 1;65(3):722-6 [15705867.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):997-1003 [15758010.001]
  • [Cites] Environ Health Perspect. 2005 May;113(5):546-51 [15866761.001]
  • [Cites] Cancer. 2005 Jun 1;103(11):2363-72 [15834925.001]
  • [Cites] Neuro Oncol. 2005 Oct;7(4):495-507 [16212814.001]
  • [Cites] Am J Hum Genet. 2006 Jan;78(1):15-27 [16385446.001]
  • [Cites] J Agric Saf Health. 2006 Nov;12(4):255-74 [17131948.001]
  • (PMID = 19318434.001).
  • [ISSN] 1055-9965
  • [Journal-full-title] Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
  • [ISO-abbreviation] Cancer Epidemiol. Biomarkers Prev.
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / R01CA070917; United States / NCI NIH HHS / CA / R01 CA052689-18; United States / NCI NIH HHS / CA / R01 CA052689-19; United States / NCI NIH HHS / CA / CA097257-080001; United States / Intramural NIH HHS / / ; United States / NCI NIH HHS / CA / CA052689-19; United States / NCI NIH HHS / CA / P50 CA097257; United States / NCI NIH HHS / CA / R01 CA070917; United States / NCI NIH HHS / CA / P50CA097257; United States / NCI NIH HHS / CA / R01CA52689; United States / NCI NIH HHS / CA / P50 CA097257-080001; United States / NCI NIH HHS / CA / R01 CA070917-09; United States / NCI NIH HHS / CA / CA052689-18; United States / NCI NIH HHS / CA / R01 CA052689
  • [Publication-type] Journal Article; Multicenter Study; Randomized Controlled Trial; Research Support, N.I.H., Extramural; Research Support, N.I.H., Intramural
  • [Publication-country] United States
  • [Chemical-registry-number] EC 6.5.1.- / DNA Repair Enzymes
  • [Other-IDs] NLM/ NIHMS96659; NLM/ PMC2667563
  •  go-up   go-down


61. Zhao ZX, Lan K, Xiao JH, Zhang Y, Xu P, Jia L, He M: A new method to classify pathologic grades of astrocytomas based on magnetic resonance imaging appearances. Neurol India; 2010 Sep-Oct;58(5):685-90
MedlinePlus Health Information. consumer health - MRI Scans.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • BACKGROUND: Astrocytoma is the most common neuroepithelial neoplasm, and its grading greatly affects treatment and prognosis.
  • OBJECTIVE: According to relevant factors of astrocytoma, this study developed a support vector machine (SVM) model to predict the astrocytoma grades and compared the SVM prediction with the clinician's diagnostic performance.
  • PATIENTS AND METHODS: Patients were recruited from a cohort of astrocytoma patients in our hospital between January 2008 and April 2009.
  • Among all astrocytoma patients, nine had grade I, 25 had grade II, 12 had grade III, and 60 had grade IV astrocytoma.
  • The SVM model was trained with nine magnetic resonance (MR) features and one clinical parameter by fivefold cross-validation and differentiated astrocytomas of grades I-IV at two levels, respectively.
  • The clinician also predicted the grade of astrocytoma.
  • According to the two prediction methods above, the areas under receiving operating characteristics (ROC) curves to discriminate low- and high-grade groups, accuracies of high-grade grouping, overall accuracy, and overall kappa values were compared.
  • The diagnostic performance of SVM is significantly better than clinician performance, with the exception of the low-grade group.
  • CONCLUSIONS: The SVM model can provide useful information to help clinicians improve diagnostic performance when predicting astrocytoma grade based on MR images.
  • [MeSH-major] Astrocytoma / classification. Astrocytoma / diagnosis. Brain Neoplasms / classification. Brain Neoplasms / diagnosis. Magnetic Resonance Imaging
  • [MeSH-minor] Adolescent. Adult. Aged. Child. Child, Preschool. Databases, Factual / statistics & numerical data. Female. Humans. Male. Middle Aged. Models, Statistical. ROC Curve. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 21045488.001).
  • [ISSN] 0028-3886
  • [Journal-full-title] Neurology India
  • [ISO-abbreviation] Neurol India
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] India
  •  go-up   go-down


62. Marumoto T, Tashiro A, Friedmann-Morvinski D, Scadeng M, Soda Y, Gage FH, Verma IM: Development of a novel mouse glioma model using lentiviral vectors. Nat Med; 2009 Jan;15(1):110-6
eagle-i research resources. PMID 19122659 (Special Collections) .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • We report the development of a new method to induce glioblastoma multiforme in adult immunocompetent mice by injecting Cre-loxP-controlled lentiviral vectors expressing oncogenes.
  • Cell type- or region-specific expression of activated forms of the oncoproteins Harvey-Ras and AKT in fewer than 60 glial fibrillary acidic protein-positive cells in the hippocampus, subventricular zone or cortex of mice heterozygous for the gene encoding the tumor suppressor Tp53 were tested.
  • Mice developed glioblastoma multiforme when transduced either in the subventricular zone or the hippocampus.
  • Transplantation of brain tumor cells into naive recipient mouse brain resulted in the formation of glioblastoma multiforme-like tumors, which contained CD133(+) cells, formed tumorspheres and could differentiate into neurons and astrocytes.
  • We suggest that the use of Cre-loxP-controlled lentiviral vectors is a novel way to generate a mouse glioblastoma multiforme model in a region- and cell type-specific manner in adult mice.


63. Nakamura M, Ishii K, Watanabe K, Tsuji T, Takaishi H, Matsumoto M, Toyama Y, Chiba K: Surgical treatment of intramedullary spinal cord tumors: prognosis and complications. Spinal Cord; 2008 Apr;46(4):282-6

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • METHODS: We reviewed 68 cases of intramedullary tumors (ependymoma, 33; astrocytoma, 23; hemangioblastoma, 12), treated surgically between 1994 and 2003.
  • The tumor malignancy grade according to the WHO classification was astrocytoma grade I, 3; grade II, 8 (low-grade: 11 cases); grade III, 10; grade IV, 2 (high-grade: 12 cases).
  • All ependymomas were grade II.
  • Approximately 50% of low-grade astrocytomas could be totally excised with favorable survival outcomes, suggesting that total excision should be attempted for low-grade astrocytomas.
  • However, total excision of high-grade tumors was difficult and the functional outcomes were poor.
  • Cordotomy should be considered in patients with a thoracic high-grade astrocytoma.
  • [MeSH-major] Astrocytoma / surgery. Ependymoma / surgery. Hemangioblastoma / surgery. Spinal Cord Neoplasms / surgery
  • [MeSH-minor] Adolescent. Adult. Aged. Cervical Vertebrae. Child. Child, Preschool. Cohort Studies. Female. Humans. Male. Middle Aged. Postoperative Complications. Retrospective Studies. Survival Rate. Thoracic Vertebrae. Treatment Outcome

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17909556.001).
  • [ISSN] 1362-4393
  • [Journal-full-title] Spinal cord
  • [ISO-abbreviation] Spinal Cord
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


64. Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M, Westphal M, Schackert G, Meyermann R, Pietsch T, Reifenberger G, Weller M, Loeffler M, von Deimling A: Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol; 2010 Dec;120(6):707-18
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • WHO grading of human brain tumors extends beyond a strictly histological grading system by providing a basis predictive for the clinical behavior of the respective neoplasm.
  • For example, patients with glioblastoma WHO grade IV usually show a less favorable clinical course and receive more aggressive first-line treatment than patients with anaplastic astrocytoma WHO grade III.
  • Here we provide evidence that the IDH1 status is more prognostic for overall survival than standard histological criteria that differentiate high-grade astrocytomas.
  • We sequenced the isocitrate dehydrogenase 1 gene (IDH1) at codon 132 in 382 patients with anaplastic astrocytoma and glioblastoma from the NOA-04 trial and from a prospective translational cohort study of the German Glioma Network.
  • The sequence from more favorable to poorer outcome was (1) anaplastic astrocytoma with IDH1 mutation, (2) glioblastoma with IDH1 mutation, (3) anaplastic astrocytoma without IDH1 mutation and (4) glioblastoma without IDH1 mutation (p < 0.0001).
  • In this combined set of anaplastic astrocytomas and glioblastomas both, IDH1 mutation and IDH1 expression status were of greater prognostic relevance than histological diagnosis according to the current WHO classification system.
  • We propose to complement the current WHO classification and grading of high-grade astrocytic gliomas by the IDH1 mutation status and to use this combined histological and molecular classification in future clinical trials.
  • [MeSH-major] Brain Neoplasms / genetics. Glioblastoma / genetics. Glioma / classification. Glioma / genetics. Isocitrate Dehydrogenase / genetics. Mutation / genetics
  • [MeSH-minor] Adolescent. Adult. Age Factors. Aged. Aged, 80 and over. Astrocytoma / diagnosis. Astrocytoma / genetics. Astrocytoma / pathology. Cohort Studies. Female. Humans. Male. Middle Aged. Prognosis. Prospective Studies. Young Adult


65. Samaras V, Piperi C, Levidou G, Zisakis A, Kavantzas N, Themistocleous MS, Boviatsis EI, Barbatis C, Lea RW, Kalofoutis A, Korkolopoulou P: Analysis of interleukin (IL)-8 expression in human astrocytomas: associations with IL-6, cyclooxygenase-2, vascular endothelial growth factor, and microvessel morphometry. Hum Immunol; 2009 Jun;70(6):391-7
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • IL-6- and IL-8-secreting peripheral blood monocytes (PBMCs) were evaluated in 17 glioblastoma (WHO grade IV), 5 anaplastic astrocytoma (WHO grade III), and 6 diffuse astrocytoma patients (WHO grade II), in parallel with 23 healthy controls using enzyme-linked immunosorbent spot (ELISPOT) assay.
  • The IL-8 expression was assessed immunohistochemically in patients' tumor tissue sections and correlated with the expression of COX-2, VEGF, IL-6, and microvessel morphometry (assessed using CD34 antibody).
  • IL-8 immunoreactivity was detected in malignant cells or macrophages in perivascular areas and in pseudopalisading cells around necrosis and was positively correlated with histological grade (p = 0.0175) and tumor necrosis (p = 0.0793).
  • The coordinate expression and topographical relationship of IL-6, IL-8, COX-2, and VEGF in the same tumor areas (e.g., perinecrotic areas) attest to their intimate liaison in terms of cancer-induced angiogenesis, which is probably secondary to the induction of multiple interdependent molecular pathways.
  • Moreover, our study seems to be the first attempt to link IL-8 expression by tumor cells with histological grade, implicating its potent role in gliomagenesis.
  • [MeSH-major] Astrocytoma / immunology. Brain Neoplasms / immunology. Cyclooxygenase 2 / immunology. Microvessels / immunology. Vascular Endothelial Growth Factor A / immunology
  • [MeSH-minor] Adult. Aged. Antigens, CD34 / immunology. Female. Humans. Interleukin-6 / immunology. Interleukin-8 / immunology. Leukocytes, Mononuclear / immunology. Male. Middle Aged. Neovascularization, Pathologic / pathology. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19332096.001).
  • [ISSN] 1879-1166
  • [Journal-full-title] Human immunology
  • [ISO-abbreviation] Hum. Immunol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, CD34; 0 / Interleukin-6; 0 / Interleukin-8; 0 / VEGFA protein, human; 0 / Vascular Endothelial Growth Factor A; EC 1.14.99.1 / Cyclooxygenase 2
  •  go-up   go-down


66. Shen CF, Yuan XR, Qin ZQ: [Clinical significance of the expression of the RCAS1 mRNA and protein in astrocytic tumors]. Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2007 Oct;32(5):836-9
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Clinical significance of the expression of the RCAS1 mRNA and protein in astrocytic tumors].
  • OBJECTIVE: To determine the mRNA and protein expressions of RCAS1 in human astrocytic tumors, and to explore the relation between their expression and the genesis and development of tumor.
  • METHODS: The RCAS1 mRNA expression in human astrocytic tumors was evaluated by RT-PCR, and the RCAS1 protein expression was studied by immunohistochemical staining.
  • RESULTS: The quantities of RCAS1 mRNA expression between diffusive astrocytoma(Grade II) and anaplastic astrocytoma(Grade III), anaplastic astrocytoma and glioblastoma(Grade IV) were significantly different(P<0.05), while the expression scores of RCAS1 protein were different only between the anaplastic astrocytoma and glioblastoma(P<0.01).
  • RCAS1 protein expression was positively correlated with the tumor grade (r=0.573,P<0.001).
  • The RCAS1 protein was not detected in normal brain tissues by immunohistochemical staining.
  • CONCLUSION: The RCAS1 expression is related to the histological grade of astrocytic tumor.
  • In astrocytic tumors, the RCAS1 expression is regulated transcriptionally and posttranscriptionally.
  • [MeSH-major] Antigens, Neoplasm / metabolism. Astrocytoma / metabolism. Brain Neoplasms / metabolism
  • [MeSH-minor] Adolescent. Adult. Aged. Child. Child, Preschool. Female. Humans. Male. Middle Aged. RNA, Messenger / genetics. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18007080.001).
  • [ISSN] 1672-7347
  • [Journal-full-title] Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences
  • [ISO-abbreviation] Zhong Nan Da Xue Xue Bao Yi Xue Ban
  • [Language] chi
  • [Publication-type] Controlled Clinical Trial; English Abstract; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] China
  • [Chemical-registry-number] 0 / Antigens, Neoplasm; 0 / EBAG9 protein, human; 0 / RNA, Messenger
  •  go-up   go-down


67. Comincini S, Ferrara V, Arias A, Malovini A, Azzalin A, Ferretti L, Benericetti E, Cardarelli M, Gerosa M, Passarin MG, Turazzi S, Bellazzi R: Diagnostic value of PRND gene expression profiles in astrocytomas: relationship to tumor grades of malignancy. Oncol Rep; 2007 May;17(5):989-96
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Diagnostic value of PRND gene expression profiles in astrocytomas: relationship to tumor grades of malignancy.
  • It is abundant in testis and, unlike PRNP, it is expressed at low levels in the adult central nervous system (CNS).
  • Recently, ectopic expression of doppel was found in two different tumor types, specifically in glial and haematological cancers.
  • In order to address clinical important issues, PRND mRNA expression was investigated in a panel of 111 astrocytoma tissue samples, histologically classified according to the World Health Organization (WHO) criteria (6 grade I pilocytic astrocytomas, 15 grade II low-grade astrocytomas, 26 grade III anaplastic astrocytomas and 64 grade IV glioblastoma multiforme).
  • Real-time PRND gene expression profiling, after normalisation with GAPDH, revealed large differences between low (WHO I and II) and high grade (III and IV) of malignancy (P<0.001).
  • Extensive differences in PRND gene expression were also found within each grade of malignancy, suggesting that PRND mRNA quantitation might be useful to distinguish astrocytoma subtypes, and important in disease stratification and in the assessment of specific treatment strategies.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Prions / biosynthesis
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. Algorithms. Child. Cluster Analysis. Female. GPI-Linked Proteins. Gene Expression Profiling. Glioblastoma / genetics. Glioblastoma / metabolism. Glioblastoma / pathology. Humans. Male. Middle Aged. Prognosis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17390034.001).
  • [ISSN] 1021-335X
  • [Journal-full-title] Oncology reports
  • [ISO-abbreviation] Oncol. Rep.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / GPI-Linked Proteins; 0 / PRND protein, human; 0 / Prions
  •  go-up   go-down


68. Liu J, Zheng S, Yu JK, Zhang JM, Chen Z: Serum protein fingerprinting coupled with artificial neural network distinguishes glioma from healthy population or brain benign tumor. J Zhejiang Univ Sci B; 2005 Jan;6(1):4-10
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Serum protein fingerprinting coupled with artificial neural network distinguishes glioma from healthy population or brain benign tumor.
  • To screen and evaluate protein biomarkers for the detection of gliomas (Astrocytoma grade I-IV) from healthy individuals and gliomas from brain benign tumors by using surface enhanced laser desorption/ionization time of flight mass spectrometry (SELDI-TOF-MS) coupled with an artificial neural network (ANN) algorithm.
  • SELDI-TOF-MS protein fingerprinting of serum from 105 brain tumor patients and healthy individuals, included 28 patients with glioma (Astrocytoma I-IV), 37 patients with brain benign tumor, and 40 age-matched healthy individuals.
  • Two thirds of the total samples of every compared pair as training set were used to set up discriminating patterns, and one third of total samples of every compared pair as test set were used to cross-validate; simultaneously, discriminate-cluster analysis derived SPSS 10.0 software was used to compare Astrocytoma grade I-II with grade III-IV ones.
  • An accuracy of 95.7%, sensitivity of 88.9%, specificity of 100%, positive predictive value of 90% and negative predictive value of 100% were obtained in a blinded test set comparing gliomas patients with healthy individuals; an accuracy of 86.4%, sensitivity of 88.9%, specificity of 84.6%, positive predictive value of 90% and negative predictive value of 85.7% were obtained when patient's gliomas was compared with benign brain tumor.
  • Total accuracy of 85.7%, accuracy of grade I-II Astrocytoma was 86.7%, accuracy of III-IV Astrocytoma was 84.6% were obtained when grade I-II Astrocytoma was compared with grade III-IV ones (discriminant analysis).
  • The high sensitivity and specificity achieved by the use of selected biomarkers showed great potential application for the discrimination of gliomas patients from healthy individuals and gliomas from brain benign tumors.
  • [MeSH-major] Astrocytoma / blood. Astrocytoma / diagnosis. Biomarkers, Tumor / blood. Brain Neoplasms / blood. Brain Neoplasms / diagnosis. Diagnosis, Computer-Assisted / methods. Neoplasm Proteins / blood. Peptide Mapping / methods
  • [MeSH-minor] Adult. Aged. Algorithms. Artificial Intelligence. Female. Humans. Male. Middle Aged. Neural Networks (Computer). Protein Array Analysis / methods. Reproducibility of Results. Sensitivity and Specificity. Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization / methods

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] CA Cancer J Clin. 2003 Jan-Feb;53(1):5-26 [12568441.001]
  • [Cites] Pain. 2003 Apr;102(3):251-6 [12670666.001]
  • [Cites] Curr Med Chem. 2003 May;10(10):831-43 [12678686.001]
  • [Cites] J Clin Oncol. 2003 May 15;21(10 Suppl):200s-205s [12743135.001]
  • [Cites] Lung Cancer. 2003 Jun;40(3):267-79 [12781425.001]
  • [Cites] Curr Pharm Biotechnol. 2004 Feb;5(1):45-67 [14965209.001]
  • [Cites] Curr Opin Biotechnol. 2004 Feb;15(1):24-30 [15102462.001]
  • [Cites] Electrophoresis. 2000 Apr;21(6):1164-77 [10786889.001]
  • [Cites] N Engl J Med. 2001 Jan 11;344(2):114-23 [11150363.001]
  • [Cites] Bioinformatics. 2002 Mar;18(3):395-404 [11934738.001]
  • [Cites] Clin Chem. 2002 Aug;48(8):1160-9 [12142368.001]
  • [Cites] Clin Chem. 2002 Aug;48(8):1296-304 [12142387.001]
  • [Cites] Clin Cancer Res. 2002 Aug;8(8):2541-52 [12171882.001]
  • (PMID = 15593384.001).
  • [ISSN] 1673-1581
  • [Journal-full-title] Journal of Zhejiang University. Science. B
  • [ISO-abbreviation] J Zhejiang Univ Sci B
  • [Language] eng
  • [Publication-type] Clinical Trial; Comparative Study; Controlled Clinical Trial; Letter; Research Support, Non-U.S. Gov't; Validation Studies
  • [Publication-country] China
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Neoplasm Proteins
  • [Other-IDs] NLM/ PMC1390751
  •  go-up   go-down


69. Hlobilkova A, Ehrmann J, Sedlakova E, Krejci V, Knizetova P, Fiuraskova M, Kala M, Kalita O, Kolar Z: Could changes in the regulation of the PI3K/PKB/Akt signaling pathway and cell cycle be involved in astrocytic tumor pathogenesis and progression? Neoplasma; 2007;54(4):334-41
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Could changes in the regulation of the PI3K/PKB/Akt signaling pathway and cell cycle be involved in astrocytic tumor pathogenesis and progression?
  • The aim of our study was to detect changes in expression of the following proteins: the tumor suppressors PTEN, p53, and p21Waf1/Cip1, glial fibrillary acidic protein (GFAP, as a marker of astroglial differentiation), the phosphorylated form of protein kinase B/Akt (PKB/Akt), which is downstream to the epidermal growth factor receptor (EGFR), and MDM2, which degrades p53.
  • Paraffin-embedded astrocytoma tissue samples from 89 patients were divided into low grade (grade I-II; 42 samples) and high grade astrocytomas (grade III-IV; 47 samples).
  • EGFR protein was detected in 29 % of low grade and in 60 % of high grade astrocytomas.
  • The expression of phosphorylated PKB/Akt was found in roughly the same proportions: in 86% of low grade and in 79% of high grade astrocytomas.
  • PTEN was not found in most of astrocytomas, 64% of low grade and 74% of high grade tumors showed no PTEN staining.
  • GFAP expression was decreased in tumor astrocytes compared to normal astrocytes and this decreased with grading.
  • GFAP positive tumor cells were detected in only 50% of low grade, and 32% of high grade astrocytomas.
  • Loss of p21Waf1/Cip1 expression was shown in 20% of low and in 45% of high grade tumors.
  • In the subgroup of high grade tumors with wild type p53, 86% showed p21Waf1/Cip1 expression, whereas in the subgroup of high grade tumors with altered p53, only 35% displayed p21Waf1/Cip1.
  • We conclude that EGFR expression increases with astrocytoma grading.
  • PTEN defects may also participate in aggressive tumor behaviour through activation of the PKB/Akt pathway.
  • EGFR is one of the factors, which drives the progression of astrocytomas from low to high grade stage.
  • [MeSH-major] Astrocytoma / metabolism. Cell Cycle. Phosphatidylinositol 3-Kinases / metabolism. Proto-Oncogene Proteins c-akt / metabolism. Signal Transduction
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. Cyclin-Dependent Kinase Inhibitor p21 / metabolism. Disease Progression. Female. Gene Expression Regulation, Neoplastic. Glial Fibrillary Acidic Protein / metabolism. Humans. Male. Middle Aged. Mutation / genetics. Oligodendroglioma / metabolism. Oligodendroglioma / pathology. PTEN Phosphohydrolase / metabolism. Phosphorylation. Proto-Oncogene Proteins c-mdm2 / metabolism. Receptor, Epidermal Growth Factor / metabolism. Tumor Suppressor Protein p53 / genetics. Tumor Suppressor Protein p53 / metabolism

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17822324.001).
  • [ISSN] 0028-2685
  • [Journal-full-title] Neoplasma
  • [ISO-abbreviation] Neoplasma
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Slovakia
  • [Chemical-registry-number] 0 / Cyclin-Dependent Kinase Inhibitor p21; 0 / Glial Fibrillary Acidic Protein; 0 / Tumor Suppressor Protein p53; EC 2.7.1.- / Phosphatidylinositol 3-Kinases; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 2.7.11.1 / Proto-Oncogene Proteins c-akt; EC 3.1.3.48 / PTEN protein, human; EC 3.1.3.67 / PTEN Phosphohydrolase; EC 6.3.2.19 / MDM2 protein, human; EC 6.3.2.19 / Proto-Oncogene Proteins c-mdm2
  •  go-up   go-down


70. Aragão Mde F, Otaduy MC, Melo RV, Azevedo Filho HR, Victor EG, Silva JL, Araújo N, Leite Cda C, Valença MM: [Multivoxel spectroscopy with short echo time: choline/N-acetyl-aspartate ratio and the grading of cerebral astrocytomas]. Arq Neuropsiquiatr; 2007 Jun;65(2A):286-94
Hazardous Substances Data Bank. CHOLINE CHLORIDE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The choline/N-acetyl-aspartate (Cho/NAA) ratio, obtained by the multivoxel spectroscopy with short echo time (TE), was evaluated, in the histological grading of the brain astrocytomas (grades I, II and III-IV) in comparison with the normal cerebral parenchyma.
  • A significant increase (p<0.05) in the average ratios of Cho/NAA was observed in the three astrocytoma groups studied in relation to normal tissue, having a tendency to increase with the increase in grading, without any statistic significance, which corresponded to: 0.53+/-0.24 in the control group, 1.19+/-0.49 in grade I, 1.58+/-0.65 in grade II and 5.13+/-8.12 in the high grade group (grades III-IV), with variation in the values encountered.
  • There was an increase in the Cho/NAA ratio in 4/5 (80%) in grade I, 5/6 (83%) in grade II and 10/20 (50%) in grades III and IV.
  • We conclude that multivoxel spectroscopy with short TE can be used in discriminating between normal parenchyma and neoplasm tissue.
  • However, not all neoplasm tissue studied presented an increase in Cho/NAA, especially in the group with higher grade of malignancy.
  • [MeSH-major] Aspartic Acid / metabolism. Astrocytoma / diagnosis. Brain Neoplasms / diagnosis. Magnetic Resonance Spectroscopy / methods
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. Child. Choline / metabolism. Female. Glioblastoma / pathology. Humans. Magnetic Resonance Imaging. Male. Middle Aged. Neoplasm Invasiveness. Prospective Studies. Protons. Sensitivity and Specificity. Time Factors

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • Hazardous Substances Data Bank. (L)-ASPARTIC ACID .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17607430.001).
  • [ISSN] 0004-282X
  • [Journal-full-title] Arquivos de neuro-psiquiatria
  • [ISO-abbreviation] Arq Neuropsiquiatr
  • [Language] por
  • [Publication-type] Controlled Clinical Trial; English Abstract; Journal Article
  • [Publication-country] Brazil
  • [Chemical-registry-number] 0 / Protons; 30KYC7MIAI / Aspartic Acid; N91BDP6H0X / Choline
  •  go-up   go-down


71. Swinnen LJ, Rankin C, Carraway H, Albain KS, Townsend JJ, Budd GT, Kish JA, Rivkin SE, Blumenthal DT: A phase II study of cisplatin preceded by a 12-h continuous infusion of concurrent hydroxyurea and cytosine arabinoside (Ara-C) for adult patients with malignant gliomas (Southwest Oncology Group S9149). J Neurooncol; 2008 Feb;86(3):353-8
Hazardous Substances Data Bank. CIS-DIAMINEDICHLOROPLATINUM .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] A phase II study of cisplatin preceded by a 12-h continuous infusion of concurrent hydroxyurea and cytosine arabinoside (Ara-C) for adult patients with malignant gliomas (Southwest Oncology Group S9149).
  • Cytosine arabinoside (Ara-C) and hydroxyurea (HU), in combination, inhibit the excision-repair system and removal of platinum-DNA adducts.
  • A Phase II study in patients with relapsed or progressive anaplastic astrocytoma (AA) or glioblastoma multiforme (GBM) was performed in the Southwest Oncology Group.
  • A loading dose of HU 1,260 mg/m2 IV over 1 h was followed by Ara-C 1,200 mg/m2 plus HU 5,040 mg/m2 IV over 12 h, followed by cisplatin 100 mg/m2 IV over 1 h.
  • Twenty-three patients (33%) experienced Grade 4 toxicities, primarily hematological.
  • Although benefit might be possible in a more platinum-sensitive tumor type, further clinical trials with this regimen for patients with glioblastoma multiforme or anaplastic astrocytoma are not justified.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Cancer Chemotherapy.
  • Hazardous Substances Data Bank. CYTARABINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Clin Oncol. 2003 Apr 15;21(8):1485-91 [12697871.001]
  • [Cites] Semin Oncol. 1992 Jun;19(3 Suppl 9):102-9 [1641650.001]
  • [Cites] Biochim Biophys Acta. 1977 Sep 6;478(1):1-8 [407935.001]
  • [Cites] Mutat Res. 1978 Jul;51(1):121-32 [672924.001]
  • [Cites] J Neurosurg. 1978 Sep;49(3):333-43 [355604.001]
  • [Cites] Mol Pharmacol. 1979 Mar;15(2):367-74 [470933.001]
  • [Cites] Cancer Res. 1980 Sep;40(9):3286-92 [7427943.001]
  • [Cites] N Engl J Med. 1980 Dec 4;303(23):1323-9 [7001230.001]
  • [Cites] Proc Natl Acad Sci U S A. 1980 Aug;77(8):4602-6 [6254032.001]
  • [Cites] Proc Natl Acad Sci U S A. 1981 Aug;78(8):5132-6 [6975478.001]
  • [Cites] Gan. 1981 Aug;72(4):627-30 [7030860.001]
  • [Cites] Cancer Res. 1982 Jun;42(6):2474-9 [6280860.001]
  • [Cites] Mol Pharmacol. 1984 Mar;25(2):322-6 [6700578.001]
  • [Cites] Mutat Res. 1984 Mar-Apr;131(3-4):163-72 [6717470.001]
  • [Cites] J Neurooncol. 1983;1(2):145-7 [6088711.001]
  • [Cites] J Neurooncol. 1984;2(1):29-34 [6088723.001]
  • [Cites] Biochem Pharmacol. 1985 Jul 15;34(14):2557-60 [4015697.001]
  • [Cites] Cancer Res. 1985 Sep;45(9):4178-84 [3928152.001]
  • [Cites] Mutat Res. 1986 Jan;173(1):13-8 [3510378.001]
  • [Cites] Semin Oncol. 1986 Mar;13(1):38-45 [3513316.001]
  • [Cites] J Clin Oncol. 1988 Jan;6(1):62-6 [2826716.001]
  • [Cites] Cancer Res. 1989 Mar 15;49(6):1383-9 [2924295.001]
  • [Cites] Cancer Chemother Pharmacol. 1990;27(1):33-40 [2245491.001]
  • [Cites] J Bacteriol. 1973 Dec;116(3):1247-52 [4584807.001]
  • (PMID = 18175205.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / N01 CA004919; United States / NCI NIH HHS / CA / CA37981; United States / NCI NIH HHS / CA / CA58416; United States / NCI NIH HHS / CA / U10 CA027057; United States / NCI NIH HHS / CA / CA45560; United States / NCI NIH HHS / CA / CA28862; United States / NCI NIH HHS / CA / CA04920; United States / NCI NIH HHS / CA / CA46136; United States / NCI NIH HHS / CA / CA45807; United States / NCI NIH HHS / CA / CA35261; United States / NCI NIH HHS / CA / U10 CA004919; United States / NCI NIH HHS / CA / CA22433; United States / NCI NIH HHS / CA / U10 CA045560; United States / NCI NIH HHS / CA / CA12644; United States / NCI NIH HHS / CA / CA20319; United States / NCI NIH HHS / CA / U10 CA063845; United States / NCI NIH HHS / CA / U10 CA063850; United States / NCI NIH HHS / CA / P30 CA006973; United States / NCI NIH HHS / CA / N01 CA032102; United States / NCI NIH HHS / CA / P01 CA053996; United States / NCI NIH HHS / CA / CA58658; United States / NCI NIH HHS / CA / N01 CA045807; United States / NCI NIH HHS / CA / CA63845; United States / NCI NIH HHS / CA / N01 CA046441; United States / NCI NIH HHS / CA / CA58882; United States / NCI NIH HHS / CA / U10 CA074647; United States / NCI NIH HHS / CA / CA63850; United States / NCI NIH HHS / CA / CA58861; United States / NCI NIH HHS / CA / CA52772; United States / NCI NIH HHS / CA / N01 CA063844; United States / NCI NIH HHS / CA / CA46282; United States / NCI NIH HHS / CA / U10 CA035261; United States / NCI NIH HHS / CA / CA16385; United States / NCI NIH HHS / CA / CA46441; United States / NCI NIH HHS / CA / U10 CA032102; United States / NCI NIH HHS / CA / U10 CA046282; United States / NCI NIH HHS / CA / CA46368; United States / NCI NIH HHS / CA / CA32102; United States / NCI NIH HHS / CA / CA38926; United States / NCI NIH HHS / CA / N01 CA038926; United States / NCI NIH HHS / CA / U10 CA067575; United States / NCI NIH HHS / CA / N01 CA027057; United States / NCI NIH HHS / CA / U10 CA046441; United States / NCI NIH HHS / CA / U10 CA058882; United States / NCI NIH HHS / CA / CA74647; United States / NCI NIH HHS / CA / U10 CA020319; United States / NCI NIH HHS / CA / CA46113; United States / NCI NIH HHS / CA / U10 CA038926; United States / NCI NIH HHS / CA / CA58686; United States / NCI NIH HHS / CA / CA63844; United States / NCI NIH HHS / CA / U10 CA042777; United States / NCI NIH HHS / CA / CA27057; United States / NCI NIH HHS / CA / CA42777; United States / NCI NIH HHS / CA / CA52654; United States / NCI NIH HHS / CA / U10 CA046368; United States / NCI NIH HHS / CA / N01 CA067575; United States / NCI NIH HHS / CA / U10 CA052654; United States / NCI NIH HHS / CA / CA76429; United States / NCI NIH HHS / CA / CA04919; United States / NCI NIH HHS / CA / CA67575; United States / NCI NIH HHS / CA / U10 CA063844; United States / NCI NIH HHS / CA / U10 CA045807; United States / NCI NIH HHS / CA / N01 CA045560
  • [Publication-type] Clinical Trial, Phase II; Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 04079A1RDZ / Cytarabine; Q20Q21Q62J / Cisplatin
  • [Other-IDs] NLM/ NIHMS591247; NLM/ PMC4051205
  •  go-up   go-down


72. Hwang SL, Lin CL, Lieu AS, Hwang YF, Howng SL, Hong YR, Chang DS, Lee KS: The expression of thyroid hormone receptor isoforms in human astrocytomas. Surg Neurol; 2008 Dec;70 Suppl 1:S1:4-8; discussion S1:8
MedlinePlus Health Information. consumer health - Childhood Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • BACKGROUND: Thyroid hormone plays a major role in normal mammalian brain maturation and affects the development of astrocytes.
  • METHODS: In this study, RT-PCR was used to examine the expression of human TR isoforms in 34 human astrocytoma samples.
  • RESULTS: We compared the TR expression between low grade (WHO grade II) and high grade (WHO grade III and IV).
  • The frequency of TRalpha1 or TRalpha2 expression significantly decreased with the grade of malignancy (P=.005 and P=.043, respectively).
  • Our result provides insight into the potential use of hormonal therapy for brain tumors that overexpress or underexpress TRs.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Receptors, Thyroid Hormone / biosynthesis
  • [MeSH-minor] Adolescent. Adult. Aged. Aging / metabolism. Child. Female. Humans. Male. Middle Aged. RNA / biosynthesis. RNA / genetics. Reverse Transcriptase Polymerase Chain Reaction. Sex Characteristics. Thyroid Hormone Receptors alpha / biosynthesis. Thyroid Hormone Receptors alpha / genetics. Thyroid Hormone Receptors beta / biosynthesis. Thyroid Hormone Receptors beta / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18617237.001).
  • [ISSN] 0090-3019
  • [Journal-full-title] Surgical neurology
  • [ISO-abbreviation] Surg Neurol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Receptors, Thyroid Hormone; 0 / Thyroid Hormone Receptors alpha; 0 / Thyroid Hormone Receptors beta; 63231-63-0 / RNA
  •  go-up   go-down


73. Samaras V, Piperi C, Korkolopoulou P, Zisakis A, Levidou G, Themistocleous MS, Boviatsis EI, Sakas DE, Lea RW, Kalofoutis A, Patsouris E: Application of the ELISPOT method for comparative analysis of interleukin (IL)-6 and IL-10 secretion in peripheral blood of patients with astroglial tumors. Mol Cell Biochem; 2007 Oct;304(1-2):343-51
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Glioblastoma, (grade IV astrocytoma), is characterized by rapid growth and resistance to treatment.
  • Identification of markers of aggressiveness in this tumor could represent new therapeutic targets.
  • IL-6 and IL-10 secretion levels were determined using ELISPOT methodology in peripheral blood mononuclear cells of 18 patients with astrocytic neoplasms (3 grade II and 15 grade IV), in parallel with 18 healthy controls.
  • In addition, IL-10 secretion from peripheral mononuclear and tumor cells of glioma patients was also higher as compared to healthy controls (P = 0.0002).
  • Based on immunohistochemical staining, IL-6 expression was localized in tumor cells and macrophages as well as in areas of large ischemic necrosis, while the major source of IL-10 expression in glioblastomas was the microglia/macrophage cells.
  • [MeSH-major] Astrocytoma / blood. Brain Neoplasms / blood. Enzyme-Linked Immunosorbent Assay / methods. Interleukin-10 / blood. Interleukin-10 / secretion. Interleukin-6 / blood. Interleukin-6 / secretion
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Case-Control Studies. Female. Glioblastoma / blood. Humans. Leukocytes / secretion. Male. Middle Aged

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer Res. 1992 Nov 1;52(21):6020-4 [1394227.001]
  • [Cites] J Neurochem. 1998 Nov;71(5):1837-45 [9798907.001]
  • [Cites] Neuroimmunomodulation. 1998 May-Aug;5(3-4):214-9 [9730688.001]
  • [Cites] Am J Pathol. 1995 Feb;146(2):317-22 [7856743.001]
  • [Cites] J Immunol Methods. 1988 Nov 25;115(1):31-7 [3057075.001]
  • [Cites] Int J Cancer. 1999 Jul 2;82(1):12-6 [10360813.001]
  • [Cites] J Clin Immunol. 1992 Jul;12(4):239-47 [1512298.001]
  • [Cites] Br J Cancer. 2001 Aug 17;85(4):518-22 [11506489.001]
  • [Cites] J Neurochem. 1994 Sep;63(3):980-7 [7519668.001]
  • [Cites] J Immunol. 1999 Apr 15;162(8):4882-92 [10202033.001]
  • [Cites] Neurosurgery. 1995 Dec;37(6):1160-6; discussion 1166-7 [8584157.001]
  • [Cites] J Clin Neurosci. 2005 Nov;12(8):930-3 [16326273.001]
  • [Cites] J Neurosurg. 2001 Jan;94(1):97-101 [11147905.001]
  • [Cites] J Exp Med. 1991 Oct 1;174(4):915-24 [1655948.001]
  • [Cites] J Immunol. 2001 Jan 1;166(1):121-9 [11123284.001]
  • [Cites] Ann N Y Acad Sci. 1993 Jun 23;685:713-39 [8363277.001]
  • [Cites] Neurosurgery. 1994 Apr;34(4):669-72; discussion 672-3 [8008165.001]
  • [Cites] Oncogene. 2004 Apr 22;23(19):3308-16 [15064729.001]
  • [Cites] J Neurooncol. 2002 Jan;56(1):29-34 [11949824.001]
  • [Cites] Cancer Res. 1990 Oct 15;50(20):6683-8 [2208133.001]
  • [Cites] Acta Neuropathol. 2002 Feb;103(2):171-8 [11810184.001]
  • [Cites] J Immunol. 1992 Feb 15;148(4):1143-8 [1737931.001]
  • [Cites] Anticancer Res. 1997 Sep-Oct;17(5A):3217-24 [9413151.001]
  • [Cites] J Immunol Methods. 1997 Dec 29;210(2):149-66 [9520298.001]
  • [Cites] Int J Cancer. 2005 Jun 10;115(2):202-13 [15688401.001]
  • [Cites] Pathol Oncol Res. 1999;5(1):56-60 [10079380.001]
  • [Cites] Semin Oncol. 2000 Jun;27(3 Suppl 6):1-10 [10866344.001]
  • [Cites] J Neurosurg. 1992 Aug;77(2):265-73 [1625016.001]
  • [Cites] J Exp Med. 1993 Feb 1;177(2):523-7 [8426121.001]
  • [Cites] J Cell Physiol. 1997 Dec;173(3):335-42 [9369946.001]
  • [Cites] Brain Res. 1994 Jun 27;649(1-2):122-8 [7953624.001]
  • [Cites] J Immunol. 1992 Oct 1;149(7):2358-66 [1382099.001]
  • [Cites] J Immunol. 1994 Mar 15;152(6):2720-8 [8144879.001]
  • [Cites] J Neurooncol. 1998 Nov;40(2):113-22 [9892093.001]
  • [Cites] J Immunol. 1992 May 15;148(10):3133-9 [1578140.001]
  • [Cites] J Neuroimmunol. 1998 Dec 1;92(1-2):50-9 [9916879.001]
  • [Cites] Clin Chem Lab Med. 2002 Sep;40(9):903-10 [12435107.001]
  • [Cites] Surg Neurol. 1980 Mar;13(3):161-3 [7368063.001]
  • [Cites] J Biol Chem. 1995 May 12;270(19):11463-71 [7744784.001]
  • (PMID = 17551671.001).
  • [ISSN] 0300-8177
  • [Journal-full-title] Molecular and cellular biochemistry
  • [ISO-abbreviation] Mol. Cell. Biochem.
  • [Language] eng
  • [Publication-type] Comparative Study; Evaluation Studies; Journal Article
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / IL10 protein, human; 0 / IL6 protein, human; 0 / Interleukin-6; 130068-27-8 / Interleukin-10
  •  go-up   go-down


74. Lymbouridou R, Soufla G, Chatzinikola AM, Vakis A, Spandidos DA: Down-regulation of K-ras and H-ras in human brain gliomas. Eur J Cancer; 2009 May;45(7):1294-303
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Down-regulation of K-ras and H-ras in human brain gliomas.
  • Ras genes, a class of nucleotide-binding proteins that regulate normal and transformed cell growth, have been scarcely investigated in human brain tumours.
  • We evaluated the mutational, mRNA and protein expression profile of the ras genes in 21 glioblastomas multiforme (grade IV), four fibrillary astrocytoma (grade II), four anaplastic astrocytoma (grade III) and 15 normal specimens.
  • Glioblastoma multiforme cases exhibited significantly lower K- and H-ras mRNA levels compared to controls (P < 10(-4)).
  • Our findings provide evidence of K- and H-ras involvement in brain malignant transformation through transcriptional down-regulation, while N-ras seems to contribute less to brain carcinogenesis.
  • [MeSH-major] Brain Neoplasms / genetics. Down-Regulation. Gene Expression Regulation, Neoplastic. Genes, ras. Glioma / genetics
  • [MeSH-minor] Adult. Aged. Astrocytoma / genetics. Astrocytoma / metabolism. Astrocytoma / mortality. Blotting, Western / methods. Case-Control Studies. Codon. Female. Gene Expression. Glioblastoma / genetics. Glioblastoma / metabolism. Glioblastoma / mortality. Humans. Male. Middle Aged. Oncogene Protein p21(ras) / analysis. Oncogene Protein p21(ras) / metabolism. Polymorphism, Restriction Fragment Length. Reverse Transcriptase Polymerase Chain Reaction / methods. Statistics, Nonparametric. Survival Rate

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19179066.001).
  • [ISSN] 1879-0852
  • [Journal-full-title] European journal of cancer (Oxford, England : 1990)
  • [ISO-abbreviation] Eur. J. Cancer
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Codon; EC 3.6.5.2 / Oncogene Protein p21(ras)
  •  go-up   go-down


75. Ren ZP, Olofsson T, Qu M, Hesselager G, Soussi T, Kalimo H, Smits A, Nistér M: Molecular genetic analysis of p53 intratumoral heterogeneity in human astrocytic brain tumors. J Neuropathol Exp Neurol; 2007 Oct;66(10):944-54
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Molecular genetic analysis of p53 intratumoral heterogeneity in human astrocytic brain tumors.
  • We investigated genetic heterogeneity of astrocytic gliomas using p53 gene mutations as a marker.
  • Different parts of morphologically heterogeneous astrocytic gliomas were microdissected, and direct DNA sequencing of p53 gene exons 5 through 8 was performed.
  • Thirty-five glioma samples and tumor-adjacent normal-appearing brain tissue from 11 patients were analyzed.
  • The mutations were present in grade II, III, and IV astrocytic glioma areas.
  • Both severe functionally dead mutants and mutants with remaining transcriptional activity could be observed in the same tumor.
  • Coexistence of p53 gene mutations and the locus of heterozygosity was common, at least in astrocytomas grade III and in glioblastomas, and also occurred in astrocytoma grade II areas.
  • These results support the notion that intratumoral heterogeneity in brain tumors originates from different molecular defects.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Genes, p53 / genetics
  • [MeSH-minor] Adult. Aged. DNA Primers. DNA, Neoplasm / genetics. Female. Gene Frequency. Humans. Immunohistochemistry. Loss of Heterozygosity. Male. Microdissection. Middle Aged. Mutation / genetics. Mutation / physiology. Reverse Transcriptase Polymerase Chain Reaction

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17917588.001).
  • [ISSN] 0022-3069
  • [Journal-full-title] Journal of neuropathology and experimental neurology
  • [ISO-abbreviation] J. Neuropathol. Exp. Neurol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / DNA Primers; 0 / DNA, Neoplasm
  •  go-up   go-down


76. Klironomos G, Bravou V, Papachristou DJ, Gatzounis G, Varakis J, Parassi E, Repanti M, Papadaki H: Loss of inhibitor of growth (ING-4) is implicated in the pathogenesis and progression of human astrocytomas. Brain Pathol; 2010 Mar;20(2):490-7
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Inhibitor of growth 4 (ING-4) is a tumor suppressor gene that interacts with nuclear factor-kappaB (NF-kappaB) and represses its transcriptional activity.
  • Several lines of evidence suggest that the tumor suppressor gene ING-4, the transcription factor NF-kappaB and its target genes matrix metalloproteases MMP-2, MMP-9 and urokinase plasminogen activator (u-PA) are critically involved in tumor invasion.
  • We found that ING-4 expression was significantly decreased in astrocytomas, and ING-4 loss was associated with tumor grade progression.
  • Expression of p65, a NF-kappaB subunit, was significantly higher in grade IV than in grade III and grade I/II tumors, and a statistical significant negative correlation between expression of ING-4 and expression of nuclear p65 was noticed.
  • Of note, astrocytomas of advanced histologic grades (grade III, IV) displayed significantly higher expression levels of these proteins compared to tumors of lower grades (grade I, II).
  • Collectively, our data suggest an essential role for ING-4 in human astrocytoma development and progression possibly through regulation of the NF-kappaB-dependent expression of genes involved in tumor invasion.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Cell Cycle Proteins / metabolism. Homeodomain Proteins / metabolism. Tumor Suppressor Proteins / metabolism
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. Brain / metabolism. Brain / pathology. Cell Nucleus / metabolism. Child. Cohort Studies. Disease Progression. Female. Humans. Male. Matrix Metalloproteinase 2 / metabolism. Matrix Metalloproteinase 9 / metabolism. Middle Aged. NF-kappa B / metabolism. Urokinase-Type Plasminogen Activator / metabolism. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19775294.001).
  • [ISSN] 1750-3639
  • [Journal-full-title] Brain pathology (Zurich, Switzerland)
  • [ISO-abbreviation] Brain Pathol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0 / Cell Cycle Proteins; 0 / Homeodomain Proteins; 0 / ING4 protein, human; 0 / NF-kappa B; 0 / Tumor Suppressor Proteins; EC 3.4.21.73 / Urokinase-Type Plasminogen Activator; EC 3.4.24.24 / MMP2 protein, human; EC 3.4.24.24 / Matrix Metalloproteinase 2; EC 3.4.24.35 / Matrix Metalloproteinase 9
  •  go-up   go-down


77. Isolan GR, Ribas Filho JM, Isolan PM, Giovanini A, Malafaia O, Dini LI, Kummer A Jr, Negrão AW: [Astrocytic neoplasms and correlation with mutate p53 and Ki-67 proteins]. Arq Neuropsiquiatr; 2005 Dec;63(4):997-1004
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Astrocytic neoplasms and correlation with mutate p53 and Ki-67 proteins].
  • The astrocytic neoplasms respond by 60% of the central nervous system tumors, being the study of the molecular biology an important step for the understanding of the genesis and biological behavior of these diseases.
  • The Ki-67 proteins, which are markers of the cellular proliferation, and p53, which is the product of the tumor suppressor gene TP53, are both important tumoral markers.
  • This study intends to identify and quantify the Ki-67 and p53 proteins in astrocytic tumors of different grades of malignancy, as well as to analyze their relations with age and gender.
  • Ki-67 and p53 proteins in 47 patients with surgically resected astrocytic neoplasms were studied through immunohistochemistry.
  • They have been previously classified and reviewed concerning their histological grade, as suggested by the World Health Organization.
  • p53 was present in 14 cases (35.13%) with a higher correlation with astrocytoma grade IV (p=0.59).
  • The hypotheses of a greater presence of Ki-67 and p53 in astrocytic neoplasms with a higher degree of malignancy, except for the correlation between grade III and p53, is corroborated by the results of this study.
  • [MeSH-major] Astrocytoma / chemistry. Central Nervous System Neoplasms / chemistry. Ki-67 Antigen / analysis. Tumor Suppressor Protein p53 / analysis
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. Child. Child, Preschool. Cross-Sectional Studies. Female. Humans. Immunohistochemistry. Male. Middle Aged. Retrospective Studies

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16400419.001).
  • [ISSN] 0004-282X
  • [Journal-full-title] Arquivos de neuro-psiquiatria
  • [ISO-abbreviation] Arq Neuropsiquiatr
  • [Language] por
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] Brazil
  • [Chemical-registry-number] 0 / Ki-67 Antigen; 0 / Tumor Suppressor Protein p53
  •  go-up   go-down


78. Perdiki M, Korkolopoulou P, Thymara I, Agrogiannis G, Piperi C, Boviatsis E, Kotsiakis X, Angelidakis D, Diamantopoulou K, Thomas-Tsagli E, Patsouris E: Cyclooxygenase-2 expression in astrocytomas. Relationship with microvascular parameters, angiogenic factors expression and survival. Mol Cell Biochem; 2007 Jan;295(1-2):75-83

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • In the present study, we examined the expression of COX-2 in diffuse gliomas of astrocytic origin in relation to microvascular parameters, angiogenic factors and survival.
  • MATERIALS AND METHODS: A total of 83 cases of diffuse astrocytomas (grade II-IV) were analyzed by immunohistochemistry for the presence of COX-2.
  • RESULTS: COX-2 expression was detected in 79 cases (95%) with an increased expression in grade IV as compared to grades II/III (p=0.024).
  • Multivariate survival analysis showed that the interaction model of COX-2 with grade along with age were the only significant prognostic indicators.
  • CONCLUSION: These results implicate COX-2 in the angiogenesis and biological aggressiveness of diffuse astrocytomas, and suggest that it would be worthwhile to examine how the inhibition of COX-2 expression may influence astrocytoma patients' survival.
  • [MeSH-major] Angiogenesis Inducing Agents / metabolism. Astrocytoma / blood supply. Astrocytoma / enzymology. Cyclooxygenase 2 / metabolism. Glioma / blood supply. Glioma / enzymology. Membrane Proteins / metabolism
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Female. Humans. Hypoxia-Inducible Factor 1, alpha Subunit / metabolism. Ki-67 Antigen / metabolism. Male. Middle Aged. Proportional Hazards Models. Survival Analysis. Vascular Endothelial Growth Factor A / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Biol Chem. 1997 Jul;378(7):609-16 [9278140.001]
  • [Cites] Fundam Clin Pharmacol. 1996;10(1):1-17 [8900495.001]
  • [Cites] Ann Clin Lab Sci. 2001 Oct;31(4):325-48 [11688844.001]
  • [Cites] Acta Neuropathol. 1999 Sep;98(3):240-4 [10483780.001]
  • [Cites] J Biol Chem. 1991 Jul 15;266(20):12866-72 [1712772.001]
  • [Cites] Cancer Res. 1999 Sep 1;59(17):4356-62 [10485483.001]
  • [Cites] Am J Pathol. 2000 Jul;157(1):29-35 [10880372.001]
  • [Cites] Ann Neurol. 1998 Jun;43(6):738-47 [9629843.001]
  • [Cites] Clin Cancer Res. 1997 Oct;3(10):1679-83 [9815550.001]
  • [Cites] Cancer Res. 1989 Mar 15;49(6):1505-8 [2493982.001]
  • [Cites] Int Urol Nephrol. 2005;37(1):47-53 [16132759.001]
  • [Cites] J Clin Invest. 2000 Jun;105(11):1589-94 [10841517.001]
  • [Cites] FASEB J. 1998 Sep;12(12):1063-73 [9737710.001]
  • [Cites] Neuropathology. 2004 Sep;24(3):201-7 [15484698.001]
  • [Cites] Clin Cancer Res. 2000 Oct;6(10):4064-8 [11051257.001]
  • [Cites] Cancer Res. 1997 Jun 15;57(12):2452-9 [9192825.001]
  • [Cites] Prostaglandins Leukot Essent Fatty Acids. 1996 Sep;55(3):179-83 [8931116.001]
  • [Cites] Neuropathol Appl Neurobiol. 2002 Feb;28(1):57-66 [11849564.001]
  • [Cites] Cancer Res. 1995 Apr 1;55(7):1464-72 [7882354.001]
  • [Cites] N Engl J Med. 1993 May 6;328(18):1313-6 [8385741.001]
  • [Cites] Acta Neuropathol. 2001 Aug;102(2):181-7 [11563634.001]
  • [Cites] Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13926-31 [12242329.001]
  • [Cites] J Clin Pathol. 2006 Apr;59(4):382-6 [16467169.001]
  • [Cites] J Clin Invest. 1994 Feb;93(2):493-8 [8113389.001]
  • [Cites] J Biol Chem. 1999 Apr 16;274(16):10911-5 [10196169.001]
  • [Cites] Adv Prostaglandin Thromboxane Leukot Res. 1995;23:109-11 [7732812.001]
  • [Cites] Cancer Res. 2001 Jun 1;61(11):4375-81 [11389063.001]
  • [Cites] N Engl J Med. 1995 Dec 28;333(26):1757-63 [7491141.001]
  • [Cites] Cancer Res. 2000 Sep 1;60(17):4926-31 [10987308.001]
  • [Cites] Cell. 1996 Nov 29;87(5):803-9 [8945508.001]
  • [Cites] J Natl Cancer Inst. 1998 Oct 21;90(20):1529-36 [9790545.001]
  • [Cites] Cancer. 1996 Jan 15;77(2):362-72 [8625246.001]
  • [Cites] Cancer. 2003 Oct 1;98(7):1465-72 [14508834.001]
  • [Cites] Int J Cancer. 1994 Nov 15;59(4):520-9 [7525492.001]
  • [Cites] Cancer Res. 2000 Sep 15;60(18):5040-4 [11016626.001]
  • [Cites] J Neurosurg. 1999 Jan;90(1):72-7 [10413158.001]
  • [Cites] Annu Rev Cell Dev Biol. 1999;15:551-78 [10611972.001]
  • [Cites] Neuropathol Appl Neurobiol. 2004 Jun;30(3):267-78 [15175080.001]
  • [Cites] J Neurosurg Sci. 1989 Jan-Mar;33(1):65-9 [2674360.001]
  • [Cites] Eur Urol. 2006 Nov;50(5):1021-31; discussion 1031 [16522350.001]
  • [Cites] Nature. 1992 Feb 27;355(6363):846-7 [1311419.001]
  • [Cites] N Engl J Med. 1991 Dec 5;325(23):1593-6 [1669840.001]
  • [Cites] Cancer Res. 1996 Oct 15;56(20):4566-9 [8840961.001]
  • [Cites] Clin Cancer Res. 2000 Jun;6(6):2513-20 [10873107.001]
  • [Cites] Pathobiology. 2005;72(5):241-9 [16374068.001]
  • (PMID = 16868662.001).
  • [ISSN] 0300-8177
  • [Journal-full-title] Molecular and cellular biochemistry
  • [ISO-abbreviation] Mol. Cell. Biochem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Angiogenesis Inducing Agents; 0 / HIF1A protein, human; 0 / Hypoxia-Inducible Factor 1, alpha Subunit; 0 / Ki-67 Antigen; 0 / Membrane Proteins; 0 / Vascular Endothelial Growth Factor A; EC 1.14.99.1 / Cyclooxygenase 2; EC 1.14.99.1 / PTGS2 protein, human
  •  go-up   go-down


79. Matsuyama Y, Sakai Y, Katayama Y, Imagama S, Ito Z, Wakao N, Sato K, Kamiya M, Yukawa Y, Kanemura T, Yanase M, Ishiguro N: Surgical results of intramedullary spinal cord tumor with spinal cord monitoring to guide extent of resection. J Neurosurg Spine; 2009 May;10(5):404-13

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Surgical results of intramedullary spinal cord tumor with spinal cord monitoring to guide extent of resection.
  • OBJECT: The authors investigated the outcome of intramedullary spinal cord tumor surgery, focusing on the effect of preoperative neurological status on postoperative mobility and the extent of tumor excision guided by intraoperative spinal cord monitoring prospectively.
  • METHODS: Intramedullary spinal cord tumor surgery was performed in 131 patients between 1997 and 2007.
  • A modified McCormick Scale (Grades I-V) was used to assess ambulatory ability (I = normal ambulation; II = mild motor sensory deficit, independent without external aid; III = independent with external aid; IV = care required; and V = wheelchair required).
  • The tumor types included astrocytoma (12 cases), ependymoma (46 cases), hemangioblastoma (16 cases), cavernous hemangioma (17 cases), and others (15 cases overall: gangliocytoma, 1; germ cell tumor, 1; lymphoma, 3; neurinoma, 1; meningioma, 1; oligodendroglioma, 1; sarcoidosis, 2; glioma, 1; and unknown, 4).
  • According to the preoperative McCormick Scale, ambulatory status was classified as Grades I, II, III, IV, and V in 41(38%), 30 (28%), 14 (13%), 19 (19%), and 2 (2%) patients, respectively.
  • The number of patients who did not lose ambulatory ability or who achieved an ambulatory status of Grade I or II postoperatively was 33 (80%), 21 (70%), 10 (71%), 8 (42%), and 1 (50%) in patients with preoperative Grades I, II, III, IV, and V, respectively.
  • Total excision was performed in 31 (79%) of 39 patients with preoperative Grade I, 12 (40%) of 30 patients with Grade II, 7 (50%) of 14 patients with Grade III, and 9 of 21 patients (38%) with Grade IV or V, indicating that the rate of total excision was significantly higher in patients with Grade I status.
  • Total excision in patients with Grade I or II ambulation was associated with a good prognosis for postoperative mobility.
  • However, the rate of postoperative deterioration was 31.5%, which is relatively high, and patients should be fully informed of this concern prior to intramedullary spinal cord tumor surgery.
  • [MeSH-minor] Adolescent. Adult. Aged. Astrocytoma / surgery. Child. Ependymoma / surgery. Female. Follow-Up Studies. Hemangioblastoma / surgery. Hemangioma, Cavernous / surgery. Humans. Male. Middle Aged. Postoperative Complications. Prognosis. Prospective Studies. Walking

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19442001.001).
  • [ISSN] 1547-5654
  • [Journal-full-title] Journal of neurosurgery. Spine
  • [ISO-abbreviation] J Neurosurg Spine
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


80. El-Rayes BF, Norton CS, Sakr W, Maciorowski Z, Smith D, Pietraszkiewicz H, Del Mar Alonso M, Ensley JF: Cellular DNA content parameters as prognostic indicators in human astrocytomas. J Neurooncol; 2005 Jan;71(2):85-9
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • OBJECTIVE: Clinical parameters such as grade, size and/or location of the tumor are good predictors of outcome in patients with astrocytoma.
  • METHODS: Following optimization and validation of methodology for evaluating cellular DNA content parameters (CDCP), tumor DNA ploidy and percent S phase fraction (SPF) were determined from 64 patients using formalin fixed, paraffin embedded specimens (mean coefficient of variation=4.94) obtained over a 10-year period.
  • Median survival times correlated with grade (I/II=1154 vs. III/IV=483days, P=0.0317).
  • [MeSH-major] Astrocytoma / metabolism. Central Nervous System Neoplasms / metabolism. DNA, Neoplasm / metabolism
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Aneuploidy. Antineoplastic Agents / therapeutic use. Diploidy. Female. Flow Cytometry. Humans. Male. Middle Aged. Prognosis. Radiotherapy. S Phase. Survival Analysis

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer. 1987 Jul 1;60(1):59-65 [2438028.001]
  • [Cites] Brain Pathol. 1993 Jul;3(3):255-68 [8293185.001]
  • [Cites] Cytometry. 1985 Jul;6(4):327-33 [4017799.001]
  • [Cites] Cancer. 1999 Aug 15;86(4):672-83 [10440696.001]
  • [Cites] Clin Neuropathol. 1986 Jul-Aug;5(4):157-75 [3757347.001]
  • [Cites] Neuropathol Appl Neurobiol. 1989 Jul-Aug;15(4):331-8 [2779735.001]
  • [Cites] J Neurosurg. 1980 Aug;53(2):198-204 [7431058.001]
  • [Cites] Neurosurg Rev. 1988;11(2):177-87 [3244416.001]
  • [Cites] Int J Cancer. 1991 Jul 9;48(5):663-7 [2071227.001]
  • [Cites] Am J Clin Pathol. 1988 Sep;90(3):289-93 [2843034.001]
  • [Cites] J Neurosurg. 1994 May;80(5):877-83 [8169628.001]
  • [Cites] Cytometry. 1988 Jul;9(4):380-6 [2841078.001]
  • [Cites] J Neurooncol. 2001 Dec;55(3):195-204 [11859975.001]
  • [Cites] Pol J Pathol. 1997;48(1):31-6 [9200958.001]
  • [Cites] Cytometry. 1987 Sep;8(5):479-87 [2444398.001]
  • [Cites] Cell Tissue Kinet. 1982 May;15(3):235-49 [7083295.001]
  • [Cites] Folia Histochem Cytobiol. 2000;38(4):175-80 [11185722.001]
  • [Cites] J Neurosurg. 1978 Jul;49(1):13-21 [207834.001]
  • [Cites] AJNR Am J Neuroradiol. 1995 May;16(5):1001-12 [7639120.001]
  • [Cites] Acta Neuropathol. 1979 Apr 12;46(1-2):39-44 [222110.001]
  • [Cites] J Neurosurg. 1994 Jan;80(1):85-9 [8271026.001]
  • [Cites] Oncogene. 1999 Feb 11;18(6):1385-90 [10022821.001]
  • [Cites] J Pathol. 1994 Dec;174(4):275-82 [7884589.001]
  • [Cites] Genes Chromosomes Cancer. 1998 Oct;23(2):153-8 [9739018.001]
  • [Cites] Cancer Genet Cytogenet. 1994 Jul 15;75(2):77-89 [8055485.001]
  • [Cites] Cancer. 1985 Sep 1;56(5):1106-11 [2990664.001]
  • [Cites] Neurosurgery. 1994 Jul;35(1):119-25; discussion 125-6 [7936132.001]
  • [Cites] Cancer. 1994 Aug 1;74(3):920-7 [8039120.001]
  • [Cites] Neurol Clin. 1985 Nov;3(4):711-28 [3001488.001]
  • [Cites] J Neurosurg. 1989 Mar;70(3):379-84 [2536805.001]
  • [Cites] Cytometry. 1983 Mar;3(5):328-31 [6839881.001]
  • [Cites] Cancer Genet Cytogenet. 1995 Dec;85(2):113-7 [8548733.001]
  • [Cites] J Neurooncol. 1997 Mar;32(1):7-17 [9049858.001]
  • [Cites] J Neuropathol Exp Neurol. 1990 Jan;49(1):71-8 [2153761.001]
  • [Cites] J Neurooncol. 1996 Oct;30(1):37-45 [8865001.001]
  • [Cites] Am J Clin Pathol. 1988 May;89(5):640-4 [2895977.001]
  • [Cites] Cytometry. 1987 Sep;8(5):488-93 [3665673.001]
  • [Cites] Cancer. 1992 Jul 15;70(2):538-46 [1319820.001]
  • (PMID = 15690121.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / CA 40498-01A1; United States / NCI NIH HHS / CA / P30CA22453
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, P.H.S.; Validation Studies
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / DNA, Neoplasm
  •  go-up   go-down


81. Rodriguez FJ, Perry A, Gutmann DH, O'Neill BP, Leonard J, Bryant S, Giannini C: Gliomas in neurofibromatosis type 1: a clinicopathologic study of 100 patients. J Neuropathol Exp Neurol; 2008 Mar;67(3):240-9
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The median age at tumor diagnosis was 13 years (range, 4 months to 68 years).
  • Most tumors were typical pilocytic astrocytoma (PA) (49%) or diffusely infiltrating astrocytoma (DA) (27%) that included World Health Organization Grades II (5%), III (15%), and IV (7%); others were designated as low-grade astrocytoma, subtype indeterminate (LGSI; 17%).
  • The tumors in 24 cases arose in the optic pathways and included PA (n = 14), LGSI (n = 4), DA (n = 4), pilomyxoid astrocytoma (n = 1), and ganglioglioma (n = 1).
  • The prognoses of the PA and LGSI gliomas overall were generally favorable; there were no survival differences between PA and LGSI groups based on site, tumor size, mitotic activity, or MIB-1 labeling index.

  • Genetic Alliance. consumer health - Neurofibromatosis.
  • Genetic Alliance. consumer health - Neurofibromatosis type 1.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Neurosurgery. 1979 Jun;4(6):524-8 [113690.001]
  • [Cites] Arch Neurol. 1966 May;14(5):467-75 [4957904.001]
  • [Cites] J Neurosurg. 1987 Jan;66(1):58-71 [3097276.001]
  • [Cites] Neuroradiology. 1991;33(4):357-9 [1922756.001]
  • [Cites] JAMA. 1997 Jul 2;278(1):51-7 [9207339.001]
  • [Cites] J Neuropathol Exp Neurol. 1999 Oct;58(10):1061-8 [10515229.001]
  • [Cites] Pediatr Blood Cancer. 2006 Mar;46(3):377-80 [15800886.001]
  • [Cites] Neurology. 2006 Oct 24;67(8):1509-12 [17060590.001]
  • [Cites] J AAPOS. 2006 Dec;10(6):534-9 [17189147.001]
  • [Cites] Ann Neurol. 2007 Mar;61(3):189-98 [17387725.001]
  • [Cites] Hum Mol Genet. 2007 May 1;16(9):1098-112 [17400655.001]
  • [Cites] Cancer Res. 2007 Sep 15;67(18):8588-95 [17875698.001]
  • [Cites] Acta Neuropathol. 2000 May;99(5):563-70 [10805102.001]
  • [Cites] Childs Nerv Syst. 2000 Jul;16(7):417-20 [10958550.001]
  • [Cites] Arch Ophthalmol. 2001 Apr;119(4):516-29 [11296017.001]
  • [Cites] Childs Nerv Syst. 2002 Feb;18(1-2):43-7 [11935243.001]
  • [Cites] Neurology. 2002 Sep 10;59(5):759-61 [12221173.001]
  • [Cites] Brain. 2003 Jan;126(Pt 1):152-60 [12477702.001]
  • [Cites] Am J Med Genet A. 2003 Oct 1;122A(2):95-9 [12955759.001]
  • [Cites] Ophthalmology. 2004 Mar;111(3):568-77 [15019338.001]
  • [Cites] J Clin Neurosci. 2004 Sep;11(7):745-7 [15337138.001]
  • [Cites] Pathol Annu. 1985;20 Pt 1:331-58 [3921930.001]
  • (PMID = 18344915.001).
  • [ISSN] 0022-3069
  • [Journal-full-title] Journal of neuropathology and experimental neurology
  • [ISO-abbreviation] J. Neuropathol. Exp. Neurol.
  • [Language] ENG
  • [Grant] United States / NINDS NIH HHS / NS / T32 NS007494; United States / NINDS NIH HHS / NS / T32 NS07494-04
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Biomarkers, Tumor
  • [Other-IDs] NLM/ NIHMS396162; NLM/ PMC3417064
  •  go-up   go-down


82. McGirt MJ, Chaichana KL, Gathinji M, Attenello F, Than K, Ruiz AJ, Olivi A, Quiñones-Hinojosa A: Persistent outpatient hyperglycemia is independently associated with decreased survival after primary resection of malignant brain astrocytomas. Neurosurgery; 2008 Aug;63(2):286-91; discussion 291
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Persistent outpatient hyperglycemia is independently associated with decreased survival after primary resection of malignant brain astrocytomas.
  • OBJECTIVE: Patients with malignant brain astrocytomas are at high risk for developing hyperglycemia secondary to frequent corticosteroid administration.
  • Furthermore, hyperglycemia augments in vitro astrocytoma growth, whereas hypoglycemia attenuates in vitro astrocytoma cell growth.
  • We hypothesized that persistent hyperglycemic states in the outpatient setting may serve as a prognostic marker of decreased survival in patients with malignant brain astrocytomas.
  • METHODS: We retrospectively reviewed 367 cases of craniotomy for malignant brain astrocytomas (World Health Organization Grade III or IV).
  • RESULTS: A total of 367 craniotomies (209 primary, 158 secondary) were performed for malignant brain astrocytomas (glioblastoma multiforme, 297; anaplastic astrocytomas, 70); 68 (19%) and 28 (8%) of the patients experienced isolated or persistent outpatient hyperglycemia, respectively.
  • Adjusting for intergroup differences and variables associated with survival in this model, age (P = 0.001), Karnofsky Performance Scale score (P = 0.001), tumor grade (P = 0.001), primary versus secondary resection (P = 0.008), temozolomide (P = 0.007), subsequent resection (P = 0.07), and continued outpatient dexamethasone therapy, persistent outpatient hyperglycemia (relative risk, 1.79; 95% confidence interval, 1.05-3.05, P = 0.03) remained independently associated with decreased survival.
  • CONCLUSION: In our experience, persistent outpatient hyperglycemia was associated with decreased survival in patients undergoing surgical resection for malignant astro- cytomas and was independent of the degree of disability, tumor grade, diabetes, prolonged dexamethasone use, or subsequent treatment modalities.
  • Increased glucose control is warranted in this patient population and may contribute to improved outcomes in the treatment of malignant brain astrocytomas.
  • [MeSH-major] Ambulatory Care / trends. Astrocytoma / mortality. Astrocytoma / surgery. Brain Neoplasms / mortality. Brain Neoplasms / surgery. Hyperglycemia / mortality
  • [MeSH-minor] Adult. Aged. Craniotomy / adverse effects. Follow-Up Studies. Humans. Middle Aged. Neurosurgical Procedures / adverse effects. Retrospective Studies. Survival Rate / trends

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Hyperglycemia.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18797358.001).
  • [ISSN] 1524-4040
  • [Journal-full-title] Neurosurgery
  • [ISO-abbreviation] Neurosurgery
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


83. Liu X, Chen N, Wang X, He Y, Chen X, Huang Y, Yin W, Zhou Q: Apoptosis and proliferation markers in diffusely infiltrating astrocytomas: profiling of 17 molecules. J Neuropathol Exp Neurol; 2006 Sep;65(9):905-13
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • We examined the expression profile of the caspases (CASP3, 6, 7, 8, 9, 10, and 14), APAF1, SMAC, BCL2, the IAPs (BIRC5/survivin, CIAP1, CIAP2, XIAP, and LIVIN), and the proliferation markers Ki67 and PHH3 in 78 diffusely infiltrating astrocytomas and 24 normal brain samples by immunohistochemistry.
  • Our data showed BIRC5 nuclear labeling index (BIRC5-N) was the apoptosis marker most significantly different in World Health Organization grade II to IV astrocytomas and most strongly associated with proliferative activity.
  • Expression level of other apoptosis-related proteins was modest or low in astrocytomas and did not correlate significantly with tumor grade or proliferation.
  • Apoptosis regulators and proliferation markers were not detected in astrocytes of normal brain by immunostaining.
  • This expression profile suggested involvement of apoptosis regulators in astrocytoma tumorigenesis, but tumor progression was more closely associated with proliferative advantages of which BIRC5 nuclear expression appeared to be a manifestation.
  • [MeSH-major] Apoptosis. Apoptosis Regulatory Proteins / metabolism. Astrocytoma / metabolism. Brain Neoplasms / metabolism. Microtubule-Associated Proteins / metabolism. Neoplasm Proteins / metabolism. Nuclear Proteins / metabolism
  • [MeSH-minor] Adult. Aged. Blotting, Western / methods. Female. Gene Expression Regulation, Neoplastic / physiology. Humans. Immunohistochemistry / methods. Inhibitor of Apoptosis Proteins. Male. Middle Aged. RNA, Messenger / genetics. RNA, Messenger / metabolism. Reverse Transcriptase Polymerase Chain Reaction / methods. Statistics, Nonparametric

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16957584.001).
  • [ISSN] 0022-3069
  • [Journal-full-title] Journal of neuropathology and experimental neurology
  • [ISO-abbreviation] J. Neuropathol. Exp. Neurol.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Apoptosis Regulatory Proteins; 0 / BIRC5 protein, human; 0 / Inhibitor of Apoptosis Proteins; 0 / Microtubule-Associated Proteins; 0 / Neoplasm Proteins; 0 / Nuclear Proteins; 0 / RNA, Messenger
  •  go-up   go-down


84. Mondin V, Ferlito A, Devaney KO, Woolgar JA, Rinaldo A: A survey of metastatic central nervous system tumors to cervical lymph nodes. Eur Arch Otorhinolaryngol; 2010 Nov;267(11):1657-66
MedlinePlus Health Information. consumer health - Head and Neck Cancer.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] A survey of metastatic central nervous system tumors to cervical lymph nodes.
  • There are, of course, less frequently encountered differential diagnostic possibilities; one of the most uncommon of all is the possibility of metastasis from an intracranial tumor.
  • The present review examines the published experience with 128 tumors that gave rise to cervical node metastases in both adult and in pediatric patients.
  • While it is presumed that the blood-brain barrier blocks the spread of most tumors beyond the intracranial locale, this is speculative.
  • Although many of the cervical node metastases reported here arose after craniotomy (and, presumably, after breaching of the blood-brain barrier), some arose in the absence of any preceding surgical procedure.
  • Cervical node metastases may arise from glial tumors (including glioblastoma multiforme, in both adult and pediatric patients) and non-glial tumors (such as medulloblastoma in pediatric patients).
  • The history of a previous intracranial lesion is often the key to correct diagnosis, since, without prompting, neither the pathologist nor the radiologist is likely to think of a cervical node metastasis from a brain tumor when assessing a cervical mass of unknown etiology.
  • [MeSH-major] Central Nervous System Neoplasms / pathology. Head and Neck Neoplasms / secondary. Lymphatic Metastasis / pathology
  • [MeSH-minor] Blood-Brain Barrier. Humans

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neurosurg. 1980 Oct;53(4):562-5 [7420182.001]
  • [Cites] Radiology. 1966 Jul;87(1):55-63 [4287332.001]
  • [Cites] Acta Neuropathol. 2003 Apr;105(4):309-27 [12624784.001]
  • [Cites] Neurol Med Chir (Tokyo). 2007 Jun;47(6):273-7 [17587781.001]
  • [Cites] Neurochirurgie. 1976;22(6):653-69 [193060.001]
  • [Cites] J Korean Med Sci. 2004 Dec;19(6):911-4 [15608410.001]
  • [Cites] Acta Neurochir (Wien). 1981;57(1-2):99-105 [6267905.001]
  • [Cites] Hum Pathol. 1979 Jul;10(4):453-67 [381159.001]
  • [Cites] Neuropathology. 2003 Jun;23 (2):146-9 [12777104.001]
  • [Cites] J Neurooncol. 1988;6(1):53-9 [3294352.001]
  • [Cites] J Neurooncol. 2006 Sep;79(2):187-90 [16645723.001]
  • [Cites] Arch Anat Cytol Pathol. 1995;43(5-6):342-9 [8729851.001]
  • [Cites] W V Med J. 1998 Sep-Oct;94(5):276-8 [9803886.001]
  • [Cites] Cancer. 1990 Jul 1;66(1):180-4 [2162242.001]
  • [Cites] J Neurosurg. 1974 Feb;40(2):206-12 [4809119.001]
  • [Cites] Taiwan Yi Xue Hui Za Zhi. 1975 Mar;74(3):220-8 [167101.001]
  • [Cites] Genes Chromosomes Cancer. 2009 Mar;48(3):229-38 [19025795.001]
  • [Cites] J Cancer Res Ther. 2007 Apr-Jun;3(2):102-4 [17998733.001]
  • [Cites] Am J Med Sci. 1989 Aug;298(2):109-18 [2669475.001]
  • [Cites] Cytopathology. 1997 Dec;8(6):421-7 [9439895.001]
  • [Cites] Arch Pathol. 1962 Mar;73:223-9 [14461268.001]
  • [Cites] J Neurol. 1982;227(3):151-5 [6181222.001]
  • [Cites] Cancer. 1993 Jun 15;71(12):4111-7 [8508376.001]
  • [Cites] Neuro Oncol. 2003 Jan;5(1):14-8 [12626129.001]
  • [Cites] Tumori. 1984 Aug 31;70(4):389-92 [6474586.001]
  • [Cites] J Neurosurg. 1991 Jun;74(6):872-7 [2033446.001]
  • [Cites] Acta Neuropathol. 1981;54(4):269-73 [7270083.001]
  • [Cites] Acta Neurochir (Wien). 2008 Jul;150(7):699-702; discussion 702-3 [18548193.001]
  • [Cites] J Pathol. 1973 Apr;109(4):335-43 [4720914.001]
  • [Cites] Brain. 1961 Jun;84:301-9 [13733291.001]
  • [Cites] Pediatr Neurosurg. 1994;20(4):269-71 [8043466.001]
  • [Cites] Neurology. 1989 Dec;39(12):1593-6 [2685656.001]
  • [Cites] Neoplasma. 1962;9:585-92 [13991553.001]
  • [Cites] Br J Neurosurg. 1994;8(1):87-92 [8011201.001]
  • [Cites] Cancer. 1984 Feb 15;53(4):974-81 [6692295.001]
  • [Cites] Pathology. 1984 Apr;16(2):217-21 [6087260.001]
  • [Cites] J Neurooncol. 2010 May;97(3):451-7 [19898745.001]
  • [Cites] Indian J Pathol Microbiol. 2007 Apr;50(2):422-5 [17883098.001]
  • [Cites] J Neurosurg. 1961 May;18:313-30 [13761772.001]
  • [Cites] Surg Neurol. 1977 Nov;8(5):347-9 [199955.001]
  • [Cites] Neurol Neurochir Pol. 1971 Sep-Oct;5(5):753-7 [5161087.001]
  • [Cites] Cancer. 1976 Mar;37(3):1577-83 [177171.001]
  • [Cites] Acta Cytol. 1993 Nov-Dec;37(6):938-42 [8249517.001]
  • [Cites] Pathology. 2009 Feb;41(2):197-9 [19152196.001]
  • [Cites] Neurol Neurochir Pol. 2009 Mar-Apr;43(2):183-90 [19484696.001]
  • [Cites] Arch Otolaryngol Head Neck Surg. 1992 Jul;118(7):755-6 [1320896.001]
  • [Cites] J Neurosurg. 1974 Nov;41(5):607-9 [4371027.001]
  • [Cites] Duodecim. 1974;90(24):1744-8 [4374348.001]
  • [Cites] Cancer. 1980 Jan 1;45(1):112-25 [6985826.001]
  • [Cites] Zentralbl Neurochir. 1975;36(1):27-36 [1224866.001]
  • [Cites] Acta Neurochir (Wien). 2001;143(6):575-86 [11534674.001]
  • [Cites] Br J Neurosurg. 2005 Aug;19(4):348-51 [16455543.001]
  • [Cites] No Shinkei Geka. 1979 Oct;7(10 ):1005-10 [522948.001]
  • [Cites] Clin Neuropathol. 2005 Nov-Dec;24(6):247-51 [16320817.001]
  • [Cites] Cancer. 2005 Apr 1;103(7):1427-30 [15690330.001]
  • [Cites] Am J Pediatr Hematol Oncol. 1982 Fall;4(3):259-62 [7149167.001]
  • [Cites] Br J Surg. 1951 Jul;39(153):56-65 [14858828.001]
  • [Cites] Arkh Patol. 1960;22(4):78-80 [13804641.001]
  • [Cites] Brain. 1964 Jun;87:379-412 [14188281.001]
  • [Cites] Cancer Radiother. 2006 May;10(3):107-11 [16600659.001]
  • [Cites] J Neurol Neurosurg Psychiatry. 1969 Jun;32(3):249-53 [5795118.001]
  • [Cites] Hum Pathol. 1987 Jan;18(1):90-2 [3817801.001]
  • [Cites] No Shinkei Geka. 1986 Jan;14(1):59-65 [3951664.001]
  • [Cites] Vopr Onkol. 2009;55(2):230-6 [19514382.001]
  • [Cites] Neurosurgery. 1981 Mar;8(3):391-6 [7242888.001]
  • [Cites] J Histochem Cytochem. 1998 May;46(5):585-94 [9606106.001]
  • [Cites] J Clin Neurosci. 2009 Nov;16(11):1485-6 [19581092.001]
  • [Cites] Diagn Cytopathol. 1996 Jul;15(1):60-5 [8807254.001]
  • [Cites] Arch Neurol. 1968 Jun;18(6):649-53 [5652993.001]
  • [Cites] Am J Otolaryngol. 1983 Sep-Oct;4(5):297-324 [6416092.001]
  • [Cites] Arkh Patol. 1958 Jun;20(6):83-6 [13560319.001]
  • [Cites] J Lancet. 1964 Jul;84:227-9 [14153500.001]
  • [Cites] J Neurosurg. 1969 Jul;31(1):50-8 [4307543.001]
  • [Cites] Neurol Med Chir (Tokyo). 2010;50(2):161-4 [20185886.001]
  • [Cites] Neurol Med Chir (Tokyo). 2004 Dec;44(12):669-73 [15684601.001]
  • [Cites] J Neurosurg. 1970 Jul;33(1):88-94 [4316740.001]
  • [Cites] Pathologe. 1993 Dec;14(6):386-90 [8121896.001]
  • [Cites] J Neurosurg. 1967 Dec;27(6):568-73 [6065130.001]
  • [Cites] Arkh Patol. 1979;41(11):68-70 [518368.001]
  • [Cites] Acta Neurochir (Wien). 2001;143(1):25-9 [11345714.001]
  • [Cites] J Pathol Bacteriol. 1959 Jul;78:187-95 [14439916.001]
  • [Cites] J Neurosurg. 1973 Feb;38(2):226-31 [4540397.001]
  • [Cites] Zhonghua Yi Xue Za Zhi (Taipei). 1992 May;49(5):354-64 [1320996.001]
  • [Cites] Mayo Clin Proc. 2007 Oct;82(10):1271-86 [17908533.001]
  • [Cites] Ann Saudi Med. 1997 May;17(3):340-3 [17369737.001]
  • [Cites] J Neurol Neurosurg Psychiatry. 1991 Jan;54(1):80-6 [2010766.001]
  • [Cites] Diagn Cytopathol. 1994;11(1):68-73 [7956665.001]
  • [Cites] Acta Neurochir (Wien). 1976;35(4):247-59 [998355.001]
  • [Cites] AJNR Am J Neuroradiol. 1996 Nov-Dec;17 (10 ):1929-31 [8933881.001]
  • [Cites] Rev Esp Otoneurooftalmol Neurocir. 1951 Sep-Oct;10(57):313-6 [14920995.001]
  • [Cites] J Laryngol Otol. 1991 Mar;105(3):229-31 [2019817.001]
  • [Cites] J Neurol Neurosurg Psychiatry. 1975 Nov;38(11):1133-5 [1206423.001]
  • [Cites] Pediatr Dev Pathol. 2009 May-Jun;12(3):244-8 [19086745.001]
  • [Cites] Neurosurgery. 2008 Oct;63(4):720-6; author reply 726-7 [18981882.001]
  • [Cites] Childs Nerv Syst. 1990 May;6(3):179-82 [2162735.001]
  • [Cites] J Neurosurg. 1977 Nov;47(5):766-70 [908941.001]
  • [Cites] Acta Neurochir (Wien). 1959;7:263-73 [13805555.001]
  • [Cites] Can J Neurol Sci. 1981 May;8(2):115-9 [7296419.001]
  • [Cites] Arch Derm Syphilol. 1949 Jun;59(6):626-35 [18151073.001]
  • [Cites] Z Krebsforsch. 1955;60(5):590-6 [13300505.001]
  • [Cites] Am J Otolaryngol. 1983 Jan-Feb;4(1):74-6 [6324605.001]
  • [Cites] No To Shinkei. 1972 Mar;14 (3):339-51 [4335553.001]
  • [Cites] Psychiatr Neurol Med Psychol (Leipz). 1971 Mar;23(3):167-74 [4330749.001]
  • [Cites] Surg Neurol. 1979 Oct;12(4):337-9 [524254.001]
  • [Cites] Zentralbl Neurochir. 1952;12(6):347-56 [13091280.001]
  • [Cites] J Oral Pathol Med. 1997 Sep;26(8):388-92 [9379431.001]
  • [Cites] Cancer. 1958 Sep-Oct;11(5):888-94 [13585341.001]
  • [Cites] J Neurosurg. 1973 May;38(5):631-4 [4351224.001]
  • [Cites] Clin Neuropathol. 1988 May-Jun;7(3):131-3 [3203482.001]
  • [Cites] Klin Padiatr. 1987 Jan-Feb;199(1):19-21 [3560762.001]
  • [Cites] No Shinkei Geka. 1985 Nov;13(11):1245-50 [4088447.001]
  • [Cites] J Neurosurg. 1974 Feb;40(2):255-9 [4809126.001]
  • [Cites] Pathol Res Pract. 2009;205(7):502-7 [19410385.001]
  • [Cites] J Neurosurg. 1985 Jun;62(6):918-21 [2987441.001]
  • [Cites] Am J Clin Pathol. 1963 Feb;39:148-60 [13939379.001]
  • [Cites] J Neurooncol. 2004 Feb;66(3):265-71 [15015656.001]
  • [Cites] Ann Neurol. 1980 Feb;7(2):113-7 [7369716.001]
  • [Cites] J Neurosurg. 1967 May;26(5):542-7 [6025328.001]
  • [Cites] Psychiatr Neurol Neurochir. 1967 Jul-Aug;70(4):245-59 [6052791.001]
  • [Cites] J Comput Assist Tomogr. 1990 Mar-Apr;14(2):294-6 [2312862.001]
  • [Cites] Acta Pathol Microbiol Scand. 1965;64(3):294-8 [5855579.001]
  • [Cites] Tumori. 2008 Jan-Feb;94(1):40-51 [18468334.001]
  • [Cites] J Neuropathol Exp Neurol. 2000 Dec;59(12):1044-50 [11138924.001]
  • (PMID = 20694730.001).
  • [ISSN] 1434-4726
  • [Journal-full-title] European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
  • [ISO-abbreviation] Eur Arch Otorhinolaryngol
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Germany
  •  go-up   go-down


85. Chi AS, Sorensen AG, Jain RK, Batchelor TT: Angiogenesis as a therapeutic target in malignant gliomas. Oncologist; 2009 Jun;14(6):621-36
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Currently, adult glioblastoma (GBM) patients have poor outcomes with conventional cytotoxic treatments.
  • Because GBMs are highly angiogenic tumors, inhibitors that target tumor vasculature are considered promising therapeutic agents in these patients.
  • [MeSH-minor] Animals. Cell Movement / drug effects. Clinical Trials as Topic. Drug Resistance, Neoplasm. Edema / drug therapy. Endothelial Cells / drug effects. Humans. Protein Kinase Inhibitors / therapeutic use. Receptors, Platelet-Derived Growth Factor / antagonists & inhibitors. Receptors, Vascular Endothelial Growth Factor / antagonists & inhibitors. Signal Transduction / drug effects. Vascular Endothelial Growth Factor A / antagonists & inhibitors

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19487335.001).
  • [ISSN] 1549-490X
  • [Journal-full-title] The oncologist
  • [ISO-abbreviation] Oncologist
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / P01 CA080124
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Angiogenesis Inhibitors; 0 / Protein Kinase Inhibitors; 0 / Vascular Endothelial Growth Factor A; EC 2.7.10.1 / Receptors, Platelet-Derived Growth Factor; EC 2.7.10.1 / Receptors, Vascular Endothelial Growth Factor
  • [Number-of-references] 175
  • [Other-IDs] NLM/ NIHMS765709; NLM/ PMC4790121
  •  go-up   go-down


86. Nakamura M, Shimada K, Ishida E, Higuchi T, Nakase H, Sakaki T, Konishi N: Molecular pathogenesis of pediatric astrocytic tumors. Neuro Oncol; 2007 Apr;9(2):113-23
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Molecular pathogenesis of pediatric astrocytic tumors.
  • Astrocytomas are the most common pediatric brain tumors, accounting for 7%-8% of all childhood cancers.
  • Relatively few studies have been performed on their molecular properties; therefore, classification of pediatric astrocytic tumors into genetic subtypes similar to that of adult tumors remains to be defined.
  • Here, we report an extensive characterization of 44 pediatric astrocytomas--16 diffuse astrocytomas (WHO grade II), 10 anaplastic astrocytomas (WHO grade III), and 18 glioblastomas (WHO grade IV)--in terms of genetic alterations frequently observed in adult astrocytomas.
  • EGFR amplification was detected in only one anaplastic astrocytoma and two glioblastomas, but no amplification was observed for the PDGFR-alpha gene.
  • Loss of heterozygosity (LOH) on 1p/19q and 10p/10q was less common in pediatric astrocytic tumors than in those seen in adults, but the frequency of LOH on 22q was comparable, occurring in 44% of diffuse astrocytomas, 40% of anaplastic astrocytomas, and 61% of glioblastomas.
  • Our results suggest some differences in children compared to adults in the genetic pathways leading to the formation of de novo astrocytic tumors.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics
  • [MeSH-minor] Adolescent. Child. Child, Preschool. Chromosomes, Human, Pair 1. Chromosomes, Human, Pair 10. Chromosomes, Human, Pair 19. Chromosomes, Human, Pair 22. DNA Mutational Analysis. Female. Gene Amplification. Genes, p53. Glioblastoma / genetics. Humans. Loss of Heterozygosity. Male. Mutation. PTEN Phosphohydrolase / genetics. Receptor, Epidermal Growth Factor / genetics. Receptor, Platelet-Derived Growth Factor beta / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Hum Pathol. 1999 Nov;30(11):1284-90 [10571506.001]
  • [Cites] Acta Neuropathol. 2005 Oct;110(4):402-10 [16155764.001]
  • [Cites] Lab Invest. 2000 Jan;80(1):65-72 [10653004.001]
  • [Cites] Brain Pathol. 2000 Apr;10(2):249-59 [10764044.001]
  • [Cites] J Neuropathol Exp Neurol. 2000 Jun;59(6):539-43 [10850866.001]
  • [Cites] Lab Invest. 2001 Jan;81(1):77-82 [11204276.001]
  • [Cites] Cancer Res. 2001 Mar 1;61(5):2124-8 [11280776.001]
  • [Cites] Am J Pathol. 2001 Apr;158(4):1253-62 [11290543.001]
  • [Cites] Brain Pathol. 2001 Apr;11(2):159-68 [11303791.001]
  • [Cites] Carcinogenesis. 2001 Oct;22(10):1715-9 [11577014.001]
  • [Cites] Childs Nerv Syst. 2001 Sep;17(9):503-11 [11585322.001]
  • [Cites] J Neuropathol Exp Neurol. 2001 Nov;60(11):1099-104 [11706939.001]
  • [Cites] Cancer. 2001 Dec 15;92(12):3155-64 [11753995.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Mar;61(3):215-25; discussion 226-9 [11895036.001]
  • [Cites] Acta Neuropathol. 2002 Mar;103(3):267-75 [11907807.001]
  • [Cites] Curr Treat Options Oncol. 2001 Dec;2(6):529-36 [12057098.001]
  • [Cites] J Neurooncol. 2002 Sep;59(2):117-22 [12241104.001]
  • [Cites] Cancer Res. 2003 Feb 15;63(4):737-41 [12591717.001]
  • [Cites] Brain Pathol. 2004 Apr;14(2):131-6 [15193025.001]
  • [Cites] Cancer Res. 2004 Oct 1;64(19):6892-9 [15466178.001]
  • [Cites] Cancer Res. 1990 May 15;50(10):2987-90 [2334901.001]
  • [Cites] Cancer. 1993 May 15;71(10 Suppl):3229-36 [8490859.001]
  • [Cites] Brain Pathol. 1993 Jan;3(1):19-26 [8269081.001]
  • [Cites] Oncogene. 1994 Mar;9(3):949-54 [8108140.001]
  • [Cites] Neurosurgery. 1994 Feb;34(2):213-9; discussion 219-20 [8177380.001]
  • [Cites] J Neurosurg. 1994 Sep;81(3):427-36 [8057151.001]
  • [Cites] Neurosurgery. 1994 Jun;34(6):967-72; discussion 972-3 [8084407.001]
  • [Cites] Brain Pathol. 1996 Jul;6(3):217-23; discussion 23-4 [8864278.001]
  • [Cites] Neurosurgery. 1996 Feb;38(2):258-64 [8869052.001]
  • [Cites] Cytogenet Cell Genet. 1996;72(2-3):100-12 [8978759.001]
  • [Cites] Cancer Res. 1997 Jan 15;57(2):304-9 [9000573.001]
  • [Cites] Brain Pathol. 1997 Apr;7(2):755-64 [9161727.001]
  • [Cites] J Neuropathol Exp Neurol. 1997 Jul;56(7):782-9 [9210874.001]
  • [Cites] Nat Genet. 1997 Sep;17(1):32-9 [9288095.001]
  • [Cites] Genes Chromosomes Cancer. 1998 May;22(1):9-15 [9591629.001]
  • [Cites] Acta Neuropathol. 1998 Jun;95(6):559-64 [9650746.001]
  • [Cites] J Neuropathol Exp Neurol. 1998 Jul;57(7):684-9 [9690672.001]
  • [Cites] Clin Cancer Res. 1999 Jul;5(7):1786-92 [10430083.001]
  • [Cites] Oncogene. 1999 Jul 15;18(28):4144-52 [10435596.001]
  • [Cites] Lab Invest. 2005 Feb;85(2):165-75 [15592495.001]
  • [Cites] Clin Cancer Res. 1999 Dec;5(12):4085-90 [10632344.001]
  • (PMID = 17327574.001).
  • [ISSN] 1522-8517
  • [Journal-full-title] Neuro-oncology
  • [ISO-abbreviation] Neuro-oncology
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 2.7.10.1 / Receptor, Platelet-Derived Growth Factor beta; EC 3.1.3.67 / PTEN Phosphohydrolase
  • [Other-IDs] NLM/ PMC1871665
  •  go-up   go-down


87. Cui W, Kong X, Cao HL, Wang X, Gao JF, Wu RL, Wang XC: [Mutations of p53 gene in 41 cases of human brain gliomas]. Ai Zheng; 2008 Jan;27(1):8-11
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Mutations of p53 gene in 41 cases of human brain gliomas].
  • The mutation rate of p53 gene was significantly higher in grade III-IV gliomas than in grade I-II gliomas (P<0.01).
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Genes, p53 / genetics. Mutation, Missense. Tumor Suppressor Protein p53 / genetics
  • [MeSH-minor] Adolescent. Adult. Aged. Amino Acid Sequence. Base Sequence. Child. Exons. Female. Frameshift Mutation. Glioblastoma / genetics. Humans. Male. Middle Aged. Oligodendroglioma / genetics. Point Mutation. Polymerase Chain Reaction. Polymorphism, Single-Stranded Conformational. Sequence Analysis, DNA. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18184456.001).
  • [Journal-full-title] Ai zheng = Aizheng = Chinese journal of cancer
  • [ISO-abbreviation] Ai Zheng
  • [Language] chi
  • [Publication-type] English Abstract; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] China
  • [Chemical-registry-number] 0 / Tumor Suppressor Protein p53
  •  go-up   go-down


88. La Torre D, de Divitiis O, Conti A, Angileri FF, Cardali S, Aguennouz M, Aragona M, Panetta S, d'Avella D, Vita G, La Torre F, Tomasello F: Expression of telomeric repeat binding factor-1 in astroglial brain tumors. Neurosurgery; 2005 Apr;56(4):802-10
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of telomeric repeat binding factor-1 in astroglial brain tumors.
  • The present study was designed to assess TRF1 expression in human astroglial brain tumors and to speculate on the clinical implications of its expression.
  • METHODS: Twenty flash-frozen surgical specimens obtained from adult patients who underwent craniotomy for microsurgical tumor resection, histologically verified as World Health Organization Grade II to IV astrocytomas, were used.
  • RESULTS: TRF1 was expressed in all tumor samples.
  • The level of its expression was variable, decreasing from low-grade through high-grade astrocytomas (P = 0.0032).
  • CONCLUSION: Our findings suggest that the loss of TRF1 expression capability, as a result of down-regulation of TRF1 expression in malignant gliomas cells, may play a role in the malignant progression of astroglial brain tumors.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Telomeric Repeat Binding Protein 1 / genetics
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Craniotomy. Female. Humans. Male. Microsurgery. Middle Aged

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15792519.001).
  • [ISSN] 1524-4040
  • [Journal-full-title] Neurosurgery
  • [ISO-abbreviation] Neurosurgery
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Telomeric Repeat Binding Protein 1
  •  go-up   go-down


89. Capper D, Mittelbronn M, Goeppert B, Meyermann R, Schittenhelm J: Secreted protein, acidic and rich in cysteine (SPARC) expression in astrocytic tumour cells negatively correlates with proliferation, while vascular SPARC expression is associated with patient survival. Neuropathol Appl Neurobiol; 2010 Apr;36(3):183-97
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Secreted protein, acidic and rich in cysteine (SPARC) expression in astrocytic tumour cells negatively correlates with proliferation, while vascular SPARC expression is associated with patient survival.
  • As no large-scale study has yet been undertaken, we investigated human brain and astrocytomas for SPARC expression and associations with tumour grade, proliferation, vascular density and patient survival.
  • METHODS: A spectrum of 188 WHO grade I-IV astrocytic tumours and 24 autopsy cases were studied by immunohistochemistry for SPARC, MIB-1 proliferation index and CD31-positive vessels.
  • RESULTS: In normal brain, SPARC is expressed in cortical marginal glia, cerebellar Bergmann glia and focally in white matter but is absent in neurones or vessels.
  • High SPARC expression levels in the cytoplasm of astrocytic tumour cells decreased with the grade of malignancy but showed an increase with grade of malignancy in tumour vessels.
  • While cytoplasmic SPARC staining was not associated with survival, vascular SPARC showed a significant association in the group of grade II-IV tumours (P = 0.02) and also in grade II astrocytomas alone (P = 0.01) with vascular SPARC associated with worse prognosis.
  • [MeSH-major] Astrocytoma / metabolism. Blood Vessels / metabolism. Brain / metabolism. Brain Neoplasms / metabolism. Cell Proliferation. Osteonectin / metabolism
  • [MeSH-minor] Adult. Cell Movement. Cytoplasm / metabolism. Cytoplasm / pathology. Female. Glioblastoma / blood supply. Glioblastoma / metabolism. Glioblastoma / mortality. Humans. Kaplan-Meier Estimate. Male. Middle Aged. Neovascularization, Pathologic. Nerve Fibers, Myelinated / metabolism. Nerve Fibers, Myelinated / pathology. Neuroglia / metabolism. Neuroglia / pathology. Neurons / metabolism. Neurons / pathology. RNA, Messenger / metabolism. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20132490.001).
  • [ISSN] 1365-2990
  • [Journal-full-title] Neuropathology and applied neurobiology
  • [ISO-abbreviation] Neuropathol. Appl. Neurobiol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Osteonectin; 0 / RNA, Messenger
  •  go-up   go-down


90. Maru SV, Holloway KA, Flynn G, Lancashire CL, Loughlin AJ, Male DK, Romero IA: Chemokine production and chemokine receptor expression by human glioma cells: role of CXCL10 in tumour cell proliferation. J Neuroimmunol; 2008 Aug 13;199(1-2):35-45
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The expression of chemokine receptors and chemokine production by adult human non-transformed astrocytes, grade III astrocytoma and grade IV glioblastoma tumour cell lines were determined.
  • Here, we show an increased expression of CXCR3 and CXCR4, and a decreased expression of CXCR1 and CCR4 by glioma cells compared to adult human astrocytes.
  • [MeSH-minor] Astrocytes / metabolism. Blotting, Western. Cell Line, Tumor. Electrophoresis, Polyacrylamide Gel. Enzyme-Linked Immunosorbent Assay. Extracellular Signal-Regulated MAP Kinases / metabolism. Flow Cytometry. Gene Expression. Humans. RNA, Messenger. Reverse Transcriptase Polymerase Chain Reaction

  • Genetic Alliance. consumer health - Glioma.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18538864.001).
  • [ISSN] 0165-5728
  • [Journal-full-title] Journal of neuroimmunology
  • [ISO-abbreviation] J. Neuroimmunol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / CXCL10 protein, human; 0 / Chemokine CXCL10; 0 / Chemokines; 0 / RNA, Messenger; 0 / Receptors, Chemokine; EC 2.7.11.24 / Extracellular Signal-Regulated MAP Kinases
  •  go-up   go-down


91. Pinto GR, Clara CA, Santos MJ, Almeida JR, Burbano RR, Rey JA, Casartelli C: Mutation analysis of gene PAX6 in human gliomas. Genet Mol Res; 2007;6(4):1019-25

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Gliomas are the most common tumors of the central nervous system.
  • Gene PAX6, which encodes a transcription factor that plays an important role in the development of the central nervous system, was recently recognized as a tumor suppressor in gliomas.
  • The objective of the present study was to analyze the mutational status of the coding and regulating regions of PAX6 in 94 gliomas: 81 astrocytomas (11 grade I, 23 grade II, 8 grade III, and 39 grade IV glioblastomas), 5 oligodendrogliomas (3 grade II, and 2 grade III), and 8 ependymomas (5 grade II, and 3 grade III).
  • Therefore, we conclude that the tumor suppressor role of PAX6, reported in previous studies on gliomas, is not due to mutation in its coding and regulating regions, suggesting the involvement of epigenetic mechanisms in the silencing of PAX6 in these tumors.
  • [MeSH-major] Central Nervous System Neoplasms / genetics. Eye Proteins / genetics. Glioma / genetics. Homeodomain Proteins / genetics. Mutation. Paired Box Transcription Factors / genetics. Repressor Proteins / genetics
  • [MeSH-minor] Adolescent. Adult. Aged. Astrocytoma / genetics. Base Sequence. Child. Child, Preschool. DNA Mutational Analysis. DNA Primers / genetics. DNA, Neoplasm / genetics. Ependymoma / genetics. Epigenesis, Genetic. Female. Gene Silencing. Humans. Infant. Male. Middle Aged. Oligodendroglioma / genetics. Polymerase Chain Reaction

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18273794.001).
  • [ISSN] 1676-5680
  • [Journal-full-title] Genetics and molecular research : GMR
  • [ISO-abbreviation] Genet. Mol. Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Brazil
  • [Chemical-registry-number] 0 / DNA Primers; 0 / DNA, Neoplasm; 0 / Eye Proteins; 0 / Homeodomain Proteins; 0 / PAX6 protein; 0 / Paired Box Transcription Factors; 0 / Repressor Proteins
  •  go-up   go-down


92. Yoo H, Sohn S, Nam BH, Min HS, Jung E, Shin SH, Gwak HS, Lee SH: The expressions of carbonic anhydrase 9 and vascular endothelial growth factor in astrocytic tumors predict a poor prognosis. Int J Mol Med; 2010 Jul;26(1):3-9

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The expressions of carbonic anhydrase 9 and vascular endothelial growth factor in astrocytic tumors predict a poor prognosis.
  • Hypoxia in the tumor microenvironment triggers a variety of genetic and adoptive responses that regulate tumor growth.
  • Tumor hypoxia is often associated with a malignant phenotype, resistance to therapy, and poor survival.
  • The objectives of this study were to evaluate the expressions of carbonic anhydrase 9 (CA9) and vascular endothelial growth factor (VEGF) in astrocytic gliomas and to relate patterns of expression with prognosis, that is with histological grade and survival.
  • We investigated 78 World Health Organization (WHO) grade II, III, and IV astrocytic gliomas.
  • Fourteen tumors were grade II, 30 were grade III, and 34 were grade IV.
  • It was found that CA9 expression was significantly associated with a higher-grade histology (p<0.001).
  • There were 3 CA9 positive tumors in grade II (21.4%), 10 in grade III (33.3%), and 27 in grade IV (79.4%).
  • For all tumors and WHO grade II, overall survival was found to be significantly dependent on CA9 expression (p=0.004, p=0.01).
  • Furthermore, VEGF expression was found to be significantly related to tumor grade (p=0.02) and tended to be related to overall survival (p=0.1).
  • Nevertheless, the expressions of CA9 and VEGF were found to be associated with tumor grade and possibly with survival.
  • Further studies on a larger patient population are needed to determine the correlation between the expressions of CA9, and VEGF in astrocytic gliomas and clinical outcome.
  • [MeSH-major] Antigens, Neoplasm / biosynthesis. Astrocytoma / metabolism. Carbonic Anhydrases / biosynthesis. Vascular Endothelial Growth Factor A / biosynthesis
  • [MeSH-minor] Adult. Aged. Female. Humans. Immunohistochemistry / statistics & numerical data. Kaplan-Meier Estimate. Male. Middle Aged. Multivariate Analysis. Prognosis. Proportional Hazards Models

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20514415.001).
  • [ISSN] 1791-244X
  • [Journal-full-title] International journal of molecular medicine
  • [ISO-abbreviation] Int. J. Mol. Med.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / Antigens, Neoplasm; 0 / Vascular Endothelial Growth Factor A; EC 4.2.1.1 / CA9 protein, human; EC 4.2.1.1 / Carbonic Anhydrases
  •  go-up   go-down


93. Schittenhelm J, Mittelbronn M, Nguyen TD, Meyermann R, Beschorner R: WT1 expression distinguishes astrocytic tumor cells from normal and reactive astrocytes. Brain Pathol; 2008 Jul;18(3):344-53
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] WT1 expression distinguishes astrocytic tumor cells from normal and reactive astrocytes.
  • Particularly in small brain biopsies, it might be difficult to distinguish reactive astrogliosis from low-grade or infiltration zones of high-grade astrocytomas.
  • Recently, the over-expression of Wilms' tumor gene product WT1 was reported in astrocytic tumor cells.
  • Therefore, we investigated WT1 expression in paraffin-embedded brain sections from 28 controls, 48 cases with astrogliosis of various etiology and 219 astrocytomas [World Health Organization (WHO) grades I-IV] by immunohistochemistry.
  • In astrocytomas, WT1-positive tumor cells were found in pilocytic astrocytomas (66.7% of cases), diffuse astrocytomas (52.7%) WHO grade II (52.7%), anaplastic astrocytomas (83.4%) and glioblastomas (98.1%).
  • Overall, the majority of all astrocytic neoplasms (84.5%) expressed WT1.
  • Establishing a cut-off value of 0% immunoreactive tumor cells served to recognize neoplastic astrocytes with 100% specificity and 68% sensitivity and was associated with positive and negative predictive values of 1 and 0.68, respectively.
  • [MeSH-major] Astrocytes / metabolism. Astrocytoma / metabolism. Brain Neoplasms / metabolism. Gliosis / metabolism. WT1 Proteins / biosynthesis
  • [MeSH-minor] Adult. Aged. Biomarkers, Tumor / analysis. Endothelial Cells / metabolism. Female. Gene Expression. Humans. Immunohistochemistry. Male. Middle Aged

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18371184.001).
  • [ISSN] 1015-6305
  • [Journal-full-title] Brain pathology (Zurich, Switzerland)
  • [ISO-abbreviation] Brain Pathol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / WT1 Proteins
  •  go-up   go-down


94. Kitange G, Misra A, Law M, Passe S, Kollmeyer TM, Maurer M, Ballman K, Feuerstein BG, Jenkins RB: Chromosomal imbalances detected by array comparative genomic hybridization in human oligodendrogliomas and mixed oligoastrocytomas. Genes Chromosomes Cancer; 2005 Jan;42(1):68-77
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • In this study, we used array-based comparative genomic hybridization (CGHa) of mapped BAC DNA to screen for such alterations in 31 oligodendrogliomas (20 grade II, 9 grade III, and 2 grade IV) and 4 mixed oligoastrocytomas (1 grade I, 1 grade II, and 2 grade IV).
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Nucleic Acid Hybridization / genetics. Oligodendroglioma / genetics
  • [MeSH-minor] Adult. Child. Chromosome Mapping. Chromosomes, Human, Pair 1 / genetics. Chromosomes, Human, Pair 19 / genetics. Female. Humans. Male. Middle Aged. Oligonucleotide Array Sequence Analysis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15472895.001).
  • [ISSN] 1045-2257
  • [Journal-full-title] Genes, chromosomes & cancer
  • [ISO-abbreviation] Genes Chromosomes Cancer
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / CA85799
  • [Publication-type] Journal Article; Research Support, U.S. Gov't, P.H.S.
  • [Publication-country] United States
  •  go-up   go-down


95. Perry SL, Bohlin C, Reardon DA, Desjardins A, Friedman AH, Friedman HS, Vredenburgh JJ: Tinzaparin prophylaxis against venous thromboembolic complications in brain tumor patients. J Neurooncol; 2009 Oct;95(1):129-134
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Tinzaparin prophylaxis against venous thromboembolic complications in brain tumor patients.
  • The purpose of this study was to determine the safety of tinzaparin for deep vein thrombosis prophylaxis in newly diagnosed grade III-IV malignant glioma patients.
  • Forty patients were enrolled into the study, 35 with glioblastoma multiforme and 5 with anaplastic astrocytoma.
  • Possible attributable toxicity was limited to two patients who developed CNS hemorrhages (one grade 1 and one grade 2) and one patient with an increase in liver enzymes (grade 3).
  • There were no patients with a grade 4 or 5 CNS hemorrhages or systemic hemorrhages >or=grade 2.
  • Tinzaparin at a fixed prophylactic dose is safe and may decrease the incidence of thromboembolic complications in brain tumor patients.
  • [MeSH-major] Brain Neoplasms / complications. Fibrinolytic Agents / therapeutic use. Glioma / complications. Heparin, Low-Molecular-Weight / therapeutic use. Venous Thromboembolism / etiology. Venous Thromboembolism / prevention & control
  • [MeSH-minor] Adult. Aged. Drug Administration Schedule. Female. Follow-Up Studies. Humans. Male. Middle Aged. Pulmonary Embolism / etiology. Pulmonary Embolism / prevention & control. Tomography, X-Ray Computed

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Clin Oncol. 2005 Apr 1;23(10):2130-5 [15699479.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):987-96 [15758009.001]
  • [Cites] J Thromb Haemost. 2007 May;5(5):955-62 [17461929.001]
  • [Cites] Surg Neurol. 2008 Aug;70(2):117-21; discussion 121 [18262633.001]
  • [Cites] Neuro Oncol. 2008 Jun;10(3):355-60 [18436627.001]
  • [Cites] J Thromb Haemost. 2010 Sep;8(9):1959-65 [20598077.001]
  • [Cites] J Clin Oncol. 1999 Nov;17(11):3389-95 [10550132.001]
  • [Cites] Oncologist. 1999;4(6):443-9 [10631688.001]
  • [Cites] Arch Intern Med. 2000 Aug 14-28;160(15):2327-32 [10927730.001]
  • [Cites] Chest. 2001 Jan;119(1 Suppl):132S-175S [11157647.001]
  • [Cites] Semin Radiat Oncol. 2001 Apr;11(2):163-9 [11285554.001]
  • [Cites] Arch Intern Med. 2001 May 28;161(10):1268-79 [11371254.001]
  • [Cites] J Neurosurg Sci. 2001 Dec;45(4):195-201; discussion 201 [11912469.001]
  • [Cites] J Neurooncol. 2002 Aug;59(1):39-47 [12222837.001]
  • [Cites] J Neurol. 2002 Oct;249(10):1409-12 [12382158.001]
  • [Cites] Chest. 2002 Dec;122(6):1933-7 [12475829.001]
  • [Cites] CA Cancer J Clin. 2003 Jan-Feb;53(1):5-26 [12568441.001]
  • [Cites] N Engl J Med. 2003 Jul 10;349(2):109-11 [12853582.001]
  • [Cites] N Engl J Med. 2003 Jul 10;349(2):146-53 [12853587.001]
  • [Cites] South Med J. 2004 Feb;97(2):213-4 [14982286.001]
  • [Cites] J Clin Oncol. 2004 May 15;22(10):1944-8 [15143088.001]
  • [Cites] J Thromb Haemost. 2004 Aug;2(8):1266-71 [15304029.001]
  • [Cites] Ann Neurol. 1983 Mar;13(3):334-6 [6303201.001]
  • [Cites] JAMA. 1988 Sep 2;260(9):1255-8 [3404638.001]
  • [Cites] Lancet. 1992 Jul 18;340(8812):152-6 [1352573.001]
  • [Cites] Mayo Clin Proc. 1994 Apr;69(4):329-32 [8170176.001]
  • [Cites] Neurology. 1993 Jun;43(6):1111-4 [8170553.001]
  • [Cites] Thromb Haemost. 1996 Feb;75(2):233-8 [8815566.001]
  • [Cites] N Engl J Med. 1996 Sep 5;335(10):701-7 [8703169.001]
  • [Cites] N Engl J Med. 1997 Sep 4;337(10):688-98 [9278467.001]
  • [Cites] Br J Surg. 1997 Aug;84(8):1099-103 [9278651.001]
  • [Cites] Eur J Cancer. 1997 Sep;33(10):1592-6 [9389920.001]
  • [Cites] N Engl J Med. 1998 Jul 9;339(2):80-5 [9654538.001]
  • [Cites] J Formos Med Assoc. 1999 May;98(5):365-7 [10420706.001]
  • [Cites] J Clin Oncol. 2005 Apr 1;23(10):2123-9 [15699480.001]
  • (PMID = 19415455.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Grant] United States / NHLBI NIH HHS / HL / K23 HL084233-02; United States / NHLBI NIH HHS / HL / K23 HL084233-03; United States / NHLBI NIH HHS / HL / K23 HL084233; United States / NHLBI NIH HHS / HL / K23 HL084233-01A1; United States / NHLBI NIH HHS / HL / K23-HL084233-02
  • [Publication-type] Clinical Trial; Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Fibrinolytic Agents; 0 / Heparin, Low-Molecular-Weight; 7UQ7X4Y489 / tinzaparin
  • [Other-IDs] NLM/ NIHMS180651; NLM/ PMC2837514
  •  go-up   go-down


96. Bozinov O, Kalk JM, Krayenbühl N, Woernle CM, Sure U, Bertalanffy H: Decreasing expression of the interleukin-13 receptor IL-13Ralpha2 in treated recurrent malignant gliomas. Neurol Med Chir (Tokyo); 2010;50(8):617-21
Hazardous Substances Data Bank. TENIPOSIDE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The expression level of IL-13Ralpha2 was examined in a total of 45 tissue samples of anaplastic astrocytomas (AAs) World Health Organization (WHO) grade III, glioblastomas (GBMs) WHO grade IV, and first-recurrent glioblastomas (frGBMs) after treatment with radiation and chemotherapy.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Glioblastoma / metabolism. Interleukin-13 Receptor alpha2 Subunit / metabolism. Neoplasm Recurrence, Local / metabolism
  • [MeSH-minor] Actins / genetics. Actins / metabolism. Adult. Aged. Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Exotoxins / therapeutic use. Female. Gene Expression Regulation, Neoplastic / drug effects. Humans. Immunotoxins / therapeutic use. Interleukin-13 / therapeutic use. Male. Middle Aged. Nimustine / administration & dosage. RNA / analysis. Teniposide / administration & dosage. Young Adult