[X] Close
You are about to erase all the values you have customized, search history, page format, etc.
Click here to RESET all values       Click here to GO BACK without resetting any value
Items 1 to 100 of about 798
1. Adam Y, Benezech J, Blanquet A, Fuentes JM, Bousigue JY, Debono B, Duplessis E, Espagno C, Plas JY, Lescure JP, Destandau J, Hladky JP, Grunewald P, Mahla K, Remond J, Louis E: [Intramedullary tumors. Results of a national investigation in private neurosurgery]. Neurochirurgie; 2010 Aug;56(4):344-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • MATERIAL: Seventy-nine cases were distributed in the following manner: ependymomas, 38; astrocytomas, 22; oligodendrogliomas, four; gangliogliomas, two; hemangioblastomas, 10 (nine sporadic cases and one case of Von Hippel-Lindau disease); primitive melanoma, one; and intramedullary neurinomas, two.
  • Tumor removal was complete in the cases of ependymoma and hemangioblastoma and subtotal in the cases of astrocytoma.
  • Astrocytomas: 22 cases, with 14 cases of astrocytoma, two pilocytic astrocytoma, four malignant astrocytoma, and two glioblastoma.
  • Diagnostic delay: malignant tumors, one to nine months; low grades; three to six years (range, eight months to 25 years).
  • [MeSH-minor] Adolescent. Adult. Aged. Delayed Diagnosis. Female. Follow-Up Studies. France / epidemiology. Humans. Magnetic Resonance Imaging. Male. Microsurgery. Middle Aged. Neoplasm Recurrence, Local. Neurosurgical Procedures. Treatment Outcome. Young Adult

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
  • (PMID = 20097390.001).
  • [ISSN] 1773-0619
  • [Journal-full-title] Neuro-Chirurgie
  • [ISO-abbreviation] Neurochirurgie
  • [Language] fre
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] France
  •  go-up   go-down


2. Jain R, Ellika SK, Scarpace L, Schultz LR, Rock JP, Gutierrez J, Patel SC, Ewing J, Mikkelsen T: Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. AJNR Am J Neuroradiol; 2008 Apr;29(4):694-700
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade.
  • BACKGROUND AND PURPOSE: Glioma angiogenesis and its different hemodynamic features, which can be evaluated by using perfusion CT (PCT) imaging of the brain, have been correlated with the grade and the aggressiveness of gliomas.
  • Our hypothesis was that quantitative estimation of permeability surface area product (PS), cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) in astroglial brain tumors by using PCT will correlate with glioma grade.
  • High-grade gliomas will show higher PS and CBV as compared with low-grade gliomas.
  • MATERIALS AND METHODS: PCT was performed in 32 patients with previously untreated astroglial tumors (24 high-grade gliomas and 8 low-grade gliomas) by using a total acquisition time of 170 seconds.
  • RESULTS: The differences in PS, CBV, and CBF between the low- and high-grade tumor groups were statistically significant, with the low-grade group showing lower mean values than the high-grade group.
  • ROC analyses showed that both CBV (C-statistic 0.930) and PS (C-statistic 0.927) were very similar to each other in differentiating low- and high-grade gliomas and had higher predictability compared with CBF and MTT.
  • Within the high-grade group, differentiation of WHO grade III and IV gliomas was also possible by using PCT parameters, and PS showed the highest C-statistic value (0.926) for the ROC analyses in this regard.
  • CONCLUSIONS: Both PS and CBV showed strong association with glioma grading, high-grade gliomas showing higher PS and CBV as compared with low-grade gliomas.
  • Perfusion parameters, especially PS, can also be used to differentiate WHO grade III from grade IV in the high-grade tumor group.
  • [MeSH-major] Astrocytoma / radiography. Brain Neoplasms / radiography. Capillary Permeability. Cerebrovascular Circulation. Tomography, X-Ray Computed

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - CT Scans.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18202239.001).
  • [ISSN] 1936-959X
  • [Journal-full-title] AJNR. American journal of neuroradiology
  • [ISO-abbreviation] AJNR Am J Neuroradiol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Contrast Media
  •  go-up   go-down


3. Shirai K, Suzuki Y, Okamoto M, Wakatsuki M, Noda SE, Takahashi T, Ishiuchi S, Hasegawa M, Nakazato Y, Nakano T: Influence of histological subtype on survival after combined therapy of surgery and radiation in WHO grade 3 glioma. J Radiat Res; 2010;51(5):589-94
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Influence of histological subtype on survival after combined therapy of surgery and radiation in WHO grade 3 glioma.
  • World Health Organization (WHO) grade 3 glioma is one of the common brain tumors and has three main histological subtypes, including anaplastic astrocytoma (AA), anaplastic oligoastrocytoma (AOA) and anaplastic oligodendroglioma (AO).
  • In this study, 68 patients with histologically proven WHO grade 3 glioma, consecutively received postoperative radiotherapy at the Gunma University Hospital, Japan, between 1983 and 2005, were investigated to assess the impact of histological subtype on the survival.
  • In our study, histological subtype was one of the most important prognostic factors of WHO grade 3 glioma.
  • [MeSH-major] Astrocytoma / radiotherapy. Brain Neoplasms / radiotherapy. Glioma / radiotherapy. Oligodendroglioma / radiotherapy

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20921826.001).
  • [ISSN] 1349-9157
  • [Journal-full-title] Journal of radiation research
  • [ISO-abbreviation] J. Radiat. Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Japan
  •  go-up   go-down


Advertisement
4. Chamberlain MC, Wei-Tsao DD, Blumenthal DT, Glantz MJ: Salvage chemotherapy with CPT-11 for recurrent temozolomide-refractory anaplastic astrocytoma. Cancer; 2008 May 1;112(9):2038-45
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Salvage chemotherapy with CPT-11 for recurrent temozolomide-refractory anaplastic astrocytoma.
  • BACKGROUND: The primary objective of this prospective phase 2 study of CPT-11 in adult patients with recurrent temozolomide-refractory anaplastic astrocytoma (AA) was to evaluate 6-month progression-free survival (PFS).
  • The median time to tumor progression was 4.1 month.
  • [MeSH-major] Antineoplastic Agents / therapeutic use. Astrocytoma / drug therapy. Brain Neoplasms / drug therapy. Camptothecin / analogs & derivatives. Dacarbazine / analogs & derivatives. Neoplasm Recurrence, Local / drug therapy. Salvage Therapy / methods

  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Cancer Chemotherapy.
  • Hazardous Substances Data Bank. DACARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18361434.001).
  • [ISSN] 0008-543X
  • [Journal-full-title] Cancer
  • [ISO-abbreviation] Cancer
  • [Language] eng
  • [Publication-type] Clinical Trial, Phase II; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 7673326042 / irinotecan; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide; XT3Z54Z28A / Camptothecin
  •  go-up   go-down


5. Lustig RA, Seiferheld W, Berkey B, Yung AW, Scarantino C, Movsas B, Jones CU, Simpson JR, Fishbach J, Curran WJ Jr: Imaging response in malignant glioma, RTOG 90-06. Am J Clin Oncol; 2007 Feb;30(1):32-7
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Imaging response in malignant glioma, RTOG 90-06.
  • OBJECTIVE: The purpose of this study was to determine if radiographic response correlates with survival for patients treated patients with malignant gliomas treated on Radiation Therapy Oncology Group (RTOG) protocol 90-06.
  • Histology included anaplastic astrocytoma (60) (AA), and glioblastoma multiforme (312) (GBM).
  • RESULTS: For patients with no tumor on the 4 month scan the median survival was 20.3 months and the 2 year survival 43%.
  • [MeSH-minor] Antineoplastic Agents, Alkylating / therapeutic use. Astrocytoma / drug therapy. Astrocytoma / pathology. Astrocytoma / radiography. Astrocytoma / radiotherapy. Biopsy. Brain Neoplasms / drug therapy. Brain Neoplasms / mortality. Brain Neoplasms / pathology. Brain Neoplasms / radiography. Brain Neoplasms / radiotherapy. Carmustine / administration & dosage. Carmustine / therapeutic use. Disease Progression. Female. Glioblastoma / drug therapy. Glioblastoma / pathology. Glioblastoma / radiography. Glioblastoma / radiotherapy. Humans. Magnetic Resonance Imaging. Male. Middle Aged. Survival Analysis. Tomography, X-Ray Computed

  • Genetic Alliance. consumer health - Glioma.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. Carmustine .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17278892.001).
  • [ISSN] 1537-453X
  • [Journal-full-title] American journal of clinical oncology
  • [ISO-abbreviation] Am. J. Clin. Oncol.
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / U10 CA 32115; United States / NCI NIH HHS / CA / U10 CA21661; United States / NCI NIH HHS / CA / U10 CA37422
  • [Publication-type] Journal Article; Multicenter Study; Research Support, N.I.H., Extramural
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; U68WG3173Y / Carmustine
  •  go-up   go-down


6. Braun K, Wiessler M, Ehemann V, Pipkorn R, Spring H, Debus J, Didinger B, Koch M, Muller G, Waldeck W: Treatment of glioblastoma multiforme cells with temozolomide-BioShuttle ligated by the inverse Diels-Alder ligation chemistry. Drug Des Devel Ther; 2009;2:289-301
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Temozolomide (TMZ) was approved for second-line therapy of recurrent anaplastic astrocytoma.

  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neurosurg. 1978 Sep;49(3):333-43 [355604.001]
  • [Cites] Expert Opin Biol Ther. 2004 Jul;4(7):1093-101 [15268676.001]
  • [Cites] J Immunol Methods. 1991 Jun 3;139(2):271-9 [1710634.001]
  • [Cites] Br J Cancer. 1992 Feb;65(2):287-91 [1739631.001]
  • [Cites] Pharm Res. 2004 Aug;21(8):1419-27 [15359577.001]
  • [Cites] J Am Chem Soc. 2004 Nov 17;126(45):14730-1 [15535692.001]
  • [Cites] Chembiochem. 2005 Feb;6(2):422-31 [15651048.001]
  • [Cites] Hum Gene Ther. 2005 Jan;16(1):1-16 [15703484.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):997-1003 [15758010.001]
  • [Cites] Strahlenther Onkol. 2005 Jun;181(6):372-7 [15925979.001]
  • [Cites] Angew Chem Int Ed Engl. 2006 Jan 30;45(6):896-901 [16370010.001]
  • [Cites] Anticancer Res. 2006 Mar-Apr;26(2B):1327-36 [16619541.001]
  • [Cites] Biochem Biophys Res Commun. 2006 Jul 14;345(4):1547-57 [16735025.001]
  • [Cites] Oncol Rep. 2006 Dec;16(6):1253-60 [17089046.001]
  • [Cites] Cancer Chemother Pharmacol. 1990;26(6):429-36 [2225314.001]
  • [Cites] Biochim Biophys Acta. 1966 Sep 5;126(1):181-4 [5970539.001]
  • [Cites] Mol Cell Biochem. 1980 Jan 16;29(1):47-57 [6154231.001]
  • [Cites] Bioconjug Chem. 2007 Mar-Apr;18(2):469-76 [17302384.001]
  • [Cites] Pathol Oncol Res. 2007;13(2):84-90 [17607368.001]
  • [Cites] Hepatology. 2007 Sep;46(3):759-68 [17663418.001]
  • [Cites] Prostate. 2008 Feb 1;68(2):210-22 [18092350.001]
  • [Cites] Mol Cell Biol. 1982 Apr;2(4):426-36 [6180306.001]
  • [Cites] Biochemistry. 1994 Aug 9;33(31):9045-51 [8049205.001]
  • [Cites] J Biol Chem. 1996 Jul 26;271(30):18188-93 [8663410.001]
  • [Cites] Toxicol Appl Pharmacol. 1996 Nov;141(1):319-29 [8917705.001]
  • [Cites] Hybridoma. 1997 Feb;16(1):119-25 [9085138.001]
  • [Cites] J Biol Chem. 1997 Jun 20;272(25):16010-7 [9188504.001]
  • [Cites] Cancer Treat Rev. 1997 Jan;23(1):35-61 [9189180.001]
  • [Cites] Clin Cancer Res. 1997 Oct;3(10):1769-74 [9815562.001]
  • [Cites] Science. 1999 Jul 30;285(5428):760-3 [10427003.001]
  • [Cites] J Clin Oncol. 2000 Apr;18(7):1481-91 [10735896.001]
  • [Cites] J Cell Biochem. 2000 Apr;77(3):372-81 [10760946.001]
  • [Cites] Antimicrob Agents Chemother. 2000 Sep;44(9):2471-4 [10952597.001]
  • [Cites] Cancer Res. 2001 Aug 1;61(15):5843-9 [11479224.001]
  • [Cites] J Mol Biol. 2002 Apr 26;318(2):237-43 [12051833.001]
  • [Cites] Angew Chem Int Ed Engl. 2002 Jul 15;41(14):2596-9 [12203546.001]
  • [Cites] Adv Drug Deliv Rev. 2002 Sep 13;54(5):715-58 [12204600.001]
  • [Cites] Clin Microbiol Infect. 2002 Sep;8(9):551-63 [12427216.001]
  • [Cites] Cancer Res. 2002 Dec 1;62(23):7018-24 [12460922.001]
  • [Cites] Curr Pharm Biotechnol. 2002 Dec;3(4):299-315 [12463414.001]
  • [Cites] Cancer Lett. 2003 May 8;194(1):125-31 [12706866.001]
  • [Cites] Cancer Chemother Pharmacol. 2003 Dec;52(6):459-64 [13680160.001]
  • [Cites] Mol Cell Biol. 2003 Nov;23(22):8306-15 [14585987.001]
  • [Cites] Drug Discov Today. 2003 Dec 15;8(24):1128-37 [14678739.001]
  • [Cites] Angew Chem Int Ed Engl. 2004 Jun 14;43(24):3106-16 [15199557.001]
  • [Cites] Crit Rev Ther Drug Carrier Syst. 1992;9(2):135-87 [1386002.001]
  • (PMID = 19920915.001).
  • [ISSN] 1177-8881
  • [Journal-full-title] Drug design, development and therapy
  • [ISO-abbreviation] Drug Des Devel Ther
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] New Zealand
  • [Other-IDs] NLM/ PMC2761188
  • [Keywords] NOTNLM ; carrier molecules / drug delivery / facilitated transport / glioblastoma multiforme / temozolomide
  •  go-up   go-down


7. Hayatsu N, Kaneko MK, Mishima K, Nishikawa R, Matsutani M, Price JE, Kato Y: Podocalyxin expression in malignant astrocytic tumors. Biochem Biophys Res Commun; 2008 Sep 19;374(2):394-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Podocalyxin expression in malignant astrocytic tumors.
  • Recently, we revealed that highly sulfated KS or another mucin-like transmembrane sialoglycoprotein podoplanin/aggrus is upregulated in malignant astrocytic tumors.
  • The aim of this study is to examine the relationship between podocalyxin expression and malignant progression of astrocytic tumors.
  • In this study, 51 astrocytic tumors were investigated for podocalyxin expression using immunohistochemistry, Western blot analysis, and quantitative real-time PCR.
  • Immunohistochemistry detected podocalyxin on the surface of tumor cells in six of 14 anaplastic astrocytomas (42.9%) and in 17 of 31 glioblastomas (54.8%), especially around proliferating endothelial cells.
  • In diffuse astrocytoma, podocalyxin expression was observed only in vascular endothelial cells.
  • Podocalyxin might be associated with the malignant progression of astrocytic tumors, and be a useful prognostic marker for astrocytic tumors.
  • [MeSH-major] Astrocytoma / pathology. Biomarkers, Tumor / analysis. Central Nervous System Neoplasms / pathology. Sialoglycoproteins / analysis
  • [MeSH-minor] Blotting, Western. Humans. Immunohistochemistry. Polymerase Chain Reaction. Prognosis. RNA, Messenger / analysis. RNA, Messenger / biosynthesis. RNA, Messenger / genetics. Tumor Cells, Cultured

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18639524.001).
  • [ISSN] 1090-2104
  • [Journal-full-title] Biochemical and biophysical research communications
  • [ISO-abbreviation] Biochem. Biophys. Res. Commun.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / RNA, Messenger; 0 / Sialoglycoproteins; 0 / podocalyxin
  •  go-up   go-down


8. Lapointe M, Lanthier J, Moumdjian R, Régina A, Desrosiers RR: Expression and activity of l-isoaspartyl methyltransferase decrease in stage progression of human astrocytic tumors. Brain Res Mol Brain Res; 2005 Apr 27;135(1-2):93-103
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression and activity of l-isoaspartyl methyltransferase decrease in stage progression of human astrocytic tumors.
  • Here we investigated PIMT regulation in astrocytic tumors, which are the most common human brain tumors.
  • PIMT expression and enzyme activity were significantly decreased in all grades of human astrocytic tumors.
  • More precisely, PIMT levels were significantly lower by 76% in pilocytic astrocytomas (grade I), 46% in astrocytomas (grade II), 69% in anaplastic astrocytomas (grade III), and a marked 80% in glioblastomas (grade IV) as compared to normal brains.
  • RT-PCR analysis showed that levels of type I PIMT mRNA were up-regulated while those of type II PIMT mRNA were down-regulated in glioblastomas.
  • Furthermore, the reduced PIMT levels correlated closely with a decrease in the number of neuron cells in astrocytic tumors as assessed by measuring the neuron-specific enolase level.
  • Many proteins with abnormal aspartyl residues accumulated in brain tumors and some were specific to individual grades of astrocytic tumors.
  • Similar results were obtained, either by measuring the reduction in PIMT activity and expression or by measuring the formation of abnormal proteins, in an orthotopic rat brain tumor model implanted with invasive CNS-1 glioma cells.
  • The novelty of these findings was to provide the first evidence for a marked reduction of PIMT expression and activity during stage progression of astrocytic tumors in humans.
  • [MeSH-minor] Animals. Blotting, Northern. Glial Fibrillary Acidic Protein / metabolism. Humans. Immunohistochemistry / methods. Male. Methylation. Neoplasm Transplantation / methods. Phosphopyruvate Hydratase / metabolism. RNA, Messenger / metabolism. Rats. Rats, Inbred Lew. Reverse Transcriptase Polymerase Chain Reaction / methods

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15857672.001).
  • [ISSN] 0169-328X
  • [Journal-full-title] Brain research. Molecular brain research
  • [ISO-abbreviation] Brain Res. Mol. Brain Res.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Glial Fibrillary Acidic Protein; 0 / RNA, Messenger; EC 2.1.1.77 / Protein D-Aspartate-L-Isoaspartate Methyltransferase; EC 4.2.1.11 / Phosphopyruvate Hydratase
  •  go-up   go-down


9. Phi JH, Chung CK: Brain tumors in the mesial temporal lobe: long-term oncological outcome. Neurosurg Focus; 2009 Aug;27(2):E5
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • METHODS: Thirty-six patients with an MTL tumor were studied.
  • The tumors were confined to the MTL (Schramm Type A) in 25 patients (69%).
  • Extension of the tumor into the fusiform gyrus (Schramm Type C) and temporal stem (Schramm Type D) was observed in 4 and 7 patients (11 and 19%), respectively.
  • There was a significant difference in the tumor size according to Schramm types (p = 0.001).
  • Complete tumor resection was achieved in 26 patients (72%).
  • All tumors were low-grade lesions except for 1 anaplastic astrocytoma.
  • The degree of tumor resection was significantly related to the tumor control failure (p < 0.001) and malignant transformation of a low-grade tumor (p < 0.001).
  • Univariate analyses using a Cox proportional hazards model showed that the following factors were significantly associated with a failure to control the tumor:.
  • 1) extent of the tumor (Schramm Type D; p = 0.003, relative risk [RR] 12.04);.
  • 2) size of the tumor (p = 0.033, RR 1.052/mm);.
  • Complete tumor resection is strongly recommended for long-term tumor control.
  • Older age, short duration of epilepsy, and tumor size are all associated with poor outcome.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19645561.001).
  • [ISSN] 1092-0684
  • [Journal-full-title] Neurosurgical focus
  • [ISO-abbreviation] Neurosurg Focus
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


10. Khan MK, Hunter GK, Vogelbaum M, Suh JH, Chao ST: Evidence-based adjuvant therapy for gliomas: current concepts and newer developments. Indian J Cancer; 2009 Apr-Jun;46(2):96-107
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Of the 18,820 new cases of primary central nervous system (CNS) tumors diagnosed annually in the United States, gliomas account for over 60% with 30-40% of them being glioblastoma multiforme (GBM), 10% being anaplastic astrocytoma (AA), and 10% being low grade gliomas (LGGs).
  • This is in contrast to one study from West Bengal, India, in which only 7.9% of the brain tumors were GBMs, while 46.8% were astrocytomas.
  • Of all adult primary CNS tumors, GBM is the most common and the most malignant with about 7,000 to 8,000 new cases annually in the United States.
  • Common to these approaches is the use of adjuvant radiation therapy, even as surgery alone, with or without chemotherapy, may be the mainstay for some lower grade and low-risk gliomas.
  • Specifically, the database is searched using the following keywords, with various combinations: glioma, low-grade, anaplastic, astrocytoma, oligodendroglioma, oligoastrocytoma, glioblastoma multiforme, chemotherapy, radiation, new concepts, phase III, MGMT, CDX-110 (Celldex), temozolomide, 1p/19q deletion, and bevacizumab.
  • [MeSH-minor] Antineoplastic Agents / therapeutic use. Astrocytoma / drug therapy. Astrocytoma / radiotherapy. Astrocytoma / therapy. Glioblastoma / drug therapy. Glioblastoma / radiotherapy. Glioblastoma / therapy. Humans

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19346643.001).
  • [ISSN] 0019-509X
  • [Journal-full-title] Indian journal of cancer
  • [ISO-abbreviation] Indian J Cancer
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] India
  • [Chemical-registry-number] 0 / Antineoplastic Agents
  • [Number-of-references] 64
  •  go-up   go-down


11. Ashley DM, Riffkin CD, Muscat AM, Knight MJ, Kaye AH, Novak U, Hawkins CJ: Caspase 8 is absent or low in many ex vivo gliomas. Cancer; 2005 Oct 1;104(7):1487-96
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • BACKGROUND: Better treatments are required urgently for patients with malignant glioma, which currently is incurable.
  • Death ligands, such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), may offer promise for the treatment high-grade glioma if such ligands induce apoptotic signaling in vivo in glioma cells.
  • It also may act as a tumor suppressor protein.
  • METHODS: Eleven glioblastomas, 5 anaplastic astrocytomas, and 3 low-grade astrocytomas were studied.
  • [MeSH-major] Astrocytoma / pathology. Biomarkers, Tumor / metabolism. Brain Neoplasms / pathology. Caspases / metabolism. Glioblastoma / pathology
  • [MeSH-minor] Base Sequence. Blotting, Northern. Caspase 10. Caspase 8. DNA Methylation. DNA, Neoplasm / analysis. Female. Humans. Male. Molecular Sequence Data. Probability. Reverse Transcriptase Polymerase Chain Reaction / methods. Risk Assessment. Sampling Studies. Sensitivity and Specificity. Statistics, Nonparametric. Tissue Culture Techniques

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16080161.001).
  • [ISSN] 0008-543X
  • [Journal-full-title] Cancer
  • [ISO-abbreviation] Cancer
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / CASP10 protein, human; 0 / DNA, Neoplasm; EC 3.4.22.- / CASP8 protein, human; EC 3.4.22.- / Caspase 10; EC 3.4.22.- / Caspase 8; EC 3.4.22.- / Caspases
  •  go-up   go-down


12. Kita D, Yonekawa Y, Weller M, Ohgaki H: PIK3CA alterations in primary (de novo) and secondary glioblastomas. Acta Neuropathol; 2007 Mar;113(3):295-302
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] PIK3CA alterations in primary (de novo) and secondary glioblastomas.
  • We assessed alterations in the EGFR/PTEN/PI3K pathway in 107 primary (de novo) glioblastomas and 32 secondary glioblastomas that progressed from low-grade or anaplastic astrocytomas.
  • Furthermore, this signaling pathway was altered by either PTEN mutations or PIK3CA amplification in 10 of 12 (83%) malignant glioma cell lines analyzed.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17235514.001).
  • [ISSN] 0001-6322
  • [Journal-full-title] Acta neuropathologica
  • [ISO-abbreviation] Acta Neuropathol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Germany
  • [Chemical-registry-number] EC 2.7.1.- / Phosphatidylinositol 3-Kinases; EC 2.7.1.137 / PIK3CA protein, human; EC 2.7.10.1 / EGFR protein, human; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 3.1.3.48 / PTEN protein, human; EC 3.1.3.67 / PTEN Phosphohydrolase
  •  go-up   go-down


13. Rodriguez FJ, Perry A, Gutmann DH, O'Neill BP, Leonard J, Bryant S, Giannini C: Gliomas in neurofibromatosis type 1: a clinicopathologic study of 100 patients. J Neuropathol Exp Neurol; 2008 Mar;67(3):240-9
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Gliomas in neurofibromatosis type 1: a clinicopathologic study of 100 patients.
  • There are few pathologic studies of gliomas in patients with neurofibromatosis type 1.
  • We analyzed clinical and pathologic features of gliomas from 100 neurofibromatosis type 1 patients (57 men; 43 women).
  • The median age at tumor diagnosis was 13 years (range, 4 months to 68 years).
  • Most tumors were typical pilocytic astrocytoma (PA) (49%) or diffusely infiltrating astrocytoma (DA) (27%) that included World Health Organization Grades II (5%), III (15%), and IV (7%); others were designated as low-grade astrocytoma, subtype indeterminate (LGSI; 17%).
  • Two pilomyxoid astrocytomas, 1 desmoplastic infantile ganglioglioma and 1 conventional ganglioglioma, were also identified.
  • The tumors in 24 cases arose in the optic pathways and included PA (n = 14), LGSI (n = 4), DA (n = 4), pilomyxoid astrocytoma (n = 1), and ganglioglioma (n = 1).
  • The prognoses of the PA and LGSI gliomas overall were generally favorable; there were no survival differences between PA and LGSI groups based on site, tumor size, mitotic activity, or MIB-1 labeling index.
  • This study emphasizes the wide histologic spectrum of gliomas that occur in patients with neurofibromatosis type 1.

  • Genetic Alliance. consumer health - Neurofibromatosis.
  • Genetic Alliance. consumer health - Neurofibromatosis type 1.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Neurosurgery. 1979 Jun;4(6):524-8 [113690.001]
  • [Cites] Arch Neurol. 1966 May;14(5):467-75 [4957904.001]
  • [Cites] J Neurosurg. 1987 Jan;66(1):58-71 [3097276.001]
  • [Cites] Neuroradiology. 1991;33(4):357-9 [1922756.001]
  • [Cites] JAMA. 1997 Jul 2;278(1):51-7 [9207339.001]
  • [Cites] J Neuropathol Exp Neurol. 1999 Oct;58(10):1061-8 [10515229.001]
  • [Cites] Pediatr Blood Cancer. 2006 Mar;46(3):377-80 [15800886.001]
  • [Cites] Neurology. 2006 Oct 24;67(8):1509-12 [17060590.001]
  • [Cites] J AAPOS. 2006 Dec;10(6):534-9 [17189147.001]
  • [Cites] Ann Neurol. 2007 Mar;61(3):189-98 [17387725.001]
  • [Cites] Hum Mol Genet. 2007 May 1;16(9):1098-112 [17400655.001]
  • [Cites] Cancer Res. 2007 Sep 15;67(18):8588-95 [17875698.001]
  • [Cites] Acta Neuropathol. 2000 May;99(5):563-70 [10805102.001]
  • [Cites] Childs Nerv Syst. 2000 Jul;16(7):417-20 [10958550.001]
  • [Cites] Arch Ophthalmol. 2001 Apr;119(4):516-29 [11296017.001]
  • [Cites] Childs Nerv Syst. 2002 Feb;18(1-2):43-7 [11935243.001]
  • [Cites] Neurology. 2002 Sep 10;59(5):759-61 [12221173.001]
  • [Cites] Brain. 2003 Jan;126(Pt 1):152-60 [12477702.001]
  • [Cites] Am J Med Genet A. 2003 Oct 1;122A(2):95-9 [12955759.001]
  • [Cites] Ophthalmology. 2004 Mar;111(3):568-77 [15019338.001]
  • [Cites] J Clin Neurosci. 2004 Sep;11(7):745-7 [15337138.001]
  • [Cites] Pathol Annu. 1985;20 Pt 1:331-58 [3921930.001]
  • (PMID = 18344915.001).
  • [ISSN] 0022-3069
  • [Journal-full-title] Journal of neuropathology and experimental neurology
  • [ISO-abbreviation] J. Neuropathol. Exp. Neurol.
  • [Language] ENG
  • [Grant] United States / NINDS NIH HHS / NS / T32 NS007494; United States / NINDS NIH HHS / NS / T32 NS07494-04
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Biomarkers, Tumor
  • [Other-IDs] NLM/ NIHMS396162; NLM/ PMC3417064
  •  go-up   go-down


14. Libý P, Kostrouchová M, Pohludka M, Yilma P, Hrabal P, Sikora J, Brozová E, Kostrouchová M, Rall JE, Kostrouch Z: Elevated and deregulated expression of HDAC3 in human astrocytic glial tumours. Folia Biol (Praha); 2006;52(1-2):21-33
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Elevated and deregulated expression of HDAC3 in human astrocytic glial tumours.
  • We examined expression of HDAC3 in human non-malignant gliosis and glial astrocytic tumours.
  • Samples from four non-malignant gliosis and 17 astrocytic gliomas (six of grade II, one of grade III and ten of grade IV) removed for therapeutic purposes were assayed for HDAC3 expression at mRNA and protein levels.
  • Seven out of eleven examined high-grade tumours showed an elevated number of copies of HDAC3 mRNA.
  • Immunohistochemistry and immunofluorescence made on a collection of 35 astrocytic tumours detected nuclear as well as cytoplasmic HDAC3 expression in all of those tumours.
  • While the distribution of HDAC3 was both nuclear as well as cytoplasmic and moderate in intensity in non-malignant tissues and low-grade gliomas, high-grade tumours expressed HDAC3 in a focally deregulated pattern that included strongly pronounced cytoplasmic localization.
  • We conclude that HDAC3 expression is elevated in human astrocytic tumours and its expression pattern is deregulated at the cellular level in high-grade gliomas.
  • [MeSH-major] Astrocytoma / enzymology. Brain Neoplasms / enzymology. Histone Deacetylases / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • antibodies-online. View related products from antibodies-online.com (subscription/membership/fee required).
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17007107.001).
  • [ISSN] 0015-5500
  • [Journal-full-title] Folia biologica
  • [ISO-abbreviation] Folia Biol. (Praha)
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Czech Republic
  • [Chemical-registry-number] 0 / Protein Isoforms; 0 / RNA, Messenger; EC 3.5.1.98 / Histone Deacetylases; EC 3.5.1.98 / histone deacetylase 3
  •  go-up   go-down


15. Marton E, Feletti A, Orvieto E, Longatti P: Malignant progression in pleomorphic xanthoastrocytoma: personal experience and review of the literature. J Neurol Sci; 2007 Jan 31;252(2):144-53
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Malignant progression in pleomorphic xanthoastrocytoma: personal experience and review of the literature.
  • Pleomorphic xanthoastrocytoma (PXA) is a rare primary low-grade astrocytic tumor, recently classified as a neuroglial tumor.
  • It generally occurs in children and young adults and shows benign behaviour (WHO II), although an anaplastic variant and malignant potential have been described.
  • Pleomorphic xanthoastrocytomas with malignant transformation have been reported in three out of eight patients operated on for this type of tumor in our department in the last 15 years.
  • Histological examination revealed simple PXA in two patients and a PXA with anaplastic foci in the other.
  • Mean recurrence time was 5.7 years, with the original xanthoastrocytoma evolving to glioblastoma in two cases and anaplastic astrocytoma in the third.
  • Two died from tumor progression and one from brain edema after intracerebral haemorrhage.
  • A review of the available PXA literature dating back to 1979 revealed 16 cases of primary anaplastic astrocytoma and 21 cases of PXA with malignant transformation.
  • Our experience adds three more cases of malignant transformations, outlining once again the potential malignancy of pleomorphic xanthoastrocytomas and the fact that prognosis in these cases is the same as for primary anaplastic astrocytoma and glioblastoma.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Glioblastoma / pathology
  • [MeSH-minor] Adult. Cell Transformation, Neoplastic. Child. Disease Progression. Fatal Outcome. Female. Humans. Magnetic Resonance Imaging. Middle Aged. Neoplasm Recurrence, Local / pathology. Tomography, X-Ray Computed


16. Murakami R, Sugahara T, Nakamura H, Hirai T, Kitajima M, Hayashida Y, Baba Y, Oya N, Kuratsu J, Yamashita Y: Malignant supratentorial astrocytoma treated with postoperative radiation therapy: prognostic value of pretreatment quantitative diffusion-weighted MR imaging. Radiology; 2007 May;243(2):493-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Malignant supratentorial astrocytoma treated with postoperative radiation therapy: prognostic value of pretreatment quantitative diffusion-weighted MR imaging.
  • PURPOSE: To retrospectively evaluate whether the minimum apparent diffusion coefficient (ADC) of the tumor seen on pretreatment magnetic resonance (MR) images is of prognostic value in patients with malignant supratentorial astrocytoma.
  • Between June 1996 and November 2003, 79 patients (44 male, 35 female; age range, 16-76 years) with malignant supratentorial astrocytoma underwent pretreatment MR imaging.
  • Patient age, symptom duration, neurologic function, mental status, Karnofsky performance scale (KPS) score, extent of surgery, histopathologic diagnosis, tumor component enhancement, and minimum ADC were assessed at factor analysis of survival.
  • RESULTS: Twenty-nine patients had anaplastic astrocytoma, and 50 had glioblastoma multiforme.
  • The minimum ADC was significantly lower in patients with glioblastoma multiforme than in those with anaplastic astrocytoma (P < .001).
  • CONCLUSION: The minimum ADC at pretreatment MR imaging is a useful clinical prognostic biomarker for survival in patients with malignant supratentorial astrocytoma.
  • [MeSH-major] Astrocytoma / diagnosis. Diffusion Magnetic Resonance Imaging / methods. Radiotherapy, Adjuvant / methods. Supratentorial Neoplasms / diagnosis. Supratentorial Neoplasms / therapy

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17356177.001).
  • [ISSN] 0033-8419
  • [Journal-full-title] Radiology
  • [ISO-abbreviation] Radiology
  • [Language] eng
  • [Publication-type] Clinical Trial; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


17. Chang EF, Potts MB, Keles GE, Lamborn KR, Chang SM, Barbaro NM, Berger MS: Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J Neurosurg; 2008 Feb;108(2):227-35
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Seizure characteristics and control following resection in 332 patients with low-grade gliomas.
  • OBJECT: Seizures play an important role in the clinical presentation and postoperative quality of life of patients who undergo surgical resection of low-grade gliomas (LGGs).
  • Cortical location and oligodendroglioma and oligoastrocytoma subtypes were significantly more likely to be associated with seizures compared with deeper midline locations and astrocytoma, respectively (p=0.017 and 0.001, respectively; multivariate analysis).
  • For the cohort of patients that presented with seizures, 12-month outcome after surgery (Engel class) was as follows: seizure free (I), 67%; rare seizures (II), 17%; meaningful seizure improvement (III), 8%; and no improvement or worsening (IV), 9%.
  • Seizure recurrence after initial postoperative seizure control was associated with tumor progression (p=0.001).

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Seizures.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentIn] Epilepsy Curr. 2009 Jul-Aug;9(4):98-100 [19693324.001]
  • (PMID = 18240916.001).
  • [ISSN] 0022-3085
  • [Journal-full-title] Journal of neurosurgery
  • [ISO-abbreviation] J. Neurosurg.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Anticonvulsants
  •  go-up   go-down


18. Abou-Ghazal M, Yang DS, Qiao W, Reina-Ortiz C, Wei J, Kong LY, Fuller GN, Hiraoka N, Priebe W, Sawaya R, Heimberger AB: The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas. Clin Cancer Res; 2008 Dec 15;14(24):8228-35
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas.
  • We sought to determine the incidence of phosphorylated STAT3 (p-STAT3) expression in malignant gliomas of different pathologic types, whether p-STAT3 expression is a negative prognostic factor, and whether p-STAT3 expression influences the inflammatory response within gliomas.
  • RESULTS: We did not detect p-STAT3 expression in normal brain tissues or low-grade astrocytomas.
  • We observed significant differences in the incidence of p-STAT3 expression between the different grades of astrocytomas and different pathologic glioma types. p-STAT3 expression was associated with the population of tumor-infiltrating immune cells but not with that of T regulatory cells.
  • On univariate analysis, we found that p-STAT3 expression within anaplastic astrocytomas was a negative prognostic factor.
  • CONCLUSIONS: p-STAT3 expression is common within gliomas of both the astrocytic and oligodendroglial lineages and portends poor survival in patients with anaplastic astrocytomas. p-STAT3 expression differs significantly between gliomas of different pathologic types and grades and correlated with the degree of immune infiltration.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer Res. 2002 Jun 15;62(12):3351-5 [12067972.001]
  • [Cites] Clin Cancer Res. 2006 Sep 15;12(18):5423-34 [17000676.001]
  • [Cites] J Immunol. 2002 Sep 1;169(5):2253-63 [12193690.001]
  • [Cites] Cancer Res. 2003 Mar 15;63(6):1270-9 [12649187.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4138-43 [12640143.001]
  • [Cites] Clin Cancer Res. 2003 Sep 1;9(10 Pt 1):3692-9 [14506160.001]
  • [Cites] Cancer Res. 2003 Nov 1;63(21):7443-50 [14612544.001]
  • [Cites] Nat Rev Cancer. 2004 Feb;4(2):97-105 [14964307.001]
  • [Cites] Anticancer Res. 2004 Jan-Feb;24(1):37-42 [15015573.001]
  • [Cites] J Clin Oncol. 2004 May 1;22(9):1682-8 [15117990.001]
  • [Cites] Lab Invest. 2004 Aug;84(8):941-51 [15184909.001]
  • [Cites] Nat Med. 2004 Sep;10(9):942-9 [15322536.001]
  • [Cites] J Clin Invest. 2004 Sep;114(5):720-8 [15343391.001]
  • [Cites] Biochem Biophys Res Commun. 2004 Sep 3;321(4):828-34 [15358102.001]
  • [Cites] Cancer Chemother Rep. 1966 Mar;50(3):163-70 [5910392.001]
  • [Cites] Ann Neurol. 1978 Sep;4(3):219-24 [718133.001]
  • [Cites] J Neurosurg. 1984 Jun;60(6):1138-47 [6374063.001]
  • [Cites] Endocrinology. 1995 Mar;136(3):897-902 [7867598.001]
  • [Cites] Stroke. 1995 Aug;26(8):1393-8 [7631343.001]
  • [Cites] EMBO J. 1998 Feb 16;17(4):1006-18 [9463379.001]
  • [Cites] Immunity. 1999 Jan;10(1):39-49 [10023769.001]
  • [Cites] Clin Cancer Res. 2005 Jan 1;11(1):267-72 [15671555.001]
  • [Cites] Oncogene. 2005 Feb 3;24(6):1053-65 [15558012.001]
  • [Cites] Oncogene. 2005 Feb 3;24(6):970-9 [15592503.001]
  • [Cites] Clin Cancer Res. 2005 Dec 1;11(23):8288-94 [16322287.001]
  • [Cites] Nat Med. 2005 Dec;11(12):1314-21 [16288283.001]
  • [Cites] Int J Biol Markers. 2006 Jul-Sep;21(3):175-83 [17013800.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 Dec;65(12):1181-8 [17146292.001]
  • [Cites] Nat Rev Immunol. 2007 Jan;7(1):41-51 [17186030.001]
  • [Cites] J Clin Pathol. 2007 Feb;60(2):173-9 [17264243.001]
  • [Cites] Clin Cancer Res. 2007 Feb 1;13(3):902-11 [17289884.001]
  • [Cites] Lung Cancer. 2007 Mar;55(3):349-55 [17161498.001]
  • [Cites] Clin Cancer Res. 2007 Mar 1;13(5):1362-6 [17332277.001]
  • [Cites] Clin Cancer Res. 2007 Apr 1;13(7):2075-81 [17404089.001]
  • [Cites] Oncogene. 2007 Apr 12;26(17):2435-44 [17043651.001]
  • [Cites] J Immunother. 2007 Feb-Mar;30(2):131-9 [17471161.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 May 1;104(18):7391-6 [17463090.001]
  • [Cites] J Clin Pathol. 2007 Jun;60(6):642-8 [16901975.001]
  • [Cites] Clin Cancer Res. 2007 Jun 15;13(12):3559-67 [17575219.001]
  • [Cites] J Clin Oncol. 2007 Jun 20;25(18):2586-93 [17577038.001]
  • [Cites] Cancer Res. 2007 Oct 15;67(20):9630-6 [17942891.001]
  • [Cites] Clin Cancer Res. 2008 Aug 15;14(16):5166-72 [18698034.001]
  • [Cites] Clin Cancer Res. 2008 Sep 15;14(18):5759-68 [18794085.001]
  • [Cites] J Neurotrauma. 2001 Mar;18(3):351-9 [11284554.001]
  • [Cites] Clin Cancer Res. 2005 Feb 15;11(4):1386-93 [15746037.001]
  • [Cites] Clin Cancer Res. 2005 Feb 15;11(4):1462-6 [15746047.001]
  • [Cites] World J Gastroenterol. 2005 Jun 14;11(22):3385-91 [15948243.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9589-94 [15976028.001]
  • [Cites] J Clin Pathol. 2005 Aug;58(8):833-8 [16049285.001]
  • [Cites] Gynecol Oncol. 2005 Sep;98(3):446-52 [16005944.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18538-43 [16344461.001]
  • [Cites] Ai Zheng. 2006 Mar;25(3):269-74 [16536977.001]
  • [Cites] Cancer Res. 2006 Mar 15;66(6):3188-96 [16540670.001]
  • [Cites] Clin Cancer Res. 2006 Jun 1;12(11 Pt 1):3355-60 [16740757.001]
  • [Cites] Neuro Oncol. 2006 Jul;8(3):261-79 [16775224.001]
  • [Cites] Blood. 2006 Sep 1;108(5):1571-9 [16645171.001]
  • [Cites] J Urol. 2002 Aug;168(2):762-5 [12131365.001]
  • (PMID = 19088040.001).
  • [ISSN] 1078-0432
  • [Journal-full-title] Clinical cancer research : an official journal of the American Association for Cancer Research
  • [ISO-abbreviation] Clin. Cancer Res.
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / CA120813-01A1; United States / NCI NIH HHS / CA / R01 CA120813; United States / NCI NIH HHS / CA / R01 CA120813-01A1
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / STAT3 Transcription Factor; 0 / STAT3 protein, human
  • [Other-IDs] NLM/ NIHMS78715; NLM/ PMC2605668
  •  go-up   go-down


19. Dörner L, Fritsch MJ, Stark AM, Mehdorn HM: Posterior fossa tumors in children: how long does it take to establish the diagnosis? Childs Nerv Syst; 2007 Aug;23(8):887-90
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • MATERIALS AND METHODS: We retrospectively analyzed 50 consecutive children (36 men, 14 women) with posterior fossa tumor treated at our department between January 1999 and December 2003.
  • The diagnoses included astrocytoma (n = 17), medulloblastoma (n = 15), ependymoma (n = 6), and other tumors (n = 12).
  • The mean time for Grade I and II tumors was 238 days (n = 19) and for tumors Grade III and IV 117 days (n = 31).
  • [MeSH-minor] Adolescent. Astrocytoma / diagnosis. Astrocytoma / diagnostic imaging. Astrocytoma / pathology. Behavior. Child. Child, Preschool. Diagnosis, Differential. Ependymoma / diagnosis. Ependymoma / diagnostic imaging. Ependymoma / pathology. Female. Follow-Up Studies. Humans. Infant. Magnetic Resonance Imaging. Male. Radiography. Retrospective Studies. Time Factors. Torticollis / diagnosis. Torticollis / etiology

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Ir Med J. 2001 Feb;94(2):52-3 [11321174.001]
  • [Cites] J Pediatr Orthop. 1996 Jul-Aug;16(4):500-4 [8784706.001]
  • [Cites] Semin Surg Oncol. 1999 Mar;16(2):73-90 [9988865.001]
  • [Cites] Praxis (Bern 1994). 1996 Aug 20;85(34):1001-4 [8848661.001]
  • [Cites] Arch Neurol. 1999 Apr;56(4):421-5 [10199329.001]
  • [Cites] Pediatr Neurosurg. 1998 Mar;28(3):130-4 [9705590.001]
  • [Cites] Childs Nerv Syst. 1995 Feb;11(2):86-8 [7758017.001]
  • [Cites] CA Cancer J Clin. 1993 Sep-Oct;43(5):272-88 [8364769.001]
  • [Cites] J Pediatr Orthop. 1996 Jul-Aug;16(4):505-7 [8784707.001]
  • (PMID = 17429658.001).
  • [ISSN] 0256-7040
  • [Journal-full-title] Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
  • [ISO-abbreviation] Childs Nerv Syst
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Germany
  •  go-up   go-down


20. Greco Crasto S, Soffietti R, Rudà R, Cassoni P, Ducati A, Davini O, De Lucchi R, Rizzo L: Diffusion-Weighted Magnetic Resonance Imaging and ADC Maps in the Diagnosis of Intracranial Cystic or Necrotic Lesions. A Retrospective Study on 49 Patients. Neuroradiol J; 2007 Dec 31;20(6):666-75
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Eleven tumours (11/44) appeared hyperintense on DWI: eight metastases from lung cancer (mean ADC value 0.86 mm(2)/s, range 0.75-1.2 mm(2)/s), two GBMs (mean 0.7 mm(2)/s, range 0.67-0.76 mm(2)/s) and one anaplastic astrocytoma (ADC value 1.24 mm(2)/s).

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 24300002.001).
  • [ISSN] 1971-4009
  • [Journal-full-title] The neuroradiology journal
  • [ISO-abbreviation] Neuroradiol J
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


21. Gu J, Zhang C, Chen R, Pan J, Wang Y, Ming M, Gui W, Wang D: Clinical implications and prognostic value of EMMPRIN/CD147 and MMP2 expression in pediatric gliomas. Eur J Pediatr; 2009 Jun;168(6):705-10
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Extracellular matrix metalloproteinase inducer (EMMPRIN), a member of the immunoglobulin superfamily, is present on the surface of tumor cells where it stimulates adjacent fibroblasts to produce matrix metalloproteinases (MMPs).
  • The intensively positive expression rates of EMMPRIN (22/27) and MMP2 (21/27) in anaplastic astrocytoma and glioblastoma tissues were significantly higher than those in normal brain and low-grade astrocytoma tissues (2/28 and (1/2)8, respectively).
  • The positive expression of EMMPRIN and MMP2 was associated with higher grade gliomas.
  • [MeSH-major] Antigens, CD147 / metabolism. Astrocytoma / metabolism. Brain Neoplasms / metabolism. Brain Neoplasms / mortality. Matrix Metalloproteinase 2 / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Am J Pathol. 2002 Apr;160(4):1215-21 [11943706.001]
  • [Cites] Brain Pathol. 1993 Jul;3(3):255-68 [8293185.001]
  • [Cites] Int J Cancer. 2003 Feb 20;103(5):647-51 [12494473.001]
  • [Cites] Am J Pathol. 1999 Feb;154(2):417-28 [10027400.001]
  • [Cites] Cancer Res. 2004 Feb 15;64(4):1229-32 [14983875.001]
  • [Cites] Am J Pathol. 2001 Jun;158(6):1921-8 [11395366.001]
  • [Cites] Brain Pathol. 2007 Jul;17(3):276-81 [17465990.001]
  • [Cites] Cancer Res. 2001 Mar 1;61(5):2276-81 [11280798.001]
  • [Cites] Pathol Int. 2006 Jul;56(7):359-67 [16792544.001]
  • [Cites] Rev Recent Clin Trials. 2006 May;1(2):119-31 [18473963.001]
  • [Cites] Int J Cancer. 2002 May 10;99(2):157-66 [11979428.001]
  • [Cites] Mol Cancer Res. 2005 Oct;3(10):541-51 [16254188.001]
  • [Cites] Cancer Gene Ther. 2003 Nov;10(11):823-32 [14605668.001]
  • [Cites] Cancer. 2004 Nov 1;101(9):1994-2000 [15372476.001]
  • [Cites] Br J Cancer. 1996 Jun;73(11):1401-8 [8645587.001]
  • [Cites] Cancer Res. 2005 Apr 15;65(8):3193-9 [15833850.001]
  • [Cites] Int J Cancer. 2003 Sep 20;106(5):745-51 [12866035.001]
  • [Cites] Cancer Immunol Immunother. 2008 Sep;57(9):1367-79 [18273614.001]
  • [Cites] Am J Pathol. 1996 Jul;149(1):273-82 [8686751.001]
  • [Cites] Cancer Res. 2007 May 1;67(9):4088-97 [17483319.001]
  • [Cites] Am J Pathol. 2005 Jan;166(1):209-19 [15632013.001]
  • [Cites] Oncogene. 2007 Aug 9;26(36):5229-37 [17325663.001]
  • [Cites] Int J Cancer. 2006 Oct 15;119(8):1800-10 [16721788.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10 ):987-96 [15758009.001]
  • (PMID = 18795327.001).
  • [ISSN] 1432-1076
  • [Journal-full-title] European journal of pediatrics
  • [ISO-abbreviation] Eur. J. Pediatr.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / BSG protein, human; 136894-56-9 / Antigens, CD147; EC 3.4.24.24 / Matrix Metalloproteinase 2
  •  go-up   go-down


22. Nakagawa Y, Kageji T, Mizobuchi Y, Kumada H, Nakagawa Y: Clinical results of BNCT for malignant brain tumors in children. Appl Radiat Isot; 2009 Jul;67(7-8 Suppl):S27-30
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Clinical results of BNCT for malignant brain tumors in children.
  • It is very difficult to treat the patients with malignant brain tumor in children, especially under 3 years, because the conventional irradiation cannot be applied due to the damage of normal brain tissue.
  • However, boron neutron capture therapy (BNCT) has tumor selectivity such that it can make damage only in tumor cells.
  • We evaluated the clinical results and courses in patients with malignant glioma under 15 years.
  • There were 3 glioblastomas (GBM), 6 anaplastic astrocytomas(AAS), 7 primitive neuroectodermal tumors (PNET), 6 pontine gliomas and 1 anaplastic ependymoma.
  • All GBM and PNET patients died due to CSF and/or CNS dissemination without local tumor regrowth.
  • All pontine glioma patients died due to regrowth of the tumor.
  • Four of 6 anaplastic astrocytoma and 1 anaplastic ependymoma patients alive without tumor recurrence.
  • BNCT can be applied to malignant brain tumors in children, especially under 3 years instead of conventional radiation.
  • [MeSH-minor] Adolescent. Astrocytoma / pathology. Astrocytoma / radiotherapy. Child. Child, Preschool. Ependymoma / pathology. Ependymoma / radiotherapy. Fatal Outcome. Female. Glioblastoma / pathology. Glioblastoma / radiotherapy. Humans. Infant. Magnetic Resonance Angiography. Magnetic Resonance Imaging. Male. Neoplasm Invasiveness / pathology. Neuroectodermal Tumors, Primitive / pathology. Neuroectodermal Tumors, Primitive / radiotherapy

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19406652.001).
  • [ISSN] 1872-9800
  • [Journal-full-title] Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine
  • [ISO-abbreviation] Appl Radiat Isot
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  •  go-up   go-down


23. Liebrich M, Guo LH, Schluesener HJ, Schwab JM, Dietz K, Will BE, Meyermann R: Expression of interleukin-16 by tumor-associated macrophages/activated microglia in high-grade astrocytic brain tumors. Arch Immunol Ther Exp (Warsz); 2007 Jan-Feb;55(1):41-7
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of interleukin-16 by tumor-associated macrophages/activated microglia in high-grade astrocytic brain tumors.
  • MATERIALS AND METHODS: Expression of IL-16 was analyzed by immunohistochemistry in human astrocytic brain tumors and the rat C6 glioblastoma tumor model.
  • IL-16 was detected in both human astrocytic brain tumors and rat C6 glioma.
  • RESULTS: Compared with human control brains, a significant increase in the percentages of parenchymal IL-16+ macrophages/microglia was observed already in grade II astrocytomas, indicating that IL-16+ immunostaining could be a descriptor of a macrophage/microglia subset in astrocytic brain tumors.
  • A further increase was observed at the transition from grade II to III astrocytomas.
  • This increase in IL-16 immunoreactivity correlated with WHO grades of human astrocytic brain tumors.
  • CONCLUSIONS: Therefore, IL-16 might be a so far unknown factor in the regulation of the local inflammatory milieu of human and experimental astrocytomas.
  • [MeSH-major] Astrocytoma / immunology. Brain Neoplasms / immunology. Glioblastoma / immunology. Interleukin-16 / biosynthesis. Macrophages / immunology. Microglia / immunology
  • [MeSH-minor] Adult. Aged. Animals. Cell Line, Tumor. Female. Humans. Inflammation Mediators / metabolism. Male. Middle Aged. Rats. Rats, Sprague-Dawley

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Immunol. 2000 May 1;164(9):4429-32 [10779741.001]
  • [Cites] Nature. 2005 Jun 9;435(7043):752-3 [15944689.001]
  • [Cites] Lancet. 2001 Feb 17;357(9255):539-45 [11229684.001]
  • [Cites] Int J Dev Neurosci. 2001 Feb;19(1):93-100 [11226758.001]
  • [Cites] Acta Neuropathol. 2001 Mar;101(3):249-55 [11307625.001]
  • [Cites] Microsc Res Tech. 2001 Jul 15;54(2):106-13 [11455617.001]
  • [Cites] J Neurooncol. 2001 Dec;55(3):141-7 [11859968.001]
  • [Cites] Am J Pathol. 2002 Sep;161(3):947-56 [12213723.001]
  • [Cites] Glia. 2002 Nov;40(2):252-9 [12379912.001]
  • [Cites] Nature. 2002 Dec 19-26;420(6917):860-7 [12490959.001]
  • [Cites] J Neurosci. 2003 Jun 1;23(11):4410-9 [12805281.001]
  • [Cites] J Neuroimmunol. 2004 Jan;146(1-2):39-45 [14698845.001]
  • [Cites] Glia. 2004 Jan 15;45(2):208-12 [14730714.001]
  • [Cites] J Leukoc Biol. 2004 Mar;75(3):388-97 [14612429.001]
  • [Cites] J Immunol. 1982 Jun;128(6):2563-8 [7042840.001]
  • [Cites] Semin Oncol. 1994 Apr;21(2):149-61 [8153661.001]
  • [Cites] Nature. 1996 May 2;381(6577):29-30 [8609983.001]
  • [Cites] J Neurosci Res. 1996 Jun 15;44(6):606-11 [8794952.001]
  • [Cites] Glia. 1997 Aug;20(4):365-72 [9262239.001]
  • [Cites] Nature. 1998 Apr 30;392(6679):936-41 [9582076.001]
  • [Cites] Int Rev Immunol. 1998;16(5-6):523-40 [9646175.001]
  • [Cites] Prog Neurobiol. 1999 Jun;58(3):233-47 [10341362.001]
  • [Cites] Cancer Cell. 2005 Mar;7(3):211-7 [15766659.001]
  • [Cites] Acta Neuropathol. 2000 Sep;100(3):313-22 [10965802.001]
  • (PMID = 17221335.001).
  • [ISSN] 0004-069X
  • [Journal-full-title] Archivum immunologiae et therapiae experimentalis
  • [ISO-abbreviation] Arch. Immunol. Ther. Exp. (Warsz.)
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0 / Inflammation Mediators; 0 / Interleukin-16
  • [Other-IDs] NLM/ PMC3234149
  •  go-up   go-down


24. Wang DL, Wang YF, Shi GS, Huang H: [Correlation of hTERT expression to maspin and bFGF expression and their significance in glioma]. Ai Zheng; 2007 Jun;26(6):601-6
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The correlations of hTERT, maspin, and bFGF expression to tumor grade were analyzed by Spearman rank correlation analysis.
  • In the 43 specimens of grade II, 55 specimens of grade III and 30 specimens of grade IV gliomas, the positive rates of hTERT were 32.6%, 54.5%, and 73.3% (P < 0.05); the positive rates of maspin were 58.1%, 49.1%, and 26.7% (P < 0.05); the positive rates of bFGF were 39.5%, 72.7%, and 76.7% (P < 0.05).The expression of hTERT and bFGF were positively correlated to pathologic grade (rho=0.515, P < 0.01; rho=0.611, P < 0.01), while the expression of maspin was negatively correlated to pathologic grade (rho=-0.425, P < 0.05).
  • The expression of hTERT showed no relationship with the age, sex, tumor size, and cell density (P > 0.05), but had obvious relationship with karyokinesis, vessel density, and necrosis (P < 0.05).
  • CONCLUSION: The expression of hTERT, maspin and bFGF correlate to each other, and associate with the malignant degree of glioma.
  • [MeSH-minor] Adolescent. Adult. Aged. Astrocytoma / metabolism. Astrocytoma / pathology. Brain / metabolism. Child. Female. Gene Expression Regulation, Neoplastic. Glioblastoma / metabolism. Glioblastoma / pathology. Humans. Immunohistochemistry. In Situ Hybridization. Male. Middle Aged. Young Adult

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17562265.001).
  • [Journal-full-title] Ai zheng = Aizheng = Chinese journal of cancer
  • [ISO-abbreviation] Ai Zheng
  • [Language] chi
  • [Publication-type] English Abstract; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] China
  • [Chemical-registry-number] 0 / SERPIN-B5; 0 / Serpins; 103107-01-3 / Fibroblast Growth Factor 2; EC 2.7.7.49 / TERT protein, human; EC 2.7.7.49 / Telomerase
  •  go-up   go-down


25. Chang SM, Nelson S, Vandenberg S, Cha S, Prados M, Butowski N, McDermott M, Parsa AT, Aghi M, Clarke J, Berger M: Integration of preoperative anatomic and metabolic physiologic imaging of newly diagnosed glioma. J Neurooncol; 2009 May;92(3):401-15
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Regions of interest corresponding to anatomic and metabolic lesions were identified to assess tumor burden.
  • MR parameters that had been found to be predictive of survival in patients with grade IV glioma were evaluated as a function of tumor grade and histological sub-type.
  • RESULTS: Histological analysis indicated that the population comprised 56 patients with grade II, 31 with grade III, and 56 with grade IV glioma.
  • Based on standard anatomic imaging, the presence of hypointense necrotic regions in post-Gadolinium T1-weighted images and the percentage of the T2 hyperintense lesion that was either enhancing or necrotic were effective in identifying patients with grade IV glioma.
  • The individual parameters of diffusion and perfusion parameters were significantly different for patients with grade II astrocytoma versus oligodendroglioma sub-types.
  • Lactate was higher for grade III and grade IV glioma and lipid was significantly elevated for grade IV glioma.
  • CONCLUSION: Metabolic and physiologic imaging characteristics provide information about tumor heterogeneity that may be important for assisting the surgeon to ensure acquisition of representative histology.

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neurooncol. 2000 Dec;50(3):215-26 [11263501.001]
  • [Cites] J Magn Reson Imaging. 2001 Feb;13(2):167-77 [11169821.001]
  • [Cites] Magn Reson Imaging. 2001 Jan;19(1):89-101 [11295350.001]
  • [Cites] J Cancer Res Clin Oncol. 2001 Apr;127(4):217-25 [11315255.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2001 Jul 15;50(4):915-28 [11429219.001]
  • [Cites] Magn Reson Med. 2001 Aug;46(2):228-39 [11477625.001]
  • [Cites] Neurosurgery. 2001 Oct;49(4):823-9 [11564242.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Jan;61(1):58-63 [11829344.001]
  • [Cites] Radiology. 2002 Apr;223(1):11-29 [11930044.001]
  • [Cites] J Neurosurg. 2002 Oct;97(4):794-802 [12405365.001]
  • [Cites] NMR Biomed. 2003 Feb;16(1):12-8 [12577293.001]
  • [Cites] Cancer J. 2003 Mar-Apr;9(2):134-45 [12784879.001]
  • [Cites] Neurosurgery. 2003 Sep;53(3):565-74; discussion 574-6 [12943573.001]
  • [Cites] AJNR Am J Neuroradiol. 2003 Nov-Dec;24(10):1989-98 [14625221.001]
  • [Cites] AJNR Am J Neuroradiol. 2004 Feb;25(2):214-21 [14970020.001]
  • [Cites] NMR Biomed. 2004 Feb;17(1):10-20 [15011246.001]
  • [Cites] J Magn Reson Imaging. 2004 May;19(5):546-54 [15112303.001]
  • [Cites] Radiology. 1990 Feb;174(2):411-5 [2153310.001]
  • [Cites] J Magn Reson Imaging. 1994 Nov-Dec;4(6):877-83 [7865950.001]
  • [Cites] AJNR Am J Neuroradiol. 1995 Feb;16(2):361-71 [7726086.001]
  • [Cites] Neurology. 1996 Jan;46(1):203-7 [8559376.001]
  • [Cites] J Magn Reson B. 1996 Jun;111(3):209-19 [8661285.001]
  • [Cites] J Clin Oncol. 1997 Apr;15(4):1294-301 [9193320.001]
  • [Cites] AJR Am J Roentgenol. 1998 Dec;171(6):1479-86 [9843274.001]
  • [Cites] J Magn Reson Imaging. 1999 Jan;9(1):53-60 [10030650.001]
  • [Cites] Arch Neurol. 1999 Apr;56(4):434-6 [10199331.001]
  • [Cites] AJNR Am J Neuroradiol. 2005 Feb;26(2):266-73 [15709123.001]
  • [Cites] AJNR Am J Neuroradiol. 2005 Apr;26(4):760-9 [15814918.001]
  • [Cites] AJNR Am J Neuroradiol. 2005 Jun-Jul;26(6):1446-54 [15956514.001]
  • [Cites] Neurology. 2005 Jun 28;64(12):2085-9 [15985578.001]
  • [Cites] Zhonghua Zhong Liu Za Zhi. 2005 May;27(5):309-11 [15996330.001]
  • [Cites] AJNR Am J Neuroradiol. 2006 Mar;27(3):475-87 [16551981.001]
  • [Cites] NMR Biomed. 2006 Jun;19(4):463-75 [16763973.001]
  • [Cites] NMR Biomed. 2007 Feb;20(1):49-57 [16986106.001]
  • [Cites] AJNR Am J Neuroradiol. 2007 Jun-Jul;28(6):1078-84 [17569962.001]
  • [Cites] J Neurosurg. 2007 Sep;107(3):600-9 [17886561.001]
  • [Cites] J Magn Reson Imaging. 2007 Dec;26(6):1405-12 [17968881.001]
  • [Cites] J Magn Reson Imaging. 2008 Apr;27(4):718-25 [18383265.001]
  • [Cites] J Neurooncol. 2009 Jan;91(1):69-81 [18810326.001]
  • [Cites] J Neurooncol. 2009 Feb;91(3):337-51 [19009235.001]
  • [Cites] Magn Reson Med. 2000 Jan;43(1):23-33 [10642728.001]
  • [Cites] Curr Opin Oncol. 2000 May;12(3):199-204 [10841191.001]
  • [Cites] AJR Am J Roentgenol. 2000 Jul;175(1):207-19 [10882275.001]
  • [Cites] J Natl Cancer Inst. 2000 Dec 20;92(24):2029-36 [11121466.001]
  • [Cites] IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 [11293691.001]
  • (PMID = 19357966.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / P01 CA118816; United States / NCI NIH HHS / CA / R01 CA116041; United States / NCI NIH HHS / CA / P50 CA97257; United States / NCI NIH HHS / CA / P50 CA097257; United States / NCI NIH HHS / CA / CA097257-080002; United States / NCI NIH HHS / CA / P01 CA 118816; United States / NCI NIH HHS / CA / R01 CA059880; United States / NCI NIH HHS / CA / P50 CA097257-080002
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Protons
  • [Other-IDs] NLM/ NIHMS177631; NLM/ PMC2834319
  •  go-up   go-down


26. Hernández-Hernández OT, Rodríguez-Dorantes M, González-Arenas A, Camacho-Arroyo I: Progesterone and estradiol effects on SRC-1 and SRC-3 expression in human astrocytoma cell lines. Endocrine; 2010 Feb;37(1):194-200
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Progesterone and estradiol effects on SRC-1 and SRC-3 expression in human astrocytoma cell lines.
  • In this study, we determined progesterone and estrogen receptor isoform expression in two human astrocytoma cell lines with different evolution grade (U373, grade III; and D54, grade IV) by Western Blot.
  • Our data suggest that SRC-1 and SRC-3 expression is differentially regulated by sex steroid hormones in astrocytomas and that P(4) regulates SRC-1 expression depending on the evolution grade of human astrocytoma cells.
  • [MeSH-major] Astrocytoma / metabolism. Estradiol / metabolism. Gene Expression Regulation, Neoplastic. Glioblastoma / metabolism. Nuclear Receptor Coactivator 1 / metabolism. Nuclear Receptor Coactivator 3 / metabolism. Progesterone / metabolism
  • [MeSH-minor] Blotting, Western. Cell Line, Tumor. Humans. Protein Isoforms / metabolism. RNA, Messenger / metabolism. Receptors, Estradiol / metabolism. Receptors, Estrogen / metabolism. Receptors, Progesterone / metabolism. Reverse Transcriptase Polymerase Chain Reaction. Time Factors

  • Hazardous Substances Data Bank. ESTRADIOL .
  • Hazardous Substances Data Bank. PROGESTERONE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer. 1988 Nov 15;62(10):2152-65 [3179928.001]
  • [Cites] Endocrinology. 2009 Jul;150(7):3237-44 [19299450.001]
  • [Cites] Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):151-6 [19109434.001]
  • [Cites] Clin Cancer Res. 2000 Feb;6(2):512-8 [10690532.001]
  • [Cites] Endocrinology. 1998 May;139(5):2493-500 [9564863.001]
  • [Cites] Mol Endocrinol. 2006 Nov;20(11):2656-70 [16762974.001]
  • [Cites] Biochem Biophys Res Commun. 1997 Jul 9;236(1):83-7 [9223431.001]
  • [Cites] Endocr Rev. 1999 Jun;20(3):321-44 [10368774.001]
  • [Cites] Eur J Endocrinol. 2003 Apr;148(4):469-79 [12656669.001]
  • [Cites] Brain Res Bull. 2001 Sep 1;56(1):43-8 [11604247.001]
  • [Cites] J Biol Chem. 2002 Feb 15;277(7):5209-18 [11717311.001]
  • [Cites] Neurosurgery. 1995 Sep;37(3):496-503; discussion 503-4 [7501116.001]
  • [Cites] Neurosurgery. 1997 Dec;41(6):1359-63; discussion 1363-4 [9402587.001]
  • [Cites] Mol Cell. 2004 Sep 24;15(6):937-49 [15383283.001]
  • [Cites] Cancer. 1997 Dec 1;80(11):2133-40 [9392336.001]
  • [Cites] J Neurosurg. 1991 Jun;74(6):861-6 [2033444.001]
  • [Cites] Oncogene. 2002 Oct 17;21(47):7147-55 [12370804.001]
  • [Cites] J Clin Endocrinol Metab. 2004 Jan;89(1):375-83 [14715875.001]
  • [Cites] Brain Res. 2001 Feb 2;890(2):197-202 [11164785.001]
  • [Cites] Science. 1995 Nov 24;270(5240):1354-7 [7481822.001]
  • [Cites] EMBO J. 1998 Jan 2;17(1):232-43 [9427757.001]
  • [Cites] Folia Neuropathol. 2006;44(2):111-5 [16823693.001]
  • [Cites] Science. 1997 Aug 15;277(5328):965-8 [9252329.001]
  • [Cites] Mol Endocrinol. 2008 Apr;22(4):823-37 [18202149.001]
  • [Cites] Gene. 2000 Mar 7;245(1):1-11 [10713439.001]
  • [Cites] FASEB J. 2003 Mar;17(3):518-9 [12551846.001]
  • [Cites] Clin Cancer Res. 1998 Dec;4(12):2925-9 [9865902.001]
  • [Cites] Front Neuroendocrinol. 2001 Apr;22(2):69-106 [11259133.001]
  • [Cites] Surgery. 2004 Aug;136(2):346-54 [15300201.001]
  • [Cites] Mol Pharmacol. 2006 Jul;70(1):154-62 [16638969.001]
  • [Cites] Brain Res Bull. 2006 Apr 14;69(3):276-81 [16564422.001]
  • [Cites] Int J Cancer. 2000 May 20;89(3):217-23 [10861496.001]
  • [Cites] Behav Brain Res. 1999 Nov 1;105(1):37-52 [10553689.001]
  • [Cites] Mol Neurobiol. 2004 Dec;30(3):307-25 [15655254.001]
  • [Cites] J Neurosurg. 1990 Nov;73(5):743-9 [2213164.001]
  • [Cites] Mol Endocrinol. 2003 Sep;17(9):1681-92 [12805412.001]
  • [Cites] J Neurooncol. 2000 Aug;49(1):1-7 [11131982.001]
  • [Cites] J Cancer Res Clin Oncol. 2004 Jul;130(7):405-10 [15141349.001]
  • [Cites] Mol Cell Biol. 2004 Jan;24(1):14-24 [14673139.001]
  • [Cites] Mol Endocrinol. 2006 Feb;20(2):254-67 [16179382.001]
  • [Cites] Endocrinology. 2002 Feb;143(2):436-44 [11796496.001]
  • [Cites] Mol Cell Biol. 2003 Jun;23(11):3763-73 [12748280.001]
  • [Cites] Neuron. 2008 Nov 6;60(3):430-40 [18995817.001]
  • [Cites] Science. 2000 Sep 8;289(5485):1751-4 [10976068.001]
  • [Cites] Mol Cell Biol. 2005 Sep;25(18):8150-65 [16135805.001]
  • [Cites] Genes Dev. 2000 Jan 15;14(2):121-41 [10652267.001]
  • [Cites] Surg Neurol. 1995 Mar;43(3):230-3; discussion 234 [7792684.001]
  • [Cites] J Steroid Biochem Mol Biol. 2009 Jan;113(1-2):80-4 [19095059.001]
  • [Cites] Clin Neuropathol. 1998 Jan-Feb;17(1):27-34 [9496537.001]
  • [Cites] Endocrine. 2007 Oct;32(2):129-35 [18008187.001]
  • [Cites] Cancer Res. 2005 Sep 1;65(17):7976-83 [16140970.001]
  • [Cites] J Steroid Biochem Mol Biol. 2007 May;104(3-5):237-40 [17532621.001]
  • [Cites] Carcinogenesis. 2005 Oct;26(10):1706-15 [15917309.001]
  • (PMID = 20963570.001).
  • [ISSN] 1559-0100
  • [Journal-full-title] Endocrine
  • [ISO-abbreviation] Endocrine
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Protein Isoforms; 0 / RNA, Messenger; 0 / Receptors, Estradiol; 0 / Receptors, Estrogen; 0 / Receptors, Progesterone; 4G7DS2Q64Y / Progesterone; 4TI98Z838E / Estradiol; EC 2.3.1.48 / NCOA1 protein, human; EC 2.3.1.48 / NCOA3 protein, human; EC 2.3.1.48 / Nuclear Receptor Coactivator 1; EC 2.3.1.48 / Nuclear Receptor Coactivator 3
  •  go-up   go-down


27. Tuominen H, Lohi J, Maiche A, Törmänen J, Baumann P: Mediastinal metastasis of glioblastoma multiforme evolving from anaplastic astrocytoma. J Neurooncol; 2005 Nov;75(2):225-6
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Mediastinal metastasis of glioblastoma multiforme evolving from anaplastic astrocytoma.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Glioblastoma / pathology. Mediastinal Neoplasms / pathology. Mediastinal Neoplasms / secondary
  • [MeSH-minor] Adult. Disease Progression. Fatal Outcome. Follow-Up Studies. Gene Deletion. Genes, p16. Glial Fibrillary Acidic Protein / metabolism. Homozygote. Humans. Male. Neoplasm Recurrence, Local / genetics. Neoplasm Recurrence, Local / pathology. Neoplasm Recurrence, Local / radiotherapy. Salvage Therapy. Survival Analysis. Time Factors. Tomography, X-Ray Computed

  • Genetic Alliance. consumer health - Glioblastoma.
  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer. 1985 Oct 1;56(7 Suppl):1778-82 [4027909.001]
  • [Cites] Arch Anat Cytol Pathol. 1995;43(5-6):342-9 [8729851.001]
  • [Cites] J Neurosurg. 1971 May;34(5):697-701 [4326303.001]
  • [Cites] Digestion. 2000;61(3):219-22 [10773729.001]
  • [Cites] Lancet Oncol. 2002 Aug;3(8):498-507 [12147436.001]
  • [Cites] Cancer. 1980 Jan 1;45(1):112-25 [6985826.001]
  • [Cites] J Am Acad Dermatol. 2002 Feb;46(2):297-300 [11807444.001]
  • [Cites] J Neurosurg. 1969 Jul;31(1):50-8 [4307543.001]
  • [Cites] J Neurooncol. 2001 Jun;53(2):107-14 [11716064.001]
  • [Cites] J Neurosurg. 2000 Nov;93(5):887-90 [11059674.001]
  • (PMID = 16132499.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Case Reports; Letter
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Glial Fibrillary Acidic Protein
  •  go-up   go-down


28. Burim RV, Teixeira SA, Colli BO, Peria FM, Tirapelli LF, Marie SK, Malheiros SM, Oba-Shinjo SM, Gabbai AA, Lotufo PA, Carlotti-Júnior CG: ICAM-1 (Lys469Glu) and PECAM-1 (Leu125Val) polymorphisms in diffuse astrocytomas. Clin Exp Med; 2009 Jun;9(2):157-63
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] ICAM-1 (Lys469Glu) and PECAM-1 (Leu125Val) polymorphisms in diffuse astrocytomas.
  • Single-nucleotide polymorphism in codon 469 of ICAM-1 and codon 125 of PECAM-1 were examined in 158 patients with astrocytomas and 162 controls using polymerase chain reaction and restriction enzyme analysis.
  • The distribution of PECAM-1 polymorphic genotypes in astrocytomas did not show any significant difference.
  • However, a specific ICAM-1 genotype (G/G, corresponding to Lys469Glu) exhibited higher frequency in grade II astrocytomas compared to controls, grade III, and grade IV astrocytomas; suggesting that this polymorphism could be involved in the development of grade II astrocytomas.
  • [MeSH-major] Antigens, CD31 / genetics. Astrocytoma / genetics. Intercellular Adhesion Molecule-1 / genetics. Polymorphism, Single Nucleotide

  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Cell Biol. 1990 Apr;110(4):1227-37 [2182647.001]
  • [Cites] J Neurooncol. 2004 Nov;70(2):217-28 [15674479.001]
  • [Cites] Science. 1989 Dec 8;246(4935):1303-6 [2588007.001]
  • [Cites] Am J Pathol. 2007 May;170(5):1445-53 [17456751.001]
  • [Cites] J Neurooncol. 1999 May;43(1):19-25 [10448867.001]
  • [Cites] J Hepatol. 2004 Mar;40(3):375-9 [15123348.001]
  • [Cites] Am J Pathol. 1994 Jan;144(1):104-16 [7904796.001]
  • [Cites] Am J Pathol. 1990 Jun;136(6):1309-16 [1972610.001]
  • [Cites] Cancer Lett. 1999 Nov 15;146(2):169-72 [10656622.001]
  • [Cites] Mol Hum Reprod. 2003 Jan;9(1):47-52 [12529420.001]
  • [Cites] Clin Exp Rheumatol. 2000 Sep-Oct;18(5):553-8 [11072593.001]
  • [Cites] Hum Immunol. 2003 Mar;64(3):345-9 [12590979.001]
  • [Cites] J Neurooncol. 1997 Aug;34(1):37-59 [9210052.001]
  • [Cites] J Rheumatol. 2001 May;28(5):1014-8 [11361181.001]
  • [Cites] Int J Immunogenet. 2006 Feb;33(1):49-53 [16426244.001]
  • [Cites] J Biol Chem. 1994 Jun 24;269(25):17183-91 [8006026.001]
  • [Cites] Blood. 1996 Dec 15;88(12):4429-34 [8977234.001]
  • [Cites] Cardiology. 1999;91(1):50-5 [10393398.001]
  • [Cites] Hum Gene Ther. 1997 May 1;8(7):851-60 [9143911.001]
  • [Cites] Indian J Med Res. 2005 Feb;121(2):92-9 [15756041.001]
  • [Cites] Histopathology. 1996 Jun;28(6):521-8 [8803595.001]
  • [Cites] Genomics. 1994 Jun;21(3):473-7 [7525451.001]
  • [Cites] Gut. 2003 Jan;52(1):75-8 [12477764.001]
  • [Cites] Heart. 2002 Feb;87(2):107-12 [11796541.001]
  • [Cites] J Clin Invest. 1997 Jan 1;99(1):3-8 [9011572.001]
  • [Cites] Ann N Y Acad Sci. 2001 Dec;947:259-69; discussion 269-70 [11795274.001]
  • [Cites] Lab Invest. 1998 May;78(5):583-90 [9605183.001]
  • [Cites] Clin Biochem. 2004 Dec;37(12):1091-7 [15589815.001]
  • [Cites] Wien Med Wochenschr. 2006 Jun;156(11-12):332-7 [16944363.001]
  • [Cites] J Clin Endocrinol Metab. 2003 Oct;88(10):4945-9 [14557478.001]
  • [Cites] J Immunol. 2000 Oct 15;165(8):4658-66 [11035109.001]
  • [Cites] J Immunol Methods. 1996 May 27;191(2):97-112 [8666839.001]
  • [Cites] J Neurosurg. 2000 Jun;92(6):1080-1 [10839286.001]
  • [Cites] J Soc Gynecol Investig. 2005 May;12(4):267-71 [15866119.001]
  • [Cites] Atherosclerosis. 2003 May;168(1):131-8 [12732396.001]
  • [Cites] Eur J Immunogenet. 2000 Apr;27(2):73-6 [10792421.001]
  • [Cites] Biochem Biophys Res Commun. 2004 May 7;317(3):729-35 [15081401.001]
  • [Cites] Medicina (Kaunas). 2004;40(2):112-20 [15007269.001]
  • [Cites] Neurol Med Chir (Tokyo). 1994 Sep;34(9):583-7 [7526247.001]
  • [Cites] J Leukoc Biol. 1999 Apr;65(4):444-52 [10204572.001]
  • [Cites] N Engl J Med. 1996 Feb 1;334(5):286-91 [8532023.001]
  • [Cites] J Neurooncol. 2007 Feb;81(3):295-303 [17001519.001]
  • [Cites] Eur J Immunol. 1995 May;25(5):1154-62 [7539748.001]
  • [Cites] J Neurooncol. 2006 Jul;78(3):281-93 [16554966.001]
  • [Cites] J Korean Med Sci. 2003 Jun;18(3):415-8 [12808331.001]
  • [Cites] Clin Immunol. 2001 Dec;101(3):357-60 [11726228.001]
  • [Cites] J Clin Pathol. 2005 Jun;58(6):595-9 [15917409.001]
  • [Cites] Acta Neuropathol. 1993;85(6):628-34 [8337942.001]
  • [Cites] Am J Med Genet. 2002 Oct 30;115(3):194-201 [12407701.001]
  • [Cites] Cell. 1991 Jun 14;65(6):961-71 [1675157.001]
  • [Cites] Lancet. 2003 Nov 22;362(9397):1723-4 [14643123.001]
  • [Cites] Am J Pathol. 1997 Sep;151(3):671-7 [9284815.001]
  • [Cites] Am J Pharmacogenomics. 2003;3(5):317-28 [14575520.001]
  • [Cites] J Immunol. 1996 Nov 15;157(10):4347-53 [8906809.001]
  • [Cites] J Neuroimmunol. 2000 May 1;104(2):174-8 [10713357.001]
  • [Cites] Eur J Immunogenet. 2004 Aug;31(4):175-8 [15265022.001]
  • [Cites] J Immunol. 1997 Apr 1;158(7):3408-16 [9120301.001]
  • [Cites] Clin Exp Immunol. 1990 Jul;81(1):142-8 [1974176.001]
  • (PMID = 19306055.001).
  • [ISSN] 1591-8890
  • [Journal-full-title] Clinical and experimental medicine
  • [ISO-abbreviation] Clin. Exp. Med.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Italy
  • [Chemical-registry-number] 0 / Antigens, CD31; 126547-89-5 / Intercellular Adhesion Molecule-1
  •  go-up   go-down


29. Gimenez M, Souza VC, Izumi C, Barbieri MR, Chammas R, Oba-Shinjo SM, Uno M, Marie SK, Rosa JC: Proteomic analysis of low- to high-grade astrocytomas reveals an alteration of the expression level of raf kinase inhibitor protein and nucleophosmin. Proteomics; 2010 Aug;10(15):2812-21
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Proteomic analysis of low- to high-grade astrocytomas reveals an alteration of the expression level of raf kinase inhibitor protein and nucleophosmin.
  • The aim of this study was to identify differentially expressed proteins in diffuse astrocytoma grade II, anaplastic astrocytoma grade III and glioblastoma multiforme grade IV in human tumor samples and in non-neoplastic brain tissue as control using 2-DE and MS.
  • Tumor and control brain tissue dissection was guided by histological hematoxylin/eosin tissue sections to provide more than 90% of tumor cells and astrocytes.
  • Six proteins were detected as up-regulated in higher grade astrocytomas and the most important finding was nucleophosmin (NPM) (p<0.05), whereas four proteins were down-regulated, among them raf kinase inhibitor protein (RKIP) (p<0.05).
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Gene Expression Regulation, Neoplastic. Nuclear Proteins / genetics. Phosphatidylethanolamine Binding Protein / genetics. Proteomics


30. Romeike BF, Böckeler A, Kremmer E, Sommer P, Krick C, Grässer F: Immunohistochemical detection of dUTPase in intracranial tumors. Pathol Res Pract; 2005;201(11):727-32
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • A hundred and twenty-seven human intracranial tumors, including 56 astrocytomas, 12 oligodendrogliomas, 8 oligoastrocytomas, 34 meningiomas, 7 ependymomas, and 10 metastatic carcinomas, were stained using the monoclonal rat anti-human dUTPase antibody (clone 3E6) with formalin-fixed and paraffin-embedded tissue.
  • All tumors contained dUTPase-positive nuclei, whereas the percentage of positive tumor cells generally increased with grade of malignancy.
  • Meningiomas of higher grades, i.e., World Health Organization (WHO) grades II and III, contained additional cells with cytoplasmic reactivity.
  • Labeling indices for dUTPase, but not for Ki-67, showed significant differences between all 3 WHO grades of diffuse astrocytomas.
  • It proved particularly useful for the evaluation of diffuse astrocytomas.
  • [MeSH-major] Biomarkers, Tumor / analysis. Brain Neoplasms / enzymology. Pyrophosphatases / analysis
  • [MeSH-minor] Astrocytoma / enzymology. Astrocytoma / immunology. Astrocytoma / pathology. Cell Nucleus / enzymology. Cell Nucleus / immunology. Cell Proliferation. Ependymoma / enzymology. Ependymoma / immunology. Ependymoma / pathology. Humans. Immunohistochemistry. Ki-67 Antigen / analysis. Meningioma / enzymology. Meningioma / immunology. Meningioma / pathology. Oligodendroglioma / enzymology. Oligodendroglioma / immunology. Oligodendroglioma / pathology. Paraffin Embedding. World Health Organization

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [ErratumIn] Pathol Res Pract. 2006;202(1):65
  • (PMID = 16325515.001).
  • [ISSN] 0344-0338
  • [Journal-full-title] Pathology, research and practice
  • [ISO-abbreviation] Pathol. Res. Pract.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Ki-67 Antigen; EC 3.6.1.- / Pyrophosphatases; EC 3.6.1.23 / dUTP pyrophosphatase
  •  go-up   go-down


31. Arjona D, Bello MJ, Rey JA: EGFR intragenic loss and gene amplification in astrocytic gliomas. Cancer Genet Cytogenet; 2006 Jan 1;164(1):39-43
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] EGFR intragenic loss and gene amplification in astrocytic gliomas.
  • We have studied EGFR gene amplification and allelic status of chromosome 7 in 68 tumors consisting of 34 WHO grade IV glioblastomas (26 primary and 8 secondary), 14 WHO grade III anaplastic astrocytomas, and 20 WHO grade II astrocytomas, by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP), quantitative PCR, and microsatellite analysis.
  • [MeSH-major] Astrocytoma / genetics. Gene Amplification. Genes, erbB-1. Loss of Heterozygosity

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16364761.001).
  • [ISSN] 0165-4608
  • [Journal-full-title] Cancer genetics and cytogenetics
  • [ISO-abbreviation] Cancer Genet. Cytogenet.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


32. de Vries NA, Beijnen JH, van Tellingen O: High-grade glioma mouse models and their applicability for preclinical testing. Cancer Treat Rev; 2009 Dec;35(8):714-23
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] High-grade glioma mouse models and their applicability for preclinical testing.
  • High-grade gliomas (WHO grade III anaplastic astrocytoma and grade IV glioblastoma multiforme) are the most common primary tumors in the central nervous system in adults.
  • Unfortunately, despite great efforts in finding better therapies, high-grade glioma remains among the most devastating and deadliest of all human cancers.
  • This review will discuss the advantages and shortcomings of the established high-grade glioma mouse models with emphasis on their potential applicability for preclinical testing of novel drugs and treatment regimens.
  • [MeSH-major] Antineoplastic Agents / pharmacology. Astrocytoma / drug therapy. Astrocytoma / pathology. Genetic Engineering. Glioblastoma / drug therapy. Glioblastoma / pathology
  • [MeSH-minor] Animals. Antineoplastic Combined Chemotherapy Protocols / pharmacology. Biomarkers, Tumor / metabolism. Blood-Brain Barrier. Dacarbazine / analogs & derivatives. Dacarbazine / pharmacology. Disease Models, Animal. Mice. Phosphorylcholine / analogs & derivatives. Phosphorylcholine / pharmacology. Prognosis. Transplantation, Heterologous

  • Hazardous Substances Data Bank. DACARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19767151.001).
  • [ISSN] 1532-1967
  • [Journal-full-title] Cancer treatment reviews
  • [ISO-abbreviation] Cancer Treat. Rev.
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Biomarkers, Tumor; 107-73-3 / Phosphorylcholine; 2GWV496552 / perifosine; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide
  • [Number-of-references] 86
  •  go-up   go-down


33. Mott RT, Murphy BA, Geisinger KR: Ovarian malignant mixed mesodermal tumor with neuroectodermal differentiation: a multifaceted evaluation. Int J Gynecol Pathol; 2010 May;29(3):234-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Ovarian malignant mixed mesodermal tumor with neuroectodermal differentiation: a multifaceted evaluation.
  • Malignant mixed mesodermal tumors (MMMTs) of the ovary are rare, highly aggressive neoplasms that arise most commonly in postmenopausal women.
  • Histologically, they consist of a mixed population of malignant epithelial and mesenchymal elements.
  • Histologically, the tumor was composed of epithelial, mesenchymal, and neuroectodermal elements.
  • The neuroectodermal component was predominantly that of a medulloepithelioma, with scattered areas displaying features of an anaplastic astrocytoma, including rare ganglion cell differentiation.
  • DNA ploidy analysis was also performed on the various components of the tumor and compared with 3 additional cases of MMMT without neuroectodermal differentiation and 2 ovarian immature teratomas.
  • Our findings suggest that the neuroectodermal component may arise from a separate clone or at least evolves at an earlier stage of tumor development.
  • [MeSH-major] Mixed Tumor, Mesodermal / pathology. Neuroectodermal Tumors / pathology. Ovarian Neoplasms / pathology
  • [MeSH-minor] Aged. Cell Differentiation / physiology. DNA, Neoplasm / genetics. Female. Humans. Immunohistochemistry. Microscopy, Electron, Transmission. Ploidies

  • MedlinePlus Health Information. consumer health - Ovarian Cancer.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20407321.001).
  • [ISSN] 1538-7151
  • [Journal-full-title] International journal of gynecological pathology : official journal of the International Society of Gynecological Pathologists
  • [ISO-abbreviation] Int. J. Gynecol. Pathol.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / DNA, Neoplasm
  •  go-up   go-down


34. Giller CA, Berger BD, Pistenmaa DA, Sklar F, Weprin B, Shapiro K, Winick N, Mulne AF, Delp JL, Gilio JP, Gall KP, Dicke KA, Swift D, Sacco D, Harris-Henderson K, Bowers D: Robotically guided radiosurgery for children. Pediatr Blood Cancer; 2005 Sep;45(3):304-10
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Three had pilocytic astrocytomas, two had anaplastic astrocytomas, three had ependymomas (two anaplastic), four had medulloblastomas, three had atypical teratoid/rhabdoid tumors, three had craniopharyngiomas, and three had other pathologies.
  • RESULTS: Local control was achieved in the patients with pilocytic and anaplastic astrocytoma, three of the patients with medulloblastoma, and the three with craniopharyngioma, but not for those with ependymoma.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • ClinicalTrials.gov. clinical trials - ClinicalTrials.gov .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2004 Wiley-Liss, Inc.
  • (PMID = 15558704.001).
  • [ISSN] 1545-5009
  • [Journal-full-title] Pediatric blood & cancer
  • [ISO-abbreviation] Pediatr Blood Cancer
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


35. Quaranta M, Divella R, Daniele A, Di Tardo S, Venneri MT, Lolli I, Troccoli G: Epidermal growth factor receptor serum levels and prognostic value in malignant gliomas. Tumori; 2007 May-Jun;93(3):275-80
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Epidermal growth factor receptor serum levels and prognostic value in malignant gliomas.
  • Increased EGFR expression might therefore be a strong prognostic feature in multiple tumor types, and inhibition of its cellular actions may have substantial therapeutic benefit.
  • METHODS AND STUDY DESIGN: Serum samples obtained from 50 healthy individuals and 65 brain cancer patients (35 glioblastoma multiforme and 30 anaplastic astrocytomas) were collected before and after treatment and assayed for EGFR extracellular domain serum concentrations by a sandwich ELISA.
  • There was a significant difference in the mean serum levels of EGFR between glioblastoma multiforme patients (96.2 +/- 12 ng/ml) and anaplastic astrocytoma patients (71.6 +/- 18 ng/ml, P = 0.04).
  • For all patients, median overall survival was 13 months (anaplastic astrocytoma, 18 months; glioblastoma multiforme, 12.5 months).
  • In 47 patients with high EGFR serum levels, overall survival was reduced (P = 0.01), with a median survival time corresponding to 11.5 months (anaplastic astrocytoma, 14.5 months; glioblastoma multiforme, 10.5 months).
  • [MeSH-major] Biomarkers, Tumor / blood. Brain Neoplasms / blood. Glioma / blood. Neoplasm Proteins / blood. Receptor, Epidermal Growth Factor / blood
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Antineoplastic Agents, Alkylating / therapeutic use. Astrocytoma / blood. Astrocytoma / drug therapy. Astrocytoma / mortality. Astrocytoma / radiotherapy. Astrocytoma / surgery. Chemotherapy, Adjuvant. Combined Modality Therapy. Dacarbazine / analogs & derivatives. Dacarbazine / therapeutic use. Disease-Free Survival. Enzyme-Linked Immunosorbent Assay. Female. Follow-Up Studies. Glioblastoma / blood. Glioblastoma / drug therapy. Glioblastoma / mortality. Glioblastoma / radiotherapy. Glioblastoma / surgery. Humans. Kaplan-Meier Estimate. Male. Middle Aged. Prognosis. Protein Structure, Tertiary. Radiotherapy, Adjuvant. Signal Transduction. Survival Analysis. Treatment Outcome

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. DACARBAZINE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17679463.001).
  • [ISSN] 0300-8916
  • [Journal-full-title] Tumori
  • [ISO-abbreviation] Tumori
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 0 / Biomarkers, Tumor; 0 / Neoplasm Proteins; 7GR28W0FJI / Dacarbazine; EC 2.7.10.1 / EGFR protein, human; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; YF1K15M17Y / temozolomide
  •  go-up   go-down


36. Opstad KS, Wright AJ, Bell BA, Griffiths JR, Howe FA: Correlations between in vivo (1)H MRS and ex vivo (1)H HRMAS metabolite measurements in adult human gliomas. J Magn Reson Imaging; 2010 Feb;31(2):289-97
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • PURPOSE: To assess how accurately ex vivo high-resolution magic angle spinning (HRMAS) proton magnetic resonance spectroscopy ((1)H MRS) from small biopsy tissues relate to in vivo (1)H MRS (from larger tumor volumes) in human astrocytomas.
  • MATERIALS AND METHODS: In vivo (PRESS, TE = 30 msec) and ex vivo (presaturation) (1)H spectra of 17 human astrocytomas (4 grade II, 1 grade III and 12 glioblastomas) were quantified using LCModel.
  • Concentrations of 11 metabolites and 2 lipid/macromolecules were retrospectively compared, with histogram analysis of the in vivo MRI data used to evaluate tumor heterogeneity.
  • CONCLUSION: Within defined limitations, ex vivo astrocytoma biopsy HRMAS (1)H spectra have similar metabolic profiles to that obtained in vivo and therefore detailed ex vivo characterization of glioma biopsies can directly relate to the original tumor.
  • [MeSH-major] Algorithms. Astrocytoma / diagnosis. Astrocytoma / metabolism. Biomarkers, Tumor / analysis. Brain Neoplasms / diagnosis. Brain Neoplasms / metabolism. Magnetic Resonance Spectroscopy / methods

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20099340.001).
  • [ISSN] 1522-2586
  • [Journal-full-title] Journal of magnetic resonance imaging : JMRI
  • [ISO-abbreviation] J Magn Reson Imaging
  • [Language] eng
  • [Grant] United Kingdom / Cancer Research UK / / C1459/A2592
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Protons
  •  go-up   go-down


37. Jacobs AH, Thomas A, Kracht LW, Li H, Dittmar C, Garlip G, Galldiks N, Klein JC, Sobesky J, Hilker R, Vollmar S, Herholz K, Wienhard K, Heiss WD: 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med; 2005 Dec;46(12):1948-58
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Images were coregistered, and the volumes of abnormality were defined for PET and MRI.
  • RESULTS: Sensitivity for the detection of tumors was lower for 18F-FLT than for 11C-MET (78.3% vs. 91.3%), especially for low-grade astrocytomas.
  • Tumor volumes detected by 18F-FLT and 11C-MET were larger than tumor regions displaying gadolinium enhancement (P<0.01).
  • Uptake ratios of 18F-FLT were higher in glioblastomas than in astrocytomas (P<0.01).
  • Some tumor regions were detected only by either 18F-FLT (7 patients) or 11C-MET (13 patients).
  • Kinetic modeling revealed that 18F-FLT uptake in tumor tissue seems to be predominantly due to elevated transport and net influx.
  • However, a moderate correlation was found between uptake ratio and phosphorylation rate k3 (r=0.65 and P=0.01 for grade II-IV gliomas; r=0.76 and P<0.01 for grade III-IV tumors).
  • CONCLUSION: 18F-FLT is a promising tracer for the detection and characterization of primary central nervous system tumors and might help to differentiate between low- and high-grade gliomas.
  • In some tumors and tumor areas, 18F-FLT uptake is not related to 11C-MET uptake.
  • However, the discrepancies observed for the various imaging modalities (18F-FLT and 11C-MET PET as well as gadolinium-enhanced MRI) yield complementary information on the activity and the extent of gliomas and might improve early evaluation of treatment effects, especially in patients with high-grade gliomas.
  • [MeSH-major] Antiviral Agents / pharmacology. Astrocytoma / radionuclide imaging. Brain Neoplasms / radionuclide imaging. Dideoxynucleosides / pharmacology. Glioma / radionuclide imaging. Medulloblastoma / radionuclide imaging. Methionine / analogs & derivatives. Radiopharmaceuticals / pharmacology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. (L)-Methionine .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16330557.001).
  • [ISSN] 0161-5505
  • [Journal-full-title] Journal of nuclear medicine : official publication, Society of Nuclear Medicine
  • [ISO-abbreviation] J. Nucl. Med.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antiviral Agents; 0 / Dideoxynucleosides; 0 / Radiopharmaceuticals; AE28F7PNPL / Methionine; BN630929UL / methionine methyl ester; PG53R0DWDQ / alovudine
  •  go-up   go-down


38. Kirby S, Gertler SZ, Mason W, Watling C, Forsyth P, Aniagolu J, Stagg R, Wright M, Powers J, Eisenhauer EA: Phase 2 study of T138067-sodium in patients with malignant glioma: Trial of the National Cancer Institute of Canada Clinical Trials Group. Neuro Oncol; 2005 Apr;7(2):183-8
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Phase 2 study of T138067-sodium in patients with malignant glioma: Trial of the National Cancer Institute of Canada Clinical Trials Group.
  • We studied the activity of T138067-sodium in patients with malignant gliomas.
  • Patients with recurrent anaplastic astrocytoma or glioblastoma multiforme were treated intravenously with 330 mg/m(2) of T138067-sodium weekly.
  • There were two patients with anaplastic astrocytoma and 16 with glioblastoma multiforme.
  • Our results suggest that given in this dose and schedule T138067-sodium does not have activity in this population of anaplastic astrocytoma and glioblastoma multiforme.

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Br J Cancer. 2000 Sep;83(5):588-93 [10944597.001]
  • [Cites] Arch Pathol Lab Med. 2001 May;125(5):613-24 [11300931.001]
  • [Cites] J Med Chem. 2001 Oct 25;44(22):3599-605 [11606124.001]
  • [Cites] Cochrane Database Syst Rev. 2002;(4):CD003913 [12519620.001]
  • [Cites] Cell Motil Cytoskeleton. 2003 Sep;56(1):45-56 [12905530.001]
  • [Cites] Biochim Biophys Acta. 2001;1471(2):O1-9 [11342188.001]
  • [Cites] Biometrics. 1982 Mar;38(1):143-51 [7082756.001]
  • [Cites] J Clin Oncol. 1990 Jul;8(7):1277-80 [2358840.001]
  • [Cites] J Natl Cancer Inst. 1993 May 5;85(9):704-10 [8478956.001]
  • [Cites] Proc Natl Acad Sci U S A. 1999 May 11;96(10):5686-91 [10318945.001]
  • [Cites] J Neurosurg. 1977 Sep;47(3):329-35 [894339.001]
  • (PMID = 15831236.001).
  • [ISSN] 1522-8517
  • [Journal-full-title] Neuro-oncology
  • [ISO-abbreviation] Neuro-oncology
  • [Language] eng
  • [Publication-type] Clinical Trial; Clinical Trial, Phase II; Journal Article; Multicenter Study; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Sulfonamides; T4NP8G3K6Q / batabulin
  • [Other-IDs] NLM/ PMC1871890
  •  go-up   go-down


39. Ohnishi M, Matsumoto T, Nagashio R, Kageyama T, Utsuki S, Oka H, Okayasu I, Sato Y: Proteomics of tumor-specific proteins in cerebrospinal fluid of patients with astrocytoma: usefulness of gelsolin protein. Pathol Int; 2009 Nov;59(11):797-803
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Proteomics of tumor-specific proteins in cerebrospinal fluid of patients with astrocytoma: usefulness of gelsolin protein.
  • Changes in cerebrospinal fluid (CSF) composition have been shown to accurately reflect pathological processes in the CNS, and are potential indicators of abnormal CNS states, such as tumor growth.
  • To detect biomarkers in high-grade astrocytomas, the differential expression of proteins in the cerebrospinal fluid was analyzed from two cases each of diffuse astrocytoma (grade II), and glioblastoma (grade IV) using agarose 2-D gel electrophoresis (2-DE).
  • It was found that the expression of gelsolin protein decreased with histological grade.
  • To examine whether gelsolin is a useful indicator of tumor aggressiveness or patient outcome, its expression was further studied on immunohistochemistry in 41 formalin-fixed and paraffin-embedded astrocytomas.
  • The positive cell rate of gelsolin in tumors was 59.4% in grade II, 30.0% in grade III and 29.4% in grade IV, respectively.
  • Gelsolin expression was significantly lower in high-grade astrocytomas (grade III or IV) than in low-grade astrocytomas (grade II; P < 0.05).
  • Moreover, in astrocytomas the overall survival of patients in the low-expression group was significantly poorer than in the high expression group (P < 0.05).
  • These data suggest that gelsolin is a prognostic factor in astrocytoma.
  • [MeSH-major] Astrocytoma / cerebrospinal fluid. Biomarkers, Tumor / cerebrospinal fluid. Brain Neoplasms / cerebrospinal fluid. Gelsolin / cerebrospinal fluid

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19883430.001).
  • [ISSN] 1440-1827
  • [Journal-full-title] Pathology international
  • [ISO-abbreviation] Pathol. Int.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Australia
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Gelsolin
  •  go-up   go-down


40. Järvelä S, Helin H, Haapasalo J, Järvelä T, Junttila TT, Elenius K, Tanner M, Haapasalo H, Isola J: Amplification of the epidermal growth factor receptor in astrocytic tumours by chromogenic in situ hybridization: association with clinicopathological features and patient survival. Neuropathol Appl Neurobiol; 2006 Aug;32(4):441-50
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Amplification of the epidermal growth factor receptor in astrocytic tumours by chromogenic in situ hybridization: association with clinicopathological features and patient survival.
  • Chromogenic in situ hybridization (CISH) was used to detect amplification of the epidermal growth factor receptor (EGFR) gene in tissue microarrays of tumours derived from 287 patients with grade II-IV diffuse astrocytomas.
  • Amplification was found in 32% of the tumours with a highly significant association with histological grade (4% in grade II, 21% in grade III and 39% in grade IV; P < 0.001).
  • Overexpression of EGFR mRNA and protein (wild-type and vIII variant) was found to correlate with EGFR gene amplification (P = 0.028, P = 0.035 and P = 0.014 respectively), but wild-type EGFR protein was also frequently overexpressed in tumours without EGFR gene amplification.
  • The survival of patients with EGFR gene-amplified grade III tumours was significantly shorter than in those with grade III non-amplified tumours (P = 0.03).
  • No such difference was noted in glioblastomas (grade IV tumours).
  • Our data verify the central role of EGFR in the pathobiology of astrocytic tumours, and highlight the advantages of CISH as a simple and practical assay to screen for EGFR gene amplification in astrocytic tumours.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Receptor, Epidermal Growth Factor / genetics. Receptor, Epidermal Growth Factor / metabolism
  • [MeSH-minor] Adolescent. Adult. Age Factors. Aged. Aged, 80 and over. Apoptosis / physiology. Child. Child, Preschool. Chromogenic Compounds. Female. Gene Amplification. Humans. Immunohistochemistry. In Situ Hybridization. Male. Middle Aged. Protein Array Analysis. RNA, Messenger / analysis. Reverse Transcriptase Polymerase Chain Reaction. Survival Analysis. Survival Rate. Tumor Suppressor Protein p53

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [ErratumIn] Neuropathol Appl Neurobiol. 2006 Oct;32(5):568. Järvellä, S [corrected to Järvelä, Sally]; Järvellä, T [corrected to Järvelä, Timo]
  • (PMID = 16866989.001).
  • [ISSN] 0305-1846
  • [Journal-full-title] Neuropathology and applied neurobiology
  • [ISO-abbreviation] Neuropathol. Appl. Neurobiol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Chromogenic Compounds; 0 / RNA, Messenger; 0 / Tumor Suppressor Protein p53; EC 2.7.10.1 / Receptor, Epidermal Growth Factor
  •  go-up   go-down


41. Simon M, Neuloh G, von Lehe M, Meyer B, Schramm J: Insular gliomas: the case for surgical management. J Neurosurg; 2009 Apr;110(4):685-95
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • RESULTS: A > 90% resection was achieved in 42%, and 70-90% tumor removal was accomplished in 51% of cases.
  • For example, in neurologically intact patients < or = 40 years of age with WHO Grade I-III tumors, good outcomes (Karnofsky Performance Scale Score 80-100) were seen in 91% of cases.
  • Surprisingly good survival rates were seen after surgery for anaplastic gliomas.
  • The median survival for patients with anaplastic astrocytomas (WHO Grade III) was 5 years, and the 5-year survival rate for those with anaplastic oligodendroglial tumors was 80%.
  • Independent predictors of survival included younger age, favorable histological features (WHO Grade I and oligodendroglial tumors), Yaşargil Type 5A/B tumors with frontal extensions, and more extensive resections.
  • CONCLUSIONS: Insular tumor surgery carries substantial complication rates.
  • In view of the oncological benefits of resective surgery, our data would therefore argue for microsurgery as the primary treatment for most patients with a presumed WHO Grade I-III tumor.
  • [MeSH-minor] Adolescent. Adult. Age Factors. Aged. Astrocytoma / surgery. Child. Female. Humans. Male. Middle Aged. Postoperative Complications. Survival Rate. Treatment Outcome

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19099379.001).
  • [ISSN] 0022-3085
  • [Journal-full-title] Journal of neurosurgery
  • [ISO-abbreviation] J. Neurosurg.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


42. Bellil S, Limaiem F, Mahfoudhi H, Bellil K, Chelly I, Mekni A, Jemel H, Khaldi M, Haouet S, Zitouna M, Kchir N: Descriptive epidemiology of childhood central nervous system tumours in Tunisia. experience of a single institution over a 15-year period (1990-2004). Pediatr Neurosurg; 2008;44(5):382-7
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Low-grade tumours (WHO I/II) constituted 67.3% of all lesions and the rest (32.7%) were high-grade tumours (WHO III/IV).
  • The most common tumour found in our series was astrocytoma (38%), followed by medulloblastoma (16.2%), then ependymoma (6.9%), cystic tumours (6.3%) and craniopharyngioma (5.3%).

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2008 S. Karger AG, Basel.
  • (PMID = 18703884.001).
  • [ISSN] 1423-0305
  • [Journal-full-title] Pediatric neurosurgery
  • [ISO-abbreviation] Pediatr Neurosurg
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] Switzerland
  •  go-up   go-down


43. McGirt MJ, Mukherjee D, Chaichana KL, Than KD, Weingart JD, Quinones-Hinojosa A: Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery; 2009 Sep;65(3):463-9; discussion 469-70
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • OBJECTIVE: Balancing the benefits of extensive tumor resection with the consequence of potential postoperative deficits remains a challenge in malignant astrocytoma surgery.


44. Muragaki Y, Chernov M, Maruyama T, Ochiai T, Taira T, Kubo O, Nakamura R, Iseki H, Hori T, Takakura K: Low-grade glioma on stereotactic biopsy: how often is the diagnosis accurate? Minim Invasive Neurosurg; 2008 Oct;51(5):275-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Low-grade glioma on stereotactic biopsy: how often is the diagnosis accurate?
  • The objective of the present study was an evaluation of the incidence and risk factors for erroneous histopathological diagnosis of low-grade glioma after stereotactic biopsy.
  • Twenty-eight tumors diagnosed as low-grade glioma after stereotactic biopsy and surgically resected thereafter were analyzed.
  • There were 13 astrocytomas, 7 oligodendrogliomas, and 8 mixed gliomas.
  • Complete diagnostic agreement in tumor typing and grading after stereotactic biopsy and surgical resection was attained in 10 cases (36%).
  • Agreement in tumor typing was marked in 16 cases (57%).
  • Overgrading of WHO grade I tumors was marked in 3 cases (11%) and undergrading of WHO grade III gliomas in 8 cases (28%).
  • Tumor undergrading was more frequent in cases with an MIB-1 index of more than 3% (P = 0.0045).
  • In conclusion, the histopathological diagnosis of low-grade glioma established after stereotactic biopsy is associated with a substantial risk of inaccuracy.
  • Tumors with low proliferative activity and mixed gliomas are especially susceptible for erroneous tumor typing.
  • Undergrading of high-grade gliomas may be suspected if the MIB-1 index in the tumor specimen constitutes more, than 3%.
  • [MeSH-minor] Adolescent. Adult. Aged. Astrocytoma / pathology. Biopsy / statistics & numerical data. Brain / pathology. Brain / surgery. Child. Female. Humans. Magnetic Resonance Imaging. Male. Middle Aged. Mitotic Index. Neurosurgical Procedures. Observer Variation. Oligodendroglioma / pathology. Predictive Value of Tests. Reproducibility of Results. Stereotaxic Techniques / statistics & numerical data. Young Adult

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18855292.001).
  • [ISSN] 0946-7211
  • [Journal-full-title] Minimally invasive neurosurgery : MIN
  • [ISO-abbreviation] Minim Invasive Neurosurg
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Germany
  •  go-up   go-down


45. Hunter SB, Varma V, Shehata B, Nolen JD, Cohen C, Olson JJ, Ou CY: Apolipoprotein D expression in primary brain tumors: analysis by quantitative RT-PCR in formalin-fixed, paraffin-embedded tissue. J Histochem Cytochem; 2005 Aug;53(8):963-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Apolipoprotein D (apoD) expression has been shown to correlate both with cell cycle arrest and with prognosis in several types of malignancy, including central nervous system astrocytomas and medulloblastomas.
  • Sixteen poorly infiltrating WHO grade I glial neoplasms (i.e., pilocytic astrocytomas and gangliogliomas) showed an average 20-fold higher apoD expression level compared with the 20 diffusely infiltrating glial neoplasms (i.e., glioblastoma, anaplastic astrocytoma, oligodendrogliomas; p=0.00004).
  • Analyzed as individual tumor groups, poorly infiltrating grade I pilocytic astrocytomas and gangliogliomas differed significantly from each tumor type within the diffusely infiltrating higher-grade category (p<0.05 for each comparison) but not from each other (p>0.05).
  • Conversely, each individual tumor type within the diffusely infiltrating category differed significantly from both pilocytic astrocytomas and gangliogliomas (p<0.05) but did not vary from other infiltrating tumors (p>0.05).
  • Ependymomas, non-infiltrating grade II neoplasms, expressed levels of apoD similar to or lower than levels expressed by the diffusely infiltrating gliomas.
  • In addition, apoD expression was 5-fold higher in the slowly proliferating grade I glial neoplasms compared with non-proliferating normal brain tissue (p=0.01), suggesting that apoD expression is not simply an inverse measure of proliferation.
  • ApoD expression measured by quantitative RT-PCR may be useful in the differential diagnosis of primary brain tumors, particularly pilocytic astrocytomas and gangliogliomas.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. FORMALDEHYDE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16055749.001).
  • [ISSN] 0022-1554
  • [Journal-full-title] The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society
  • [ISO-abbreviation] J. Histochem. Cytochem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Apolipoproteins; 0 / Apolipoproteins D; 0 / Fixatives; 0 / Ki-67 Antigen; 1HG84L3525 / Formaldehyde; 8002-74-2 / Paraffin
  •  go-up   go-down


46. Paulino AC, Mai WY, Chintagumpala M, Taher A, Teh BS: Radiation-induced malignant gliomas: is there a role for reirradiation? Int J Radiat Oncol Biol Phys; 2008 Aug 1;71(5):1381-7
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Radiation-induced malignant gliomas: is there a role for reirradiation?
  • PURPOSE: To review the literature regarding the role of radiotherapy (RT) in the treatment of patients with radiation-induced malignant gliomas (RIMGs).
  • RESULTS: Initial tumor types treated with RT included brain tumor in 37 patients (40%), acute lymphoblastic leukemia in 33 (36%), benign disease in 11 (12%), and other in 11 (12%).
  • Type of RIMG was glioblastoma in 69 (75%) and anaplastic astrocytoma in 23 (25%).
  • One-, 2-, and 5-year overall survival rates were 29.3%, 7.3%, and 0% for patients with glioblastoma and 59.7%, 30.3%, and 20.2% for patients with anaplastic astrocytoma.
  • [MeSH-minor] Astrocytoma / radiotherapy. Glioblastoma / radiotherapy. Humans. Precursor Cell Lymphoblastic Leukemia-Lymphoma / radiotherapy. Retreatment. Survival Rate

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentIn] Int J Radiat Oncol Biol Phys. 2008 Sep 1;72(1):304-5; author reply 305 [18722290.001]
  • (PMID = 18262733.001).
  • [ISSN] 0360-3016
  • [Journal-full-title] International journal of radiation oncology, biology, physics
  • [ISO-abbreviation] Int. J. Radiat. Oncol. Biol. Phys.
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Number-of-references] 62
  •  go-up   go-down


47. Watanabe Y, Yamasaki F, Kajiwara Y, Saito T, Nishimoto T, Bartholomeusz C, Ueno NT, Sugiyama K, Kurisu K: Expression of phosphoprotein enriched in astrocytes 15 kDa (PEA-15) in astrocytic tumors: a novel approach of correlating malignancy grade and prognosis. J Neurooncol; 2010 Dec;100(3):449-57
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of phosphoprotein enriched in astrocytes 15 kDa (PEA-15) in astrocytic tumors: a novel approach of correlating malignancy grade and prognosis.
  • Despite its many important roles, the clinical significance of PEA-15 expression levels in astrocytic tumors has yet to be properly defined.
  • We studied the PEA-15 expression pattern of 65 patients [diagnosed according to World Health Organization (WHO) criteria] with diffuse astrocytoma (WHO grade II), anaplastic astrocytoma (grade III), and glioblastoma (grade IV).
  • In grade II astrocytoma (diffuse astrocytoma) and grade III astrocytoma (anaplastic astrocytoma), 100% and 88.9% of patients expressed high PEA-15 levels, respectively, while a smaller number (50%) of patients with grade IV astrocytoma (glioblastoma) expressed high PEA-15 levels.
  • PEA-15 expression level was inversely associated with WHO grade (P = 0.0006).
  • Next, we evaluated prognosis and PEA-15 expression levels in 43 patients with high-grade astrocytomas based on the following parameters: age, gender, WHO grade, surgical resection extent, MIB-1 labeling index (LI), and PEA-15 expression level.
  • Multivariable analyses revealed that high PEA-15 expression level displayed a significant correlation with longer overall survival (OS) in high-grade astrocytomas (P = 0.0024).
  • In conclusion, PEA-15 expression level was inversely associated with WHO grade and may serve as an important prognostic factor for high-grade astrocytomas.
  • [MeSH-major] Astrocytoma / diagnosis. Astrocytoma / metabolism. Brain Neoplasms / diagnosis. Brain Neoplasms / metabolism. Intracellular Signaling Peptides and Proteins / metabolism. Phosphoproteins / metabolism. Statistics as Topic

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Health Statistics.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer. 1988 Nov 15;62(10):2152-65 [3179928.001]
  • [Cites] J Neurosci. 1999 Oct 1;19(19):8244-51 [10493725.001]
  • [Cites] J Biol Chem. 2002 Jul 12;277(28):25020-5 [11976344.001]
  • [Cites] Radiother Oncol. 2007 Dec;85(3):371-8 [18035440.001]
  • [Cites] Mol Cancer Ther. 2008 May;7(5):1013-24 [18445660.001]
  • [Cites] Oncogene. 2005 Oct 27;24(47):7012-21 [16044159.001]
  • [Cites] Oncogene. 2008 Feb 14;27(8):1155-66 [17700518.001]
  • [Cites] Mol Biol Cell. 2006 Dec;17(12):5141-52 [16987961.001]
  • [Cites] Mol Cell Biol. 2004 Jun;24(11):5005-15 [15143191.001]
  • [Cites] J Neurochem. 1998 Sep;71(3):1307-14 [9721757.001]
  • [Cites] Lancet Oncol. 2005 May;6(5):322-7 [15863380.001]
  • [Cites] Mol Cell Biol. 2003 Jul;23(13):4511-21 [12808093.001]
  • [Cites] Cancer Res. 2001 Feb 1;61(3):1162-70 [11221847.001]
  • [Cites] Biochem J. 2005 Sep 15;390(Pt 3):729-35 [15916534.001]
  • [Cites] Cancer Res. 2007 Feb 15;67(4):1536-44 [17308092.001]
  • [Cites] Oncogene. 1999 Aug 5;18(31):4409-15 [10442631.001]
  • [Cites] J Cell Mol Med. 2008 Dec;12(6A):2416-26 [18284607.001]
  • [Cites] Dev Cell. 2001 Aug;1(2):239-50 [11702783.001]
  • [Cites] Mol Biol Cell. 2005 Aug;16(8):3552-61 [15917297.001]
  • [Cites] Lancet. 2002 Mar 23;359(9311):1011-8 [11937180.001]
  • [Cites] Cancer Res. 2008 Nov 15;68(22):9302-10 [19010903.001]
  • [Cites] Neuropathology. 2008 Oct;28(5):507-15 [18410277.001]
  • [Cites] J Biol Chem. 1993 Mar 15;268(8):5911-20 [8449955.001]
  • [Cites] J Biol Chem. 2004 Mar 26;279(13):12840-7 [14707138.001]
  • [Cites] Cancer Res. 2006 Feb 1;66(3):1491-9 [16452205.001]
  • [Cites] Int J Cancer. 2007 Mar 15;120(6):1215-22 [17192900.001]
  • (PMID = 20455002.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Intracellular Signaling Peptides and Proteins; 0 / Ki-67 Antigen; 0 / PEA15 protein, human; 0 / Phosphoproteins
  •  go-up   go-down


48. Tanaka S, Akimoto J, Kobayashi I, Oka H, Ujiie H: Individual adjuvant therapy for malignant gliomas based on O6-methylguanine-DNA methyltransferase messenger RNA quantitation by real-time reverse-transcription polymerase chain-reaction. Oncol Rep; 2008 Jul;20(1):165-71
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Individual adjuvant therapy for malignant gliomas based on O6-methylguanine-DNA methyltransferase messenger RNA quantitation by real-time reverse-transcription polymerase chain-reaction.
  • A new adjuvant therapy, individual adjuvant therapy (IAT), which is individualized according to the results of real-time reverse-transcription polymerase chain-reaction (RT-PCR) for O6-methylguanine-DNA methyltransferase (MGMT), was used to treat malignant gliomas.
  • Immediately after the operation, mRNA expression for drug-resistance genes was investigated in frozen samples of malignant gliomas from 55 patients (30 glioblastoma multiformes, 20 anaplastic astrocytomas and 5 anaplastic oligodendroglial tumors) by real-time quantitative RT-PCR with specific primers for MGMT.
  • The response rate was 40.9% for glioblastoma multiformes, 60.0% for anaplastic astrocytomas and 80.0% for anaplastic oligodendroglial tumors.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. DACARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18575733.001).
  • [ISSN] 1021-335X
  • [Journal-full-title] Oncology reports
  • [ISO-abbreviation] Oncol. Rep.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / RNA, Messenger; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide; EC 2.1.1.63 / O(6)-Methylguanine-DNA Methyltransferase
  •  go-up   go-down


49. Mittelbronn M, Simon P, Löffler C, Capper D, Bunz B, Harter P, Schlaszus H, Schleich A, Tabatabai G, Goeppert B, Meyermann R, Weller M, Wischhusen J: Elevated HLA-E levels in human glioblastomas but not in grade I to III astrocytomas correlate with infiltrating CD8+ cells. J Neuroimmunol; 2007 Sep;189(1-2):50-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Elevated HLA-E levels in human glioblastomas but not in grade I to III astrocytomas correlate with infiltrating CD8+ cells.
  • To investigate HLA-E expression and immune cell infiltration in human astrocytic tumors in vivo, we analyzed normal CNS controls and astrocytomas of all WHO grades by immunohistochemistry.
  • Both, CD8(+) immune cell infiltration and HLA-E expression were significantly higher in astrocytic tumors than in normal brain.
  • Further, HLA-E expression levels and immune cell infiltration were significantly correlated in WHO grade IV glioblastomas.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. CD8-Positive T-Lymphocytes / physiology. Gene Expression Regulation, Neoplastic / physiology. Glioblastoma / metabolism. HLA Antigens / metabolism. Histocompatibility Antigens Class I / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17675252.001).
  • [ISSN] 0165-5728
  • [Journal-full-title] Journal of neuroimmunology
  • [ISO-abbreviation] J. Neuroimmunol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / HLA Antigens; 0 / HLA-E antigen; 0 / Histocompatibility Antigens Class I
  •  go-up   go-down


50. Yaman E, Buyukberber S, Uner A, Coskun U, Akmansu M, Benekli M, Yamac D, Ozturk B, Kaya AO, Yildiz R, Ozkan S, Gunel N: Temozolomide in newly diagnosed malignant gliomas: administered concomitantly with radiotherapy, and thereafter as consolidation treatment. Onkologie; 2008 Jun;31(6):309-13
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Temozolomide in newly diagnosed malignant gliomas: administered concomitantly with radiotherapy, and thereafter as consolidation treatment.
  • BACKGROUND: Surgical resection followed by radiotherapy used to be the standard treatment in malignant gliomas.
  • PATIENTS AND METHODS: Medical records of 64 patients with malignant glioma were reviewed.
  • Median progression-free survival, and overall survival have not yet been reached in the grade III astrocytoma group at a median follow-up of 19 months.
  • 2-year survival rates were 80% and 19% for the grade III astrocytoma, and for the glioblastoma multiforme groups, respectively.
  • Toxicity was mild to moderate with rare grade 4 toxicities.
  • CONCLUSION: Our data suggest that temozolomide is an active regimen for malignant gliomas.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. DACARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2008 S. Karger AG, Basel.
  • [CommentIn] Onkologie. 2008 Jun;31(6):300-2 [18547969.001]
  • (PMID = 18547971.001).
  • [ISSN] 1423-0240
  • [Journal-full-title] Onkologie
  • [ISO-abbreviation] Onkologie
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide
  •  go-up   go-down


51. Li JY, Wang H, May S, Song X, Fueyo J, Fuller GN, Wang H: Constitutive activation of c-Jun N-terminal kinase correlates with histologic grade and EGFR expression in diffuse gliomas. J Neurooncol; 2008 May;88(1):11-7
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Constitutive activation of c-Jun N-terminal kinase correlates with histologic grade and EGFR expression in diffuse gliomas.
  • The results were correlated with grade and EGFR expression status.
  • Constitutively activated JNK (pJNK) was detected in 90.5%, 62.9% and 17.5% of WHO grade IV, III and II gliomas, respectively (p < 0.001).
  • [MeSH-minor] Astrocytoma / drug therapy. Astrocytoma / pathology. Blotting, Western. Cells, Cultured. Enzyme Activation / physiology. Glioblastoma / drug therapy. Glioblastoma / pathology. Gliosarcoma / drug therapy. Gliosarcoma / pathology. Humans. Immunohistochemistry. Oligodendroglioma / drug therapy. Oligodendroglioma / pathology


52. Gravendeel LA, Kloosterhof NK, Bralten LB, van Marion R, Dubbink HJ, Dinjens W, Bleeker FE, Hoogenraad CC, Michiels E, Kros JM, van den Bent M, Smitt PA, French PJ: Segregation of non-p.R132H mutations in IDH1 in distinct molecular subtypes of glioma. Hum Mutat; 2010 Mar;31(3):E1186-99
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • IDH1 mutations were most frequently observed in low grade gliomas with c.395G>A (p.R132H) representing >90% of all IDH1 mutations.
  • Histologically, they occur sporadically in classic oligodendrogliomas and at significantly higher frequency in other grade II and III gliomas.
  • The IDH1 mutation type does not affect patient survival.
  • [MeSH-minor] Astrocytoma / genetics. Chromosomes, Human, Pair 1. Chromosomes, Human, Pair 19. Cohort Studies. Gene Expression Profiling. Humans. In Situ Hybridization, Fluorescence. Loss of Heterozygosity. Oligodendroglioma / genetics. Treatment Outcome. Tumor Suppressor Protein p53 / metabolism

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2010 Wiley-Liss, Inc.
  • (PMID = 20077503.001).
  • [ISSN] 1098-1004
  • [Journal-full-title] Human mutation
  • [ISO-abbreviation] Hum. Mutat.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Tumor Suppressor Protein p53; EC 1.1.1.41 / Isocitrate Dehydrogenase; EC 1.1.1.42. / IDH1 protein, human
  •  go-up   go-down


53. Jenkinson MD, Smith TS, Joyce K, Fildes D, du Plessis DG, Warnke PC, Walker C: MRS of oligodendroglial tumors: correlation with histopathology and genetic subtypes. Neurology; 2005 Jun 28;64(12):2085-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • SV-MRS was obtained pretherapy to determine tumor metabolite ratios.
  • RESULTS: Grade III oligodendroglial tumors had higher choline (Mann-Whitney; p = 0.002), methyl lipid (Mann-Whitney; p = 0.002), and combined methylene lipid and lactate ratios (Mann-Whitney; p < 0.001) than grade II tumors.
  • Lactate did not distinguish between tumor types (Fisher exact test; p = 0.342) or grade (Fisher exact test; p = 0.452).
  • CONCLUSION: As a noninvasive diagnostic tool used in routine clinical practice, SV-MRS has the potential benefit of determining oligodendroglial tumor grade but not subtypes classified by histopathology or molecular genetics.
  • [MeSH-major] Astrocytoma / diagnosis. Brain Neoplasms / diagnosis. Chromosomes, Human, Pair 1 / genetics. Chromosomes, Human, Pair 19 / genetics. Magnetic Resonance Spectroscopy / standards. Oligodendroglioma / diagnosis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. LACTIC ACID .
  • Hazardous Substances Data Bank. CHOLINE CHLORIDE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15985578.001).
  • [ISSN] 1526-632X
  • [Journal-full-title] Neurology
  • [ISO-abbreviation] Neurology
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Lipids; 33X04XA5AT / Lactic Acid; N91BDP6H0X / Choline
  •  go-up   go-down


54. Walker DG, Laherty R, Tomlinson FH, Chuah T, Schmidt C: Results of a phase I dendritic cell vaccine trial for malignant astrocytoma: potential interaction with adjuvant chemotherapy. J Clin Neurosci; 2008 Feb;15(2):114-21
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Results of a phase I dendritic cell vaccine trial for malignant astrocytoma: potential interaction with adjuvant chemotherapy.
  • Dendritic cell vaccination has been applied to the treatment of a variety of cancers, including malignant astrocytoma.
  • We have treated 13 patients with malignant astrocytoma using dendritic cell vaccination and have shown that this treatment is safe and is likely to be effective in combination with standard adjuvant therapy.
  • [MeSH-major] Astrocytoma / therapy. Brain Neoplasms / therapy. Cancer Vaccines / therapeutic use. Chemotherapy, Adjuvant / methods. Dendritic Cells / immunology. Immunotherapy, Active / methods

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18083572.001).
  • [ISSN] 0967-5868
  • [Journal-full-title] Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
  • [ISO-abbreviation] J Clin Neurosci
  • [Language] eng
  • [Publication-type] Clinical Trial, Phase I; Journal Article
  • [Publication-country] Scotland
  • [Chemical-registry-number] 0 / Antigens, CD8; 0 / Cancer Vaccines; EC 3.1.3.48 / Antigens, CD45
  •  go-up   go-down


55. Torii K, Tsuyuguchi N, Kawabe J, Sunada I, Hara M, Shiomi S: Correlation of amino-acid uptake using methionine PET and histological classifications in various gliomas. Ann Nucl Med; 2005 Dec;19(8):677-83
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • OBJECTIVE: The uptake of L-methyl-11C-methionine (MET) by gliomas is greater than that by intact tissue, making methionine very useful for evaluation of tumor extent.
  • Tumors included diffuse astrocytoma, anaplastic astrocytoma, glioblastoma, ependymoma, oligodendroglioma, medulloblastoma, dysembryoplastic neuroepithelial tumor, choroid plexus papilloma, central neurocytoma, optic glioma, gliomatosis cerebri, pleomorphic xanthoastrocytoma, and ganglioglioma.
  • Tumor activity and degree of malignancy were evaluated using Ki-67LI (LI: labeling index) and Kaplan-Meier survival curves.
  • The correlations between methionine uptake and tumor proliferation (tumor versus contralateral gray matter ratio (T/N) and Ki-67LI) were determined for the group of all subjects.
  • The existence of significant correlations between T/N and Ki-67LI and between SUV and Ki-67LI was determined for astrocytic tumors.
  • Receiver operating characteristics (ROC) analysis of T/N and standardized uptake value (SUV) was performed for the group of astrocytic tumors.
  • Ki-67LI differed significantly between the high-grade group and low-grade group at T/N levels between 1.5 and 1.8 on analysis using tumor proliferative potential (p = 0.019-0.031).
  • The prognosis differed significantly between the high-grade and low-grade groups when T/N was in the range of 1.6-1.8 (p = 0.028-0.032).
  • CONCLUSIONS: When analysis was confined to cases of astrocytic tumor, a correlation was noted between methionine accumulation and Ki-67LI.
  • For the astrocytic tumors, T/N ratio seemed to be more useful as a diagnostic indicator than SUV.
  • The cut-off level of T/N ratio for distinction between high-grade and low-grade astrocytoma appears to lie between 1.5 and 1.6.


56. Marcus HJ, Carpenter KL, Price SJ, Hutchinson PJ: In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines. J Neurooncol; 2010 Mar;97(1):11-23
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines.
  • This study's objective was to utilise microdialysis to monitor levels of glucose, lactate, pyruvate, glutamate and glycerol in patients following surgery for intrinsic brain tumours, and to assess the concentration of growth factors, cytokines and other proteins involved in the pathogenesis of high-grade gliomas in vivo.
  • Eight patients with suspected high-grade gliomas were studied.
  • Histology demonstrated WHO IV glioblastoma in five cases, WHO III anaplastic astrocytoma in two cases, and one cerebral lymphoma.
  • In the high-grade gliomas (WHO IV and III), tumour margin microdialysates consistently showed significantly lower glucose, higher lactate/pyruvate (L/P) ratio, higher glutamate and higher glycerol, relative to peritumour microdialysates (P < 0.05).
  • These results indicate that malignant glioma margin tissue is metabolically extremely active.

  • Genetic Alliance. consumer health - Glioma.
  • Hazardous Substances Data Bank. GLUTAMIC ACID HYDROCHLORIDE .
  • Hazardous Substances Data Bank. DEXAMETHASONE .
  • Hazardous Substances Data Bank. LACTIC ACID .
  • Hazardous Substances Data Bank. GLUCOSE .
  • Hazardous Substances Data Bank. GLYCERIN .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Ann N Y Acad Sci. 1999;886:236-9 [10667228.001]
  • [Cites] Clin Cancer Res. 2006 Oct 1;12 (19):5698-704 [17020973.001]
  • [Cites] Brain Tumor Pathol. 2004;21(3):105-12 [15696970.001]
  • [Cites] Int J Dev Neurosci. 1999 Aug-Oct;17(5-6):495-502 [10571411.001]
  • [Cites] Neuro Oncol. 2005 Apr;7(2):122-33 [15831231.001]
  • [Cites] Nature. 1985 Jan 10-18;313(5998):144-7 [2981413.001]
  • [Cites] J Cell Sci. 1997 Oct;110 ( Pt 19):2473-82 [9410885.001]
  • [Cites] N Engl J Med. 2001 Jan 11;344(2):114-23 [11150363.001]
  • [Cites] Eur J Clin Pharmacol. 1983;24(1):103-8 [6832191.001]
  • [Cites] Neoplasia. 1999 Aug;1(3):208-19 [10935475.001]
  • [Cites] Physiol Meas. 2005 Aug;26(4):423-8 [15886437.001]
  • [Cites] Curr Med Chem. 2007;14(14):1525-37 [17584061.001]
  • [Cites] J Neuroimmunol. 1997 Sep;78(1-2):152-61 [9307240.001]
  • [Cites] J Neurosurg. 2001 Mar;94(3):464-73 [11235952.001]
  • [Cites] Science. 2006 May 26;312(5777):1158-9 [16728625.001]
  • [Cites] Clin Cancer Res. 2002 Sep;8(9):2894-901 [12231534.001]
  • [Cites] Int J Cancer. 1997 Jun 11;71(6):1066-76 [9185713.001]
  • [Cites] J Neurosurg. 1999 Feb;90(2):300-5 [9950501.001]
  • [Cites] J Physiol. 2007 May 1;580(Pt.3):937-49 [17317742.001]
  • [Cites] J Clin Neurosci. 2005 Nov;12(8):930-3 [16326273.001]
  • [Cites] Br J Neurosurg. 2007 Apr;21(2):204-9 [17453790.001]
  • [Cites] Brain Pathol. 2005 Oct;15(4):297-310 [16389942.001]
  • [Cites] J Neurooncol. 2005 Feb;71(3):287-93 [15735919.001]
  • [Cites] Biochim Biophys Acta. 2000 Mar 7;1477(1-2):267-83 [10708863.001]
  • [Cites] Cancer Res. 1996 Jul 15;56(14):3196-8 [8764105.001]
  • [Cites] J Neurooncol. 2006 Dec;80(3):285-93 [16773220.001]
  • [Cites] J Neurooncol. 2009 Jan;91(1):51-8 [18787762.001]
  • [Cites] Brain Tumor Pathol. 2003;20(2):39-45 [14756439.001]
  • [Cites] J Neurosurg. 1992 Jan;76(1):72-80 [1727172.001]
  • [Cites] Cancer Res. 1990 Oct 15;50(20):6683-8 [2208133.001]
  • [Cites] Bull Schweiz Akad Med Wiss. 1974 Jul;30(1-3):44-55 [4371656.001]
  • [Cites] J Neurosurg. 1987 Jun;66(6):865-74 [3033172.001]
  • [Cites] J Neurooncol. 2003 Jan;61(2):151-60 [12622454.001]
  • [Cites] Lancet. 1993 Jun 26;341(8861):1607-10 [8099987.001]
  • [Cites] Brain Pathol. 1990 Sep;1(1):12-8 [1669688.001]
  • [Cites] Acta Neurochir (Wien). 1993;121(3-4):199-205 [8512018.001]
  • [Cites] Eur J Anaesthesiol. 1996 May;13(3):269-78 [8737118.001]
  • [Cites] J Neurol Neurosurg Psychiatry. 1984 Oct;47(10):1087-90 [6502166.001]
  • [Cites] J Neurotrauma. 2007 Oct;24(10):1545-57 [17970618.001]
  • [Cites] Clin Exp Metastasis. 1999;17(7):555-66 [10845554.001]
  • [Cites] Int J Cancer. 2005 Jun 10;115(2):202-13 [15688401.001]
  • [Cites] Brain Tumor Pathol. 2001;18(1):13-21 [11517969.001]
  • [Cites] Proc Natl Acad Sci U S A. 1987 Oct;84(19):6899-903 [3477813.001]
  • [Cites] Eur J Pharmacol. 2008 Sep 28;593(1-3):1-9 [18652821.001]
  • [Cites] J Neurooncol. 2000 Mar;47(1):11-22 [10930095.001]
  • [Cites] Radiology. 1990 Sep;176(3):791-9 [2389038.001]
  • [Cites] Neoplasia. 2007 Sep;9(9):777-87 [17898873.001]
  • [Cites] Acta Neurochir (Wien). 2009 Jan;151(1):51-61; discussion 61 [19099177.001]
  • [Cites] Dev Biol. 1974 Dec;41(2):255-66 [4548877.001]
  • [Cites] Clin Cancer Res. 2003 Jul;9(7):2576-82 [12855633.001]
  • [Cites] J Neurosurg. 1995 Oct;83(4):657-64 [7674016.001]
  • [Cites] Trends Cell Biol. 2001 Nov;11(11):S37-43 [11684441.001]
  • [Cites] Am J Pathol. 1998 Aug;153(2):429-37 [9708803.001]
  • [Cites] J Neuroimmunol. 1994 Mar;50(2):187-94 [8120140.001]
  • [Cites] J Neurosurg. 2007 May;106(5):820-5 [17542525.001]
  • [Cites] Nature. 1974 Aug 2;250(465):422-4 [4368539.001]
  • [Cites] J Clin Endocrinol Metab. 1998 Feb;83(2):453-9 [9467557.001]
  • [Cites] Annu Rev Biochem. 1977;46:765-95 [197882.001]
  • [Cites] N Engl J Med. 2005 Oct 20;353(16):1711-23 [16236742.001]
  • [Cites] Ann Neurol. 1992 Mar;31(3):319-27 [1637139.001]
  • [Cites] Acta Neurochir (Wien). 1992;114(1-2):8-11 [1561943.001]
  • [Cites] J Neurooncol. 2003 Sep;64(3):227-37 [14558598.001]
  • [Cites] Am J Physiol Endocrinol Metab. 2000 Mar;278(3):E413-20 [10710495.001]
  • [Cites] J Neurosurg. 2000 Jul;93(1):37-43 [10883903.001]
  • [Cites] AJNR Am J Neuroradiol. 2006 Oct;27(9):1969-74 [17032877.001]
  • [Cites] J Neurosurg. 1996 Apr;84(4):606-16 [8613852.001]
  • [Cites] Biomed Pharmacother. 2005 Aug;59(7):359-64 [16084059.001]
  • [Cites] Brain Res Bull. 2000 Jan 1;51(1):29-34 [10654577.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10 ):987-96 [15758009.001]
  • [Cites] Cancer Res. 1991 Apr 15;51(8):2164-72 [2009534.001]
  • [Cites] Prostaglandins Leukot Essent Fatty Acids. 2008 Jul-Aug;79(1-2):59-65 [18762411.001]
  • [Cites] Biol Psychiatry. 1997 Mar 1;41(5):574-84 [9046990.001]
  • [Cites] Br J Cancer. 2001 Jul 6;85(1):55-63 [11437402.001]
  • [Cites] Neurosurgery. 2005 Jun;56(6):1264-8; discussion 1268-70 [15918942.001]
  • (PMID = 19714445.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Grant] United Kingdom / Medical Research Council / / G0600986; United Kingdom / Medical Research Council / / G9439390; United Kingdom / Medical Research Council / /
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Hormonal; 0 / Cytokines; 0 / Intercellular Signaling Peptides and Proteins; 0 / Tissue Inhibitor of Metalloproteinase-1; 127497-59-0 / Tissue Inhibitor of Metalloproteinase-2; 33X04XA5AT / Lactic Acid; 3KX376GY7L / Glutamic Acid; 7S5I7G3JQL / Dexamethasone; 8558G7RUTR / Pyruvic Acid; EC 3.4.24.35 / Matrix Metalloproteinase 9; IY9XDZ35W2 / Glucose; PDC6A3C0OX / Glycerol
  •  go-up   go-down


57. Sadones J, Michotte A, Veld P, Chaskis C, Sciot R, Menten J, Joossens EJ, Strauven T, D'Hondt LA, Sartenaer D, Califice SF, Bierau K, Svensson C, De Grève J, Neyns B: MGMT promoter hypermethylation correlates with a survival benefit from temozolomide in patients with recurrent anaplastic astrocytoma but not glioblastoma. Eur J Cancer; 2009 Jan;45(1):146-53
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] MGMT promoter hypermethylation correlates with a survival benefit from temozolomide in patients with recurrent anaplastic astrocytoma but not glioblastoma.
  • AIMS: To investigate the correlation between O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter methylation and benefit from temozolomide in patients with recurrent high-grade glioma.
  • RESULTS: A subgroup of 38 patients who were chemotherapy-naive at recurrence was analysed (22 glioblastoma, 12 anaplastic astrocytoma [AA] and 4 anaplastic oligoastrocytoma [AOA]); none had 1p/19q loss.
  • By Cox multivariate analysis, tumour grade and MGMT promoter methylation correlated with time to progression (p<0.05); MGMT promoter methylation correlated with superior overall survival in AA/AOA but not in glioblastoma.
  • [MeSH-major] Antineoplastic Agents, Alkylating / therapeutic use. Astrocytoma / drug therapy. Brain Neoplasms / drug therapy. Dacarbazine / analogs & derivatives. O(6)-Methylguanine-DNA Methyltransferase / genetics. Promoter Regions, Genetic
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. DNA Methylation. Female. Glioblastoma / drug therapy. Humans. Kaplan-Meier Estimate. Male. Middle Aged. Neoplasm Recurrence, Local / drug therapy. Neoplasm Recurrence, Local / mortality. Prognosis. Retrospective Studies. Survival Rate. Young Adult

  • Genetic Alliance. consumer health - Glioblastoma.
  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. DACARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18945611.001).
  • [ISSN] 1879-0852
  • [Journal-full-title] European journal of cancer (Oxford, England : 1990)
  • [ISO-abbreviation] Eur. J. Cancer
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide; EC 2.1.1.63 / O(6)-Methylguanine-DNA Methyltransferase
  •  go-up   go-down


58. Barbashina V, Salazar P, Holland EC, Rosenblum MK, Ladanyi M: Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin Cancer Res; 2005 Feb 1;11(3):1119-28
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene.
  • PURPOSE: Allelic loss at 1p is seen in 70% to 85% of oligodendrogliomas (typically in association with 19q allelic loss) and 20-30% of astrocytomas.
  • Because most 1p deletions in gliomas involve almost the entire chromosome arm, narrowing the region of the putative tumor suppressor gene has been difficult.
  • The latter group included both low-grade tumors (oligodendroglioma, diffuse astrocytoma, and "oligoastrocytoma") and high-grade tumors (anaplastic oligodendrogliomas, anaplastic astrocytomas, anaplastic oligoastrocytomas).
  • RESULTS: Allelic losses on 1p and 19q, either separately or combined, were more common in classic oligodendrogliomas than in either astrocytomas or oligoastrocytomas (P < 0.0001).
  • There was no significant difference in 1p/19q LOH status between low-grade and anaplastic oligodendrogliomas.
  • In contrast, no astrocytomas and only 6 of 30 (20%) oligoastrocytic tumors had combined 1p/19q loss.
  • Although rare, 1p deletions were more often segmental in astrocytomas (5 of 6, 83%) than in oligodendrogliomas (3 of 35, 9%; P = 0.006).
  • Eleven tumors (6 oligodendrogliomas or having oligodendroglial components, 5 purely astrocytic) with small segmental 1p losses underwent further detailed LOH mapping.
  • All informative tumors in the oligodendroglial group and 2 of 3 informative astrocytomas showed LOH at 1p36.23, with a 150-kb MDR located between D1S2694 and D1S2666, entirely within the CAMTA1 transcription factor gene.
  • [MeSH-minor] Adult. Astrocytoma / genetics. Astrocytoma / pathology. Calcium-Binding Proteins / genetics. Chromosome Deletion. Chromosome Mapping. Expressed Sequence Tags. Gene Expression Profiling. Gene Expression Regulation, Neoplastic. Genes, Tumor Suppressor. Humans. Microsatellite Repeats. Mutation. Oligodendroglioma / genetics. Oligodendroglioma / pathology. Reverse Transcriptase Polymerase Chain Reaction. Trans-Activators / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15709179.001).
  • [ISSN] 1078-0432
  • [Journal-full-title] Clinical cancer research : an official journal of the American Association for Cancer Research
  • [ISO-abbreviation] Clin. Cancer Res.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / CAMTA1 protein, human; 0 / Calcium-Binding Proteins; 0 / Trans-Activators
  •  go-up   go-down


59. Nano R, Capelli E, Facoetti A, Benericetti E: Immunobiological and experimental aspects of malignant astrocytoma. Anticancer Res; 2009 Jul;29(7):2461-5
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Immunobiological and experimental aspects of malignant astrocytoma.
  • Starting from 1992, the goal of our studies was to obtain new biological data on malignant astrocytomas to better understand the basic biology of the tumour and these are reviewed here.
  • [MeSH-major] Astrocytoma / immunology. Brain Neoplasms / immunology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19596914.001).
  • [ISSN] 1791-7530
  • [Journal-full-title] Anticancer research
  • [ISO-abbreviation] Anticancer Res.
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / Interleukin-2
  • [Number-of-references] 51
  •  go-up   go-down


60. Cui W, Kong X, Cao HL, Wang X, Gao JF, Wu RL, Wang XC: [Mutations of p53 gene in 41 cases of human brain gliomas]. Ai Zheng; 2008 Jan;27(1):8-11
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • BACKGROUND & OBJECTIVE: p53 gene plays an important role in regulating cell cycle, maintaining completeness of cellular genomes, inducing cell differentiation and apoptosis. p53 gene mutation occurs usually in gliomas, especially astrocytomas.
  • The mutation rate of p53 gene was significantly higher in grade III-IV gliomas than in grade I-II gliomas (P<0.01).
  • Missense mutation is major mutant type of p53 gene. p53 mutation plays an important role in the development and malignant transformation of human gliomas.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Genes, p53 / genetics. Mutation, Missense. Tumor Suppressor Protein p53 / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18184456.001).
  • [Journal-full-title] Ai zheng = Aizheng = Chinese journal of cancer
  • [ISO-abbreviation] Ai Zheng
  • [Language] chi
  • [Publication-type] English Abstract; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] China
  • [Chemical-registry-number] 0 / Tumor Suppressor Protein p53
  •  go-up   go-down


61. Flannery T, McQuaid S, McGoohan C, McConnell RS, McGregor G, Mirakhur M, Hamilton P, Diamond J, Cran G, Walker B, Scott C, Martin L, Ellison D, Patel C, Nicholson C, Mendelow D, McCormick D, Johnston PG: Cathepsin S expression: An independent prognostic factor in glioblastoma tumours--A pilot study. Int J Cancer; 2006 Aug 15;119(4):854-60
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Cysteine proteinases have been implicated in astrocytoma invasion.
  • We recently demonstrated that cathepsin S (CatS) expression is up-regulated in astrocytomas and provided evidence for a potential role in astrocytoma invasion (Flannery et al., Am J Path 2003;163(1):175-82).
  • We aimed to evaluate the significance of CatS in human astrocytoma progression and as a prognostic marker.
  • Frozen tissue homogenates from 71 patients with astrocytomas and 3 normal brain specimens were subjected to ELISA analyses.
  • Fifty-one astrocytoma cases were suitable for both frozen tissue and paraffin tissue analysis.
  • CatS expression was increased in grade IV tumours whereas astrocytoma grades I-III exhibited lower values.
  • CatS expression in astrocytomas is associated with tumour progression and poor outcome in glioblastomas.
  • [MeSH-minor] Biomarkers, Tumor. Humans. Middle Aged. Pilot Projects. Prognosis. Recombinant Proteins / metabolism. Survival Rate

  • Genetic Alliance. consumer health - Glioblastoma.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright 2006 Wiley-Liss, Inc.
  • (PMID = 16550604.001).
  • [ISSN] 0020-7136
  • [Journal-full-title] International journal of cancer
  • [ISO-abbreviation] Int. J. Cancer
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Recombinant Proteins; EC 3.4.- / Cathepsins; EC 3.4.22.27 / cathepsin S
  •  go-up   go-down


62. Chamberlain MC, Johnston S: Salvage chemotherapy with bevacizumab for recurrent alkylator-refractory anaplastic astrocytoma. J Neurooncol; 2009 Feb;91(3):359-67
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Salvage chemotherapy with bevacizumab for recurrent alkylator-refractory anaplastic astrocytoma.
  • A retrospective study of bevacizumab only in adults with recurrent temozolomide (TMZ)-refractory anaplastic astrocytoma (AA) with a primary objective of determining progression free survival (PFS).
  • Bevacizumab-related toxicity included fatigue (14 patients; 2 grade 3), leukopenia (7; 1 grade 3), deep vein thrombosis (5; 2 grade 3), hypertension (5; 1 grade 3), anemia (4; 0 grade 3) and wound dehiscence (1; 1 grade 3).
  • Time to tumor progression ranged from 1 to 20 months (median: 7).
  • [MeSH-major] Angiogenesis Inhibitors / therapeutic use. Antibodies, Monoclonal / therapeutic use. Astrocytoma / drug therapy. Astrocytoma / mortality. Brain Neoplasms / drug therapy. Brain Neoplasms / mortality. Neoplasm Recurrence, Local

  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neurosurg. 1981 Nov;55(5):749-56 [7310496.001]
  • [Cites] J Clin Oncol. 1991 May;9(5):860-4 [1849986.001]
  • [Cites] J Clin Oncol. 1992 Sep;10(9):1379-85 [1325539.001]
  • [Cites] Ann Neurol. 2003 Oct;54(4):479-87 [14520660.001]
  • [Cites] J Clin Oncol. 2001 Jan 15;19(2):509-18 [11208845.001]
  • [Cites] Neuro Oncol. 2004 Jul;6(3):253-8 [15279718.001]
  • [Cites] Cancer. 2000 Aug 1;89(3):640-6 [10931464.001]
  • [Cites] Eur J Cancer. 1997 Sep;33(10):1592-6 [9389920.001]
  • [Cites] J Clin Oncol. 1999 Nov;17(11):3389-95 [10550132.001]
  • [Cites] J Clin Oncol. 2007 Oct 20;25(30):4722-9 [17947719.001]
  • [Cites] J Clin Oncol. 1990 Jul;8(7):1277-80 [2358840.001]
  • [Cites] Neuro Oncol. 2007 Apr;9(2):89-95 [17327573.001]
  • [Cites] Cancer. 2003 Feb 15;97(4):1063-71 [12569607.001]
  • [Cites] Neuro Oncol. 2003 Apr;5(2):79-88 [12672279.001]
  • [Cites] Stat Med. 1991 May;10(5):749-55 [2068428.001]
  • [Cites] Neurology. 2008 Mar 4;70(10):779-87 [18316689.001]
  • [Cites] J Clin Oncol. 1999 Sep;17 (9):2762-71 [10561351.001]
  • [Cites] Surg Neurol. 1993 Jun;39(6):538-43 [8390727.001]
  • [Cites] J Neurosurg. 2007 Apr;106(4):601-8 [17432710.001]
  • [Cites] Cancer Cell. 2007 Jan;11(1):83-95 [17222792.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1990 Feb;18(2):321-4 [2154418.001]
  • [Cites] J Clin Oncol. 2003 Jun 15;21(12 ):2305-11 [12805331.001]
  • [Cites] Neurology. 2006 Apr 25;66(8):1258-60 [16636248.001]
  • [Cites] J Clin Oncol. 2006 Jun 20;24(18):2707-14 [16782910.001]
  • [Cites] J Clin Oncol. 1999 Aug;17(8):2572-8 [10561324.001]
  • [Cites] J Clin Oncol. 1987 Mar;5(3):459-63 [3546620.001]
  • [Cites] Semin Oncol. 2000 Jun;27(3 Suppl 6):1-10 [10866344.001]
  • [Cites] J Neurosurg. 1990 Apr;72 (4):583-8 [2319317.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1991 Aug;21(3):601-6 [1651302.001]
  • [Cites] Lancet. 2002 Mar 23;359(9311):1011-8 [11937180.001]
  • [Cites] Clin Cancer Res. 2007 Feb 15;13(4):1253-9 [17317837.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1992;23(1):3-8 [1572829.001]
  • [Cites] J Clin Oncol. 2006 Jun 20;24(18):2715-22 [16782911.001]
  • [Cites] Cancer. 1993 Apr 15;71(8):2585-97 [8453582.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1992;24(4):593-7 [1429080.001]
  • [Cites] Cancer. 2004 Mar 15;100(6):1213-20 [15022289.001]
  • [Cites] J Clin Oncol. 2003 Apr 15;21(8):1485-91 [12697871.001]
  • [Cites] Lancet. 1995 Apr 22;345(8956):1008-12 [7723496.001]
  • [Cites] J Clin Oncol. 2007 Oct 20;25(30):4714-21 [17947718.001]
  • (PMID = 18953491.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Evaluation Studies; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Angiogenesis Inhibitors; 0 / Antibodies, Monoclonal; 0 / Antibodies, Monoclonal, Humanized; 2S9ZZM9Q9V / Bevacizumab
  •  go-up   go-down


63. Hardell L, Mild KH, Carlberg M, Söderqvist F: Tumour risk associated with use of cellular telephones or cordless desktop telephones. World J Surg Oncol; 2006;4:74
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • There is concern of health problems such as malignant diseases due to microwave exposure during the use of these devices.
  • The corresponding results were for astrocytoma grade III-IV OR = 1.7, 95 % CI = 1.3-2.3; OR = 1.5, 95 % CI = 1.2-1.9 and OR = 1.5, 95 % CI = 1.1-1.9, respectively.
  • Lower ORs were calculated for astrocytoma grade I-II.
  • No association was found with salivary gland tumours, NHL or testicular cancer although an association with NHL of T-cell type could not be ruled out.
  • CONCLUSION: We found for all studied phone types an increased risk for brain tumours, mainly acoustic neuroma and malignant brain tumours.
  • OR increased with latency period, especially for astrocytoma grade III-IV.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Int J Oncol. 2006 Feb;28(2):509-18 [16391807.001]
  • [Cites] Arch Environ Health. 2004 Mar;59(3):132-7 [16121902.001]
  • [Cites] Environ Res. 2006 Feb;100(2):232-41 [16023098.001]
  • [Cites] Environ Health Perspect. 2003 Nov;111(14):1704-6 [14594618.001]
  • [Cites] Neuroepidemiology. 2005;25(3):120-8 [15956809.001]
  • [Cites] Eur J Cancer Prev. 2005 Jun;14(3):285-8 [15902000.001]
  • [Cites] Occup Environ Med. 2004 Aug;61(8):675-9 [15258273.001]
  • [Cites] Occup Environ Med. 2004 Jun;61(6):560-70, 487 [15150403.001]
  • [Cites] Int J Cancer. 2004 Apr 10;109(3):425-9 [14961582.001]
  • [Cites] Int Arch Occup Environ Health. 2006 Sep;79(8):630-9 [16541280.001]
  • [Cites] Electromagn Biol Med. 2006;25(1):45-51 [16595333.001]
  • [Cites] Int J Oncol. 1999 Jul;15(1):113-6 [10375602.001]
  • [Cites] Eur J Cancer Prev. 2001 Dec;10(6):523-9 [11916351.001]
  • [Cites] Eur J Cancer Prev. 2002 Aug;11(4):377-86 [12195165.001]
  • [Cites] Int J Oncol. 2003 Feb;22(2):399-407 [12527940.001]
  • [Cites] Neuroepidemiology. 2003 Mar-Apr;22(2):124-9 [12629278.001]
  • [Cites] Int Arch Occup Environ Health. 2005 Sep;78(8):625-32 [16001209.001]
  • [Cites] Occup Environ Med. 2005 Jun;62(6):390-4 [15901886.001]
  • (PMID = 17034627.001).
  • [ISSN] 1477-7819
  • [Journal-full-title] World journal of surgical oncology
  • [ISO-abbreviation] World J Surg Oncol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Other-IDs] NLM/ PMC1621063
  •  go-up   go-down


64. Da Fonseca CO, Silva JT, Lins IR, Simão M, Arnobio A, Futuro D, Quirico-Santos T: Correlation of tumor topography and peritumoral edema of recurrent malignant gliomas with therapeutic response to intranasal administration of perillyl alcohol. Invest New Drugs; 2009 Dec;27(6):557-64
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Correlation of tumor topography and peritumoral edema of recurrent malignant gliomas with therapeutic response to intranasal administration of perillyl alcohol.
  • BACKGROUND: The aim of this study was to establish a correlation of tumor topography and peritumoral brain edema with the therapeutic response to intranasal administration of perillyl alcohol (POH) in a cohort of patients with recurrent malignant gliomas.
  • METHODS: The retrospective study reviewed clinical and neuroradiological data from patients with recurrent malignant gliomas who received intranasal daily administration of POH 440 mg.
  • The following parameters were assessed: demographic characteristics, initial symptoms, overall survival, tumor topography and tumor size, presence of midline shift and extent of peritumoral edema.
  • RESULTS: A cohort of 67 patients included 52 (78%) with glioblastoma (GBM), ten (15%) with anaplastic astrocytoma (AA) and five (7%) with anaplastic oligodendroglioma (AO).
  • Accordingly to tumor topography lobar localization was present in all (5/5) AO; eight (8/10) and 41 GBM patients whereas in the basal ganglia two AA and 11 GBM patients.
  • It was also observed a relation between the tumor size and area of peritumoral brain edema (PTBE).
  • Patients with good therapeutic response showed reduction of tumor size and PTBE area, but poor prognosis was associated with lack of response to treatment and persistence of high PTBE.
  • Patients with tumor in the basal ganglia survived significantly longer than those with lobar gliomas (log rank test, p = 0.0003).
  • (2) presence of PTBE contributes to symptoms, likely to be implicated in the morbidity and invading potential of malignant gliomas.
  • [MeSH-major] Antineoplastic Agents / therapeutic use. Brain Edema / pathology. Brain Neoplasms / drug therapy. Glioma / drug therapy. Glioma / pathology. Monoterpenes / therapeutic use. Neoplasm Recurrence, Local / pathology

  • Genetic Alliance. consumer health - Edema.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Cancer Chemotherapy.
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Lancet Neurol. 2005 Jul;4(7):413-22 [15963444.001]
  • [Cites] AJNR Am J Neuroradiol. 2007 Mar;28(3):462-9 [17353313.001]
  • [Cites] J Neurooncol. 1996 Jan;27(1):65-73 [8699228.001]
  • [Cites] J BUON. 2007 Apr-Jun;12(2):239-43 [17600879.001]
  • [Cites] Vojnosanit Pregl. 2003 Mar-Apr;60(2):147-54 [12852156.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2000 Dec 1;48(5):1359-62 [11121634.001]
  • [Cites] Surg Neurol. 2006;65 Suppl 1:S1:2-1:8; discussion S1:8-1:9 [16427438.001]
  • [Cites] Am J Surg Pathol. 2007 May;31(5):760-9 [17460461.001]
  • [Cites] Surg Neurol. 2006 Dec;66(6):611-5 [17145324.001]
  • [Cites] Am J Dermatopathol. 2008 Aug;30(4):381-4 [18645311.001]
  • [Cites] Arch Immunol Ther Exp (Warsz). 2008 Jul-Aug;56(4):267-76 [18726148.001]
  • [Cites] J Natl Cancer Inst. 2007 Nov 7;99(21):1583-93 [17971532.001]
  • [Cites] J Neurol Sci. 2007 Sep 15;260(1-2):49-56 [17475281.001]
  • [Cites] J Neurooncol. 2005 Jul;73(3):211-7 [15980971.001]
  • [Cites] Neurol India. 2002 Mar;50(1):37-40 [11960149.001]
  • [Cites] Glia. 2008 Jun;56(8):917-24 [18383343.001]
  • [Cites] Surg Neurol. 2008 Sep;70(3):259-66; discussion 266-7 [18295834.001]
  • [Cites] Bull Mem Acad R Med Belg. 2007;162(5-6):331-8 [18405003.001]
  • [Cites] Bull Cancer. 2008 Jan;95(1):51-6 [18230570.001]
  • [Cites] J Neurooncol. 2003 Sep;64(3):227-37 [14558598.001]
  • [Cites] Acta Neurochir Suppl. 2003;85:47-53 [12570137.001]
  • [Cites] J Neurol Sci. 2003 Dec 15;216(1):1-10 [14607296.001]
  • [Cites] J Neuropathol Exp Neurol. 2007 Jan;66(1):1-9 [17204931.001]
  • [Cites] Onkologie. 2004 Jun;27(3):261-6 [15249715.001]
  • [Cites] Cancer Res. 2003 Apr 1;63(7):1602-7 [12670911.001]
  • (PMID = 19139816.001).
  • [ISSN] 1573-0646
  • [Journal-full-title] Investigational new drugs
  • [ISO-abbreviation] Invest New Drugs
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Monoterpenes; 319R5C7293 / perillyl alcohol
  •  go-up   go-down


65. Miyajima Y, Sato Y, Oka H, Utsuki S, Kondo K, Tanizaki Y, Nagashio R, Tsuchiya B, Okayasu I, Fujii K: Prognostic significance of nuclear DJ-1 expression in astrocytoma. Anticancer Res; 2010 Jan;30(1):265-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Prognostic significance of nuclear DJ-1 expression in astrocytoma.
  • The present study was conducted to determine whether any correlation exists between the expression of DJ-1 and WHO grading of the tumor or patient prognosis, and to analyze the function of this oncogene in astrocytomas.
  • Twenty-nine formalin-fixed and paraffin-embedded glioblastomas (grade IV), 21 anaplastic astorocytomas (grade III), and 14 diffuse astrocytomas (grade II) were immunohistochemically studied to identify the expression of DJ-1 protein.
  • The expression of DJ-1 was detected both in the nucleus and cytoplasm of tumor cells; however, such expression varied from case to case.
  • While there was no difference in the cytoplasmic expression of DJ-1 among astrocytomas, its nuclear expression was inversely correlated with the WHO grading of astrocytomas.
  • The present study demonstrated that the survival of patients with astrocytomas was correlated with the nuclear DJ-1 status of the tumor.
  • We herein demonstrated for the first time that the DJ-1 molecule might therefore play an important role as a tumor suppressor in astrocytomas.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Oncogene Proteins / biosynthesis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20150646.001).
  • [ISSN] 1791-7530
  • [Journal-full-title] Anticancer research
  • [ISO-abbreviation] Anticancer Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / Intracellular Signaling Peptides and Proteins; 0 / Oncogene Proteins; 0 / PARK7 protein, human
  •  go-up   go-down


66. Raza SM, Garzon-Muvdi T, Boaehene K, Olivi A, Gallia G, Lim M, Subramanian P, Quinones-Hinojosa A: The supraorbital craniotomy for access to the skull base and intraaxial lesions: a technique in evolution. Minim Invasive Neurosurg; 2010 Feb;53(1):1-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Intra-axial pathology ranged from anaplastic astrocytoma to metastasis while extra-axial lesions included meningiomas and skull-based metastases.
  • [MeSH-minor] Adenoma / surgery. Astrocytoma / surgery. Breast Neoplasms / surgery. Craniopharyngioma / surgery. Esthetics. Eyebrows. Eyelids. Female. Follow-Up Studies. Frontal Lobe / surgery. Humans. Male. Meningeal Neoplasms / surgery. Meningioma / surgery. Middle Aged. Pituitary Neoplasms / surgery. Postoperative Complications / etiology. Treatment Outcome

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) Georg Thieme Verlag KG Stuttgart . New York.
  • (PMID = 20376737.001).
  • [ISSN] 1439-2291
  • [Journal-full-title] Minimally invasive neurosurgery : MIN
  • [ISO-abbreviation] Minim Invasive Neurosurg
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  •  go-up   go-down


67. Kim JH, Choi C, Benveniste EN, Kwon D: TRAIL induces MMP-9 expression via ERK activation in human astrocytoma cells. Biochem Biophys Res Commun; 2008 Dec 5;377(1):195-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] TRAIL induces MMP-9 expression via ERK activation in human astrocytoma cells.
  • Matrix metalloproteinase-9 (MMP-9) is an important angiogenic and prognostic factor in malignant tumors.
  • Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known as the death ligand, which induces preferential apoptosis of transformed tumor cells.
  • We demonstrated that TRAIL induces MMP-9 expression in human astrocytoma cells, which is preceded by activation of extracellular signal-regulated protein kinase (ERK).
  • These findings indicate that TRAIL treatment in human astrocytoma cells leads to the activation of NF-kappaB and subsequent expression of MMP-9, which are dependent on ERK activation.
  • Collectively, these results suggest that TRAIL has alternative biological functions in addition to its role in inducing apoptosis in human malignant astrocytoma cells.
  • [MeSH-major] Astrocytoma / enzymology. Extracellular Signal-Regulated MAP Kinases / metabolism. Matrix Metalloproteinase 9 / biosynthesis. TNF-Related Apoptosis-Inducing Ligand / physiology
  • [MeSH-minor] Butadienes / pharmacology. Cell Line, Tumor. Enzyme Activation. Humans. NF-kappa B / metabolism. Nitriles / pharmacology. Protein Kinase Inhibitors

  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18834856.001).
  • [ISSN] 1090-2104
  • [Journal-full-title] Biochemical and biophysical research communications
  • [ISO-abbreviation] Biochem. Biophys. Res. Commun.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Butadienes; 0 / NF-kappa B; 0 / Nitriles; 0 / Protein Kinase Inhibitors; 0 / TNF-Related Apoptosis-Inducing Ligand; 0 / U 0126; EC 2.7.11.24 / Extracellular Signal-Regulated MAP Kinases; EC 3.4.24.35 / Matrix Metalloproteinase 9
  •  go-up   go-down


68. Tanaka S, Kobayashi I, Utsuki S, Iwamoto K, Takanashi J: Biopsy of brain stem glioma using motor-evoked potential mapping by direct peduncular stimulation and individual adjuvant therapy. Case report. Neurol Med Chir (Tokyo); 2005 Jan;45(1):49-55
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Partial resection of the tumor was safely performed, with slight temporary neurological worsening.
  • The histological diagnosis was anaplastic astrocytoma.
  • Individual adjuvant therapy based on the results of real-time reverse transcription-polymerase chain reaction of O6-methylguanine-deoxyribonucleic acid methyltransferase achieved an almost complete tumor response.
  • [MeSH-major] Astrocytoma / surgery. Brain Mapping. Brain Stem Neoplasms / surgery. Evoked Potentials, Motor. Mesencephalon / physiopathology. Neurosurgical Procedures / methods

  • Genetic Alliance. consumer health - Glioma.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15699622.001).
  • [ISSN] 0470-8105
  • [Journal-full-title] Neurologia medico-chirurgica
  • [ISO-abbreviation] Neurol. Med. Chir. (Tokyo)
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Japan
  •  go-up   go-down


69. Nakamura M, Shimada K, Ishida E, Higuchi T, Nakase H, Sakaki T, Konishi N: Molecular pathogenesis of pediatric astrocytic tumors. Neuro Oncol; 2007 Apr;9(2):113-23
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Molecular pathogenesis of pediatric astrocytic tumors.
  • Astrocytomas are the most common pediatric brain tumors, accounting for 7%-8% of all childhood cancers.
  • Relatively few studies have been performed on their molecular properties; therefore, classification of pediatric astrocytic tumors into genetic subtypes similar to that of adult tumors remains to be defined.
  • Here, we report an extensive characterization of 44 pediatric astrocytomas--16 diffuse astrocytomas (WHO grade II), 10 anaplastic astrocytomas (WHO grade III), and 18 glioblastomas (WHO grade IV)--in terms of genetic alterations frequently observed in adult astrocytomas.
  • Some form of p53 mutation was found in three diffuse astrocytomas, in three anaplastic astrocytomas, and in six glioblastomas examined; PTEN mutations were detected only in two glioblastomas.
  • EGFR amplification was detected in only one anaplastic astrocytoma and two glioblastomas, but no amplification was observed for the PDGFR-alpha gene.
  • Loss of heterozygosity (LOH) on 1p/19q and 10p/10q was less common in pediatric astrocytic tumors than in those seen in adults, but the frequency of LOH on 22q was comparable, occurring in 44% of diffuse astrocytomas, 40% of anaplastic astrocytomas, and 61% of glioblastomas.
  • Our results suggest some differences in children compared to adults in the genetic pathways leading to the formation of de novo astrocytic tumors.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Hum Pathol. 1999 Nov;30(11):1284-90 [10571506.001]
  • [Cites] Acta Neuropathol. 2005 Oct;110(4):402-10 [16155764.001]
  • [Cites] Lab Invest. 2000 Jan;80(1):65-72 [10653004.001]
  • [Cites] Brain Pathol. 2000 Apr;10(2):249-59 [10764044.001]
  • [Cites] J Neuropathol Exp Neurol. 2000 Jun;59(6):539-43 [10850866.001]
  • [Cites] Lab Invest. 2001 Jan;81(1):77-82 [11204276.001]
  • [Cites] Cancer Res. 2001 Mar 1;61(5):2124-8 [11280776.001]
  • [Cites] Am J Pathol. 2001 Apr;158(4):1253-62 [11290543.001]
  • [Cites] Brain Pathol. 2001 Apr;11(2):159-68 [11303791.001]
  • [Cites] Carcinogenesis. 2001 Oct;22(10):1715-9 [11577014.001]
  • [Cites] Childs Nerv Syst. 2001 Sep;17(9):503-11 [11585322.001]
  • [Cites] J Neuropathol Exp Neurol. 2001 Nov;60(11):1099-104 [11706939.001]
  • [Cites] Cancer. 2001 Dec 15;92(12):3155-64 [11753995.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Mar;61(3):215-25; discussion 226-9 [11895036.001]
  • [Cites] Acta Neuropathol. 2002 Mar;103(3):267-75 [11907807.001]
  • [Cites] Curr Treat Options Oncol. 2001 Dec;2(6):529-36 [12057098.001]
  • [Cites] J Neurooncol. 2002 Sep;59(2):117-22 [12241104.001]
  • [Cites] Cancer Res. 2003 Feb 15;63(4):737-41 [12591717.001]
  • [Cites] Brain Pathol. 2004 Apr;14(2):131-6 [15193025.001]
  • [Cites] Cancer Res. 2004 Oct 1;64(19):6892-9 [15466178.001]
  • [Cites] Cancer Res. 1990 May 15;50(10):2987-90 [2334901.001]
  • [Cites] Cancer. 1993 May 15;71(10 Suppl):3229-36 [8490859.001]
  • [Cites] Brain Pathol. 1993 Jan;3(1):19-26 [8269081.001]
  • [Cites] Oncogene. 1994 Mar;9(3):949-54 [8108140.001]
  • [Cites] Neurosurgery. 1994 Feb;34(2):213-9; discussion 219-20 [8177380.001]
  • [Cites] J Neurosurg. 1994 Sep;81(3):427-36 [8057151.001]
  • [Cites] Neurosurgery. 1994 Jun;34(6):967-72; discussion 972-3 [8084407.001]
  • [Cites] Brain Pathol. 1996 Jul;6(3):217-23; discussion 23-4 [8864278.001]
  • [Cites] Neurosurgery. 1996 Feb;38(2):258-64 [8869052.001]
  • [Cites] Cytogenet Cell Genet. 1996;72(2-3):100-12 [8978759.001]
  • [Cites] Cancer Res. 1997 Jan 15;57(2):304-9 [9000573.001]
  • [Cites] Brain Pathol. 1997 Apr;7(2):755-64 [9161727.001]
  • [Cites] J Neuropathol Exp Neurol. 1997 Jul;56(7):782-9 [9210874.001]
  • [Cites] Nat Genet. 1997 Sep;17(1):32-9 [9288095.001]
  • [Cites] Genes Chromosomes Cancer. 1998 May;22(1):9-15 [9591629.001]
  • [Cites] Acta Neuropathol. 1998 Jun;95(6):559-64 [9650746.001]
  • [Cites] J Neuropathol Exp Neurol. 1998 Jul;57(7):684-9 [9690672.001]
  • [Cites] Clin Cancer Res. 1999 Jul;5(7):1786-92 [10430083.001]
  • [Cites] Oncogene. 1999 Jul 15;18(28):4144-52 [10435596.001]
  • [Cites] Lab Invest. 2005 Feb;85(2):165-75 [15592495.001]
  • [Cites] Clin Cancer Res. 1999 Dec;5(12):4085-90 [10632344.001]
  • (PMID = 17327574.001).
  • [ISSN] 1522-8517
  • [Journal-full-title] Neuro-oncology
  • [ISO-abbreviation] Neuro-oncology
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 2.7.10.1 / Receptor, Platelet-Derived Growth Factor beta; EC 3.1.3.67 / PTEN Phosphohydrolase
  • [Other-IDs] NLM/ PMC1871665
  •  go-up   go-down


70. Zhang Y, Zhang N, Dai B, Liu M, Sawaya R, Xie K, Huang S: FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res; 2008 Nov 1;68(21):8733-42
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • We previously found that FoxM1B is overexpressed in human glioblastomas and that forced FoxM1B expression in anaplastic astrocytoma cells leads to the formation of highly angiogenic glioblastoma in nude mice.
  • Our findings provide both clinical and mechanistic evidence that FoxM1 contributes to glioma progression by enhancing VEGF gene transcription and thus tumor angiogenesis.

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neurosurg. 2000 Feb;92(2):326-33 [10659021.001]
  • [Cites] Genes Dev. 2008 Feb 15;22(4):449-62 [18258752.001]
  • [Cites] Cancer Res. 2000 Oct 15;60(20):5879-86 [11059786.001]
  • [Cites] Cancer Res. 2001 May 15;61(10):4143-54 [11358838.001]
  • [Cites] Genes Dev. 2001 Jun 1;15(11):1311-33 [11390353.001]
  • [Cites] Cancer Res. 2001 Sep 15;61(18):6885-91 [11559565.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Mar;61(3):215-25; discussion 226-9 [11895036.001]
  • [Cites] Oncogene. 2002 Mar 27;21(13):2058-65 [11960378.001]
  • [Cites] Am J Pathol. 2002 Jul;161(1):125-34 [12107097.001]
  • [Cites] Oncogene. 2002 Dec 5;21(55):8404-13 [12466961.001]
  • [Cites] Am J Pathol. 2003 Sep;163(3):1033-43 [12937144.001]
  • [Cites] Semin Cancer Biol. 2004 Apr;14(2):123-30 [15018896.001]
  • [Cites] Genes Dev. 2004 Apr 1;18(7):830-50 [15082532.001]
  • [Cites] BMC Cancer. 2003 Sep 17;3:23 [13678425.001]
  • [Cites] Lab Invest. 2004 Aug;84(8):941-51 [15184909.001]
  • [Cites] Cytokine Growth Factor Rev. 2004 Oct;15(5):297-324 [15450248.001]
  • [Cites] Nature. 1992 Oct 29;359(6398):843-5 [1279431.001]
  • [Cites] Brain Pathol. 1993 Jul;3(3):255-68 [8293185.001]
  • [Cites] J Neuropathol Exp Neurol. 1994 Jan;53(1):11-21 [8301315.001]
  • [Cites] J Biol Chem. 1995 Jun 2;270(22):13333-40 [7768934.001]
  • [Cites] Circ Res. 1995 Sep;77(3):638-43 [7641334.001]
  • [Cites] Mol Cell Biol. 1995 Oct;15(10):5363-8 [7565686.001]
  • [Cites] Nat Med. 1995 Jan;1(1):27-31 [7584949.001]
  • [Cites] Pediatr Neurosurg. 1996;24(1):41-9 [8817614.001]
  • [Cites] J Biol Chem. 1996 Nov 8;271(45):28220-8 [8910439.001]
  • [Cites] Mol Cell Biol. 1997 Mar;17(3):1626-41 [9032290.001]
  • [Cites] Nucleic Acids Res. 1997 May 1;25(9):1715-9 [9108152.001]
  • [Cites] J Biol Chem. 1997 Aug 8;272(32):19827-36 [9242644.001]
  • [Cites] Cancer Res. 1997 Sep 1;57(17):3860-4 [9288800.001]
  • [Cites] Mol Biol Cell. 1998 Feb;9(2):469-81 [9450968.001]
  • [Cites] Mod Pathol. 1998 Feb;11(2):155-68 [9504686.001]
  • [Cites] Int J Cancer. 1999 Mar 31;81(1):118-24 [10077162.001]
  • [Cites] Science. 1999 Apr 30;284(5415):808-12 [10221914.001]
  • [Cites] Curr Opin Oncol. 1999 May;11(3):162-7 [10328589.001]
  • [Cites] Nat Cell Biol. 2005 Feb;7(2):126-36 [15654331.001]
  • [Cites] Cancer Res. 2005 Mar 15;65(6):2065-9 [15781613.001]
  • [Cites] Int J Cancer. 2005 Jun 10;115(2):202-13 [15688401.001]
  • [Cites] Neuro Oncol. 2005 Apr;7(2):134-53 [15831232.001]
  • [Cites] Cancer Res. 2005 May 15;65(10):4051-8 [15899794.001]
  • [Cites] J Biol Chem. 2005 Jun 10;280(23):22278-86 [15817462.001]
  • [Cites] Cancer Res. 2005 Jun 15;65(12):5181-9 [15958562.001]
  • [Cites] Cancer Res. 2006 Feb 1;66(3):1712-20 [16452231.001]
  • [Cites] Cancer Res. 2006 Feb 15;66(4):2153-61 [16489016.001]
  • [Cites] Cancer Res. 2006 Apr 1;66(7):3593-602 [16585184.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 Jun;65(6):529-39 [16783163.001]
  • [Cites] Gastroenterology. 2007 Apr;132(4):1420-31 [17408638.001]
  • [Cites] Cancer Res. 2007 Sep 1;67(17):8293-300 [17804744.001]
  • [Cites] Oncogene. 2007 Sep 13;26(42):6212-9 [17404569.001]
  • [Cites] Clin Cancer Res. 2000 Jun;6(6):2562-72 [10873113.001]
  • (PMID = 18974115.001).
  • [ISSN] 1538-7445
  • [Journal-full-title] Cancer research
  • [ISO-abbreviation] Cancer Res.
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / CA-16672; United States / NCI NIH HHS / CA / P30 CA016672; United States / NCI NIH HHS / CA / R01 CA116528-03; United States / NCI NIH HHS / CA / CA116528-03; United States / NCI NIH HHS / CA / R01-CA-116528; United States / NCI NIH HHS / CA / R01 CA116528; United States / NCI NIH HHS / CA / R01 CA116528-02; United States / NCI NIH HHS / CA / CA116528-02
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / DNA Primers; 0 / FOXM1 protein, human; 0 / Forkhead Transcription Factors; 0 / Vascular Endothelial Growth Factor A
  • [Other-IDs] NLM/ NIHMS67455; NLM/ PMC2597644
  •  go-up   go-down


71. Martínez C, Molina JA, Alonso-Navarro H, Jiménez-Jiménez FJ, Agúndez JA, García-Martín E: Two common nonsynonymous paraoxonase 1 (PON1) gene polymorphisms and brain astrocytoma and meningioma. BMC Neurol; 2010;10:71
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Two common nonsynonymous paraoxonase 1 (PON1) gene polymorphisms and brain astrocytoma and meningioma.
  • Aiming to identify genetic variations related to the risk of developing brain tumors, we investigated the putative association between common nonsynonymous PON1 polymorphisms and the risk of developing astrocytoma and meningioma.
  • METHODS: Seventy one consecutive patients with brain tumors (43 with astrocytoma grade II/III and 28 with meningioma) with ages ranging 21 to 76 years, and 220 healthy controls subjects were analyzed for the frequency of the nonsynonymous PON1 genotypes L55M rs854560 and Q192R rs662.
  • RESULTS: The frequencies of the PON1 genotypes and allelic variants of the polymorphisms PON1 L55M and PON1 Q192R did not differ significantly between patients with astrocytoma and meningioma and controls.
  • The minor allele frequencies were as follows: PON1 55L, 0.398, 0.328 and 0.286 for patients with astrocytoma, meningioma and control individuals, respectively; PON1 192R, 0.341, 0.362 and 0.302 for patients with astrocytoma, meningioma and control individuals, respectively.
  • Haplotype association analyses did not identify any significant association with the risk of developing astrocytoma or meningioma.
  • CONCLUSIONS: Common nonsynonymous PON1 polymorphisms are not related with the risk of developing astrocytoma and meningioma.
  • [MeSH-major] Aryldialkylphosphatase / genetics. Astrocytoma / genetics. Brain Neoplasms / genetics. Meningeal Neoplasms / genetics. Meningioma / genetics

  • Genetic Alliance. consumer health - Meningioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Am J Ind Med. 1998 Sep;34(3):252-60 [9698994.001]
  • [Cites] Atherosclerosis. 1998 Aug;139(2):341-9 [9712341.001]
  • [Cites] Biochem Pharmacol. 1998 Sep 1;56(5):547-51 [9783722.001]
  • [Cites] Int J Cancer. 2005 Jan 1;113(1):116-25 [15386358.001]
  • [Cites] CA Cancer J Clin. 2005 Mar-Apr;55(2):74-108 [15761078.001]
  • [Cites] Environ Health Perspect. 2005 May;113(5):546-51 [15866761.001]
  • [Cites] Environ Health Perspect. 2005 Jul;113(7):909-13 [16002382.001]
  • [Cites] Liver Int. 2005 Oct;25(5):935-9 [16162149.001]
  • [Cites] Toxicology. 2005 Nov 15;215(3):182-90 [16102884.001]
  • [Cites] Occup Environ Med. 2005 Nov;62(11):786-92 [16234405.001]
  • [Cites] World J Gastroenterol. 2006 Jan 28;12(4):615-20 [16489678.001]
  • [Cites] Acta Neurol Scand. 2006 May;113(5):322-6 [16629768.001]
  • [Cites] Oncol Rep. 2006 Jun;15(6):1513-6 [16685388.001]
  • [Cites] Pharmacogenomics. 2006 Jul;7(5):711-8 [16886896.001]
  • [Cites] Cell Biochem Funct. 2006 Sep-Oct;24(5):455-60 [16142697.001]
  • [Cites] J Agric Saf Health. 2006 Nov;12(4):255-74 [17131948.001]
  • [Cites] Drug Metab Dispos. 2007 Feb;35(2):315-20 [17132760.001]
  • [Cites] Occup Environ Med. 2007 Aug;64(8):509-14 [17537748.001]
  • [Cites] Am J Hum Genet. 2007 Sep;81(3):559-75 [17701901.001]
  • [Cites] J Toxicol Environ Health B Crit Rev. 2007 Jan-Mar;10(1-2):81-99 [18074305.001]
  • [Cites] Pharmacogenet Genomics. 2008 Jan;18(1):37-43 [18216720.001]
  • [Cites] Am J Epidemiol. 2008 Apr 15;167(8):976-85 [18299277.001]
  • [Cites] Clin Chem. 2008 Aug;54(8):1390-4 [18664443.001]
  • [Cites] Curr Drug Metab. 2008 Jul;9(6):520-31 [18680472.001]
  • [Cites] Neuro Oncol. 2008 Oct;10(5):709-15 [18682580.001]
  • [Cites] Psychiatr Genet. 2008 Dec;18(6):289-94 [19018234.001]
  • [Cites] Toxicol Appl Pharmacol. 2009 Apr 15;236(2):142-53 [19371602.001]
  • [Cites] Cell Biochem Funct. 2009 Dec;27(8):558-67 [19902425.001]
  • [Cites] Environ Health Perspect. 2010 Jan;118(1):144-9 [20056567.001]
  • [Cites] Adv Exp Med Biol. 2010;660:47-60 [20221870.001]
  • [Cites] Eur J Neurol. 2010 Jun 1;17(6):879-81 [20050883.001]
  • [Cites] Chem Biol Interact. 2010 Sep 6;187(1-3):355-61 [20338154.001]
  • [Cites] Neuromolecular Med. 2010 Sep;12(3):217-23 [19826962.001]
  • [Cites] Cell Mol Biol (Noisy-le-grand). 1999 Feb;45(1):15-23 [10099836.001]
  • [Cites] Pharmacogenetics. 2000 Dec;10(9):767-79 [11191881.001]
  • [Cites] J Lipid Res. 2001 Apr;42(4):528-35 [11290824.001]
  • [Cites] Toxicol Appl Pharmacol. 2001 May 15;173(1):1-6 [11350209.001]
  • [Cites] Carcinogenesis. 2001 Aug;22(8):1323-6 [11470765.001]
  • [Cites] Environ Health Perspect. 2001 Sep;109(9):909-13 [11673119.001]
  • [Cites] Ann Diagn Pathol. 2002 Feb;6(1):44-8 [11842378.001]
  • [Cites] Curr Opin Lipidol. 2002 Aug;13(4):357-62 [12151850.001]
  • [Cites] Am J Ind Med. 2002 Sep;42(3):214-27 [12210690.001]
  • [Cites] Cancer Causes Control. 2003 Mar;14(2):139-50 [12749719.001]
  • [Cites] Br J Neurosurg. 2003 Apr;17(2):182-4 [12820764.001]
  • [Cites] Am J Hum Genet. 2003 Nov;73(5):1162-9 [14574645.001]
  • [Cites] J Mol Med (Berl). 2003 Dec;81(12):766-79 [14551701.001]
  • [Cites] J Natl Cancer Inst. 2004 Mar 17;96(6):434-42 [15026468.001]
  • [Cites] Am J Ind Med. 2004 May;45(5):395-407 [15095422.001]
  • [Cites] Curr Drug Metab. 2004 Jun;5(3):211-24 [15180491.001]
  • [Cites] Arch Pathol Lab Med. 1979 Dec;103(13):676-9 [583126.001]
  • [Cites] J Neurol. 1982;227(3):165-9 [6181224.001]
  • [Cites] Indian J Cancer. 1983 Mar;20(1A):86-8 [6873998.001]
  • [Cites] Am J Epidemiol. 1988 Oct;128(4):778-85 [3421243.001]
  • [Cites] Neurologia. 1988 Mar-Apr;3(2):68-70 [2856211.001]
  • [Cites] J Neurosci Nurs. 1992 Oct;24(5):260-4 [1328422.001]
  • [Cites] Am J Hum Genet. 1993 Mar;52(3):598-608 [7916578.001]
  • [Cites] Nat Genet. 1993 Jan;3(1):73-6 [8098250.001]
  • [Cites] Neurosurgery. 1995 Mar;36(3):599-604; discussion 604-5 [7753363.001]
  • [Cites] Cancer Res. 1995 Oct 1;55(19):4237-9 [7671227.001]
  • [Cites] J Neurosurg Sci. 1995 Mar;39(1):27-35 [8568553.001]
  • [Cites] Epidemiol Rev. 1995;17(2):382-414 [8654518.001]
  • [Cites] Curr Opin Lipidol. 1996 Apr;7(2):69-76 [8743898.001]
  • [Cites] Nat Genet. 1996 Nov;14(3):334-6 [8896566.001]
  • [Cites] Environ Health Perspect. 1998 Jun;106 Suppl 3:893-908 [9646054.001]
  • [Cites] Nature. 1998 Jul 16;394(6690):284-7 [9685159.001]
  • (PMID = 20723250.001).
  • [ISSN] 1471-2377
  • [Journal-full-title] BMC neurology
  • [ISO-abbreviation] BMC Neurol
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] EC 3.1.8.1 / Aryldialkylphosphatase; EC 3.1.8.1 / PON1 protein, human
  • [Other-IDs] NLM/ PMC2936881
  •  go-up   go-down


72. Mora J, Cruz O, Gala S, Navarro R: Successful treatment of childhood intramedullary spinal cord astrocytomas with irinotecan and cisplatin. Neuro Oncol; 2007 Jan;9(1):39-46
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Successful treatment of childhood intramedullary spinal cord astrocytomas with irinotecan and cisplatin.
  • Childhood spinal cord astrocytomas are rare diseases, and their management is controversial.
  • We report here our successful experience using irinotecan and cisplatin in three consecutive infants with progressing intramedullary astrocytomas.
  • The first patient was a 16-month-old girl who presented with a grade III intramedullary astrocytoma that rapidly progressed after surgery and adjuvant chemotherapy.
  • The second patient was a 19-month-old boy with a C3-T4 grade II intramedullary astrocytoma who received up-front vincristine and carboplatin for two months but remained clinically symptomatic.
  • A followup MRI showed a larger tumor, and the patient was switched to the I/C regimen.
  • The third patient was a 10-month-old girl with a C2-T3 grade II intramedullary astrocytoma.
  • MRI at the end of therapy showed a significant reduction in tumor size, and one year after diagnosis the patient remains symptom free.
  • Using this I/C regimen for childhood intramedullary astrocytoma, we obtained remarkable clinicoradiological responses while avoiding the use of radiotherapy.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Astrocytoma / drug therapy. Spinal Cord Neoplasms / drug therapy

  • Hazardous Substances Data Bank. CIS-DIAMINEDICHLOROPLATINUM .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Childs Nerv Syst. 2000 Jan;16(1):15-20 [10672424.001]
  • [Cites] J Clin Oncol. 1999 Jun;17(6):1815-24 [10561220.001]
  • [Cites] J Neurooncol. 2000 May;47(3):219-24 [11016738.001]
  • [Cites] J Neurooncol. 2000 May;47(3):231-8 [11016740.001]
  • [Cites] Cancer Res. 2001 Jan 1;61(1):53-8 [11196197.001]
  • [Cites] Clin Cancer Res. 2001 Jan;7(1):32-7 [11205914.001]
  • [Cites] Neuro Oncol. 1999 Apr;1(2):152-61 [11554387.001]
  • [Cites] Neuro Oncol. 2001 Oct;3(4):251-7 [11584895.001]
  • [Cites] Oncologist. 2001;6(6):506-16 [11743213.001]
  • [Cites] Neuro Oncol. 2002 Apr;4(2):102-8 [11916501.001]
  • [Cites] J Pediatr Hematol Oncol. 2002 Feb;24(2):84-5 [11990709.001]
  • [Cites] J Pediatr Hematol Oncol. 2002 Feb;24(2):101-5 [11990694.001]
  • [Cites] J Clin Oncol. 2002 Jul 1;20(13):2951-8 [12089224.001]
  • [Cites] J Clin Oncol. 2002 Oct 15;20(20):4209-16 [12377964.001]
  • [Cites] Clin Cancer Res. 2003 Feb;9(2):703-10 [12576438.001]
  • [Cites] Childs Nerv Syst. 2003 Sep;19(9):641-9 [12908118.001]
  • [Cites] J Clin Oncol. 2003 Oct 15;21(20):3844-52 [14551303.001]
  • [Cites] Med Dosim. 2004 Spring;29(1):7-10 [15023387.001]
  • [Cites] Pediatr Blood Cancer. 2004 Nov;43(6):629-32 [15390309.001]
  • [Cites] Pediatr Blood Cancer. 2004 Nov;43(6):617-8 [15452915.001]
  • [Cites] J Med Chem. 1989 Mar;32(3):715-20 [2537428.001]
  • [Cites] J Neurosurg. 1990 Apr;72(4):523-32 [2319309.001]
  • [Cites] Clin Oncol (R Coll Radiol). 1991 Jul;3(4):220-2 [1931763.001]
  • [Cites] N Engl J Med. 1993 Jun 17;328(24):1725-31 [8388548.001]
  • [Cites] J Clin Oncol. 1994 Jan;12(1):90-6 [7505810.001]
  • [Cites] Cancer Res. 1994 May 15;54(10):2636-42 [8168091.001]
  • [Cites] Cancer. 1995 Feb 15;75(4):1045-50 [7842407.001]
  • [Cites] Clin Neurol Neurosurg. 1997 Feb;99(1):1-5 [9107459.001]
  • [Cites] J Neurosurg. 1997 May;86(5):747-54 [9126887.001]
  • [Cites] J Neurosurg. 1998 Feb;88(2):215-20 [9452226.001]
  • [Cites] Pediatr Neurosurg. 1997 Jul;27(1):34-9 [9486834.001]
  • [Cites] Med Pediatr Oncol. 1998 May;30(5):311-2 [9544231.001]
  • [Cites] Cancer Chemother Pharmacol. 1998;41(6):485-90 [9554593.001]
  • [Cites] Cancer. 1998 Jun 1;82(11):2166-72 [9610696.001]
  • [Cites] Cancer Chemother Pharmacol. 1998;42(1):53-8 [9619758.001]
  • [Cites] Childs Nerv Syst. 1998 Jul;14(7):317-21 [9726582.001]
  • [Cites] Cancer. 1998 Dec 1;83(11):2391-9 [9840540.001]
  • [Cites] Childs Nerv Syst. 1999 Jan;15(1):17-28 [10066016.001]
  • [Cites] J Cancer Res Clin Oncol. 2005 Apr;131(4):205-13 [15583935.001]
  • [Cites] Cancer. 2005 Feb 15;103(4):858-62 [15637685.001]
  • [Cites] Neurosurgery. 2005 May;56(5):972-81; discussion 972-81 [15854245.001]
  • [Cites] Pediatr Blood Cancer. 2006 Jan;46(1):50-5 [15768380.001]
  • [Cites] Nature. 2005 Dec 15;438(7070):1017-21 [16355225.001]
  • [Cites] Br J Cancer. 1999 Nov;81(5):835-40 [10555754.001]
  • [Cites] J Neurosurg. 2000 Oct;93(2 Suppl):183-93 [11012047.001]
  • (PMID = 17108066.001).
  • [ISSN] 1522-8517
  • [Journal-full-title] Neuro-oncology
  • [ISO-abbreviation] Neuro-oncology
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 7673326042 / irinotecan; Q20Q21Q62J / Cisplatin; XT3Z54Z28A / Camptothecin
  • [Other-IDs] NLM/ PMC1828108
  •  go-up   go-down


73. Waha A, Felsberg J, Hartmann W, von dem Knesebeck A, Mikeska T, Joos S, Wolter M, Koch A, Yan PS, Endl E, Wiestler OD, Reifenberger G, Pietsch T, Waha A: Epigenetic downregulation of mitogen-activated protein kinase phosphatase MKP-2 relieves its growth suppressive activity in glioma cells. Cancer Res; 2010 Feb 15;70(4):1689-99
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Critical tumor suppression pathways in brain tumors have yet to be fully defined.
  • In 83 astrocytic gliomas and 5 glioma cell lines examined, hypermethylation of the MKP-2 promoter was found to occur relatively more frequently in diffuse or anaplastic astrocytomas and secondary glioblastomas relative to primary glioblastomas.
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Cell Line, Tumor. DNA Methylation. Down-Regulation / physiology. Female. Gene Expression Regulation, Neoplastic / physiology. Gene Silencing / physiology. Genes, Tumor Suppressor / physiology. Humans. Male. Middle Aged

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20124482.001).
  • [ISSN] 1538-7445
  • [Journal-full-title] Cancer research
  • [ISO-abbreviation] Cancer Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] EC 3.1.3.- / Mitogen-Activated Protein Kinase Phosphatases; EC 3.1.3.48 / DUSP4 protein, human; EC 3.1.3.48 / Dual-Specificity Phosphatases
  •  go-up   go-down


74. Pavlisa G, Rados M, Pavlisa G, Pavic L, Potocki K, Mayer D: The differences of water diffusion between brain tissue infiltrated by tumor and peritumoral vasogenic edema. Clin Imaging; 2009 Mar-Apr;33(2):96-101
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The differences of water diffusion between brain tissue infiltrated by tumor and peritumoral vasogenic edema.
  • The differences between peritumoral brain tissue infiltrated by tumor and vasogenic edema were prospectively evaluated by comparing the apparent diffusion coefficient (ADC) of peritumoral areas of infiltrative tumors (anaplastic astrocytomas and glioblastomas) to that of peritumoral areas of noninfiltrative tumors (metastatic carcinomas) on 54 patients.
  • Peritumoral ADCs indicated the possibility of differentiation between tumor infiltration and vasogenic edema, as well as between primary gliomas and metastases.
  • [MeSH-minor] Astrocytoma / diagnosis. Astrocytoma / pathology. Female. Glioblastoma / diagnosis. Glioblastoma / pathology. Humans. Male. Middle Aged

  • Genetic Alliance. consumer health - Edema.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19237051.001).
  • [ISSN] 1873-4499
  • [Journal-full-title] Clinical imaging
  • [ISO-abbreviation] Clin Imaging
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


75. Omar AI, Mason WP: Temozolomide: The evidence for its therapeutic efficacy in malignant astrocytomas. Core Evid; 2010 Jun 15;4:93-111
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Temozolomide: The evidence for its therapeutic efficacy in malignant astrocytomas.
  • INTRODUCTION: Malignant gliomas are a heterogeneous group of primary central nervous system neoplasms that represent less than 2% of all cancers yet carry a significant burden to society.
  • Temozolomide (TMZ) is a new second generation DNA alkylating agent that has become part of malignant astrocytoma management paradigms because of its proven efficacy, ease of administration, and favorable toxicity profile.
  • AIMS: To review the role of TMZ in the management of malignant astrocytomas (World Health Organization grades III and IV) including newly diagnosed (n) and recurrent (r) anaplastic astrocytomas (AA) and glioblastomas.
  • EVIDENCE REVIEW: A series of pivotal clinical trials have established a role for TMZ in the treatment of malignant astrocytomas.
  • A recent large prospective randomized phase III trial showed that the addition of TMZ during and after radiation therapy (RT) in newly diagnosed (nGBM) patients prolonged median overall survival by 2.5 months; perhaps more importantly, the 2-year survival rate for patients receiving TMZ and RT was 26% compared with 10% for those receiving RT alone.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Ann Intern Med. 2000 May 16;132(10):769-79 [10819699.001]
  • [Cites] Cancer. 2004 Nov 1;101(9):2098-105 [15389472.001]
  • [Cites] Oncol Rep. 2000 Jul-Aug;7(4):899-904 [10854567.001]
  • [Cites] Cancer. 2003 May 1;97(9):2262-6 [12712481.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Mar;61(3):215-25; discussion 226-9 [11895036.001]
  • [Cites] J Clin Oncol. 2004 May 1;22(9):1598-604 [15117981.001]
  • [Cites] J Clin Oncol. 2005 Apr 1;23(10):2372-7 [15800329.001]
  • [Cites] Br J Cancer. 2003 Apr 7;88(7):1004-11 [12671695.001]
  • [Cites] J Clin Oncol. 2004 May 1;22(9):1583-8 [15051755.001]
  • [Cites] J Oncol Pharm Pract. 2006 Jun;12(2):105-11 [16984749.001]
  • [Cites] N Engl J Med. 1980 Dec 4;303(23):1323-9 [7001230.001]
  • [Cites] Neurosurgery. 1998 Aug;43(2):398-9 [9696102.001]
  • [Cites] Neuro Oncol. 2002 Jan;4(1):39-43 [11772431.001]
  • [Cites] Cancer. 2004 May 15;100(10):2208-14 [15139066.001]
  • [Cites] Qual Life Res. 1996 Feb;5(1):139-50 [8901377.001]
  • [Cites] J Natl Cancer Inst. 1993 May 5;85(9):704-10 [8478956.001]
  • [Cites] J Clin Oncol. 2001 Jan 15;19(2):509-18 [11208845.001]
  • [Cites] J Neurosurg. 1993 May;78(5):767-75 [8468607.001]
  • [Cites] J Neurooncol. 2004 Mar-Apr;67(1-2):191-200 [15072467.001]
  • [Cites] Ann Oncol. 2001 Feb;12(2):259-66 [11300335.001]
  • [Cites] Trends Biochem Sci. 1995 Oct;20(10):421-6 [8533156.001]
  • [Cites] Health Technol Assess. 2001;5(13):1-73 [11359682.001]
  • [Cites] Cancer. 1993 Oct 1;72(7):2227-33 [8374881.001]
  • [Cites] Mayo Clin Proc. 2007 Jun;82(6):771-3 [17550757.001]
  • [Cites] Int J Cancer. 1999 Mar 1;80(5):764-72 [10048980.001]
  • [Cites] Anticancer Drugs. 2004 Jun;15(5):499-502 [15166625.001]
  • [Cites] Brain Pathol. 1995 Apr;5(2):145-51 [7670655.001]
  • [Cites] Radiother Oncol. 2001 May;59(2):127-37 [11325440.001]
  • [Cites] Eur J Cancer. 1996 Dec;32A(13):2236-41 [9038604.001]
  • [Cites] Crit Rev Oncol Hematol. 2007 Jul;63(1):72-80 [17478095.001]
  • [Cites] Nat Clin Pract Oncol. 2006 Jun;3(6):339-43; quiz following 343 [16757971.001]
  • [Cites] Cancer Treat Rev. 2006 Oct;32(6):483-6 [16730911.001]
  • [Cites] J Clin Oncol. 1990 Jul;8(7):1277-80 [2358840.001]
  • [Cites] Neuro Oncol. 2005 Apr;7(2):189-95 [15831237.001]
  • [Cites] Neuro Oncol. 1999 Apr;1(2):124-37 [11550308.001]
  • [Cites] J Clin Oncol. 2006 Jun 1;24(16):2563-9 [16735709.001]
  • [Cites] Semin Radiat Oncol. 2001 Apr;11(2):163-9 [11285554.001]
  • [Cites] Expert Rev Anticancer Ther. 2006 Nov;6(11):1593-607 [17134364.001]
  • [Cites] Br J Cancer. 1992 Feb;65(2):287-91 [1739631.001]
  • [Cites] N Engl J Med. 2007 Apr 12;356(15):1527-35 [17429084.001]
  • [Cites] J Clin Oncol. 2006 Jan 1;24(1):4-5 [16314613.001]
  • [Cites] J Neuropathol Exp Neurol. 2005 Jun;64(6):479-89 [15977639.001]
  • [Cites] J Natl Cancer Inst. 1993 Mar 3;85(5):365-76 [8433390.001]
  • [Cites] Oncology (Williston Park). 1998 Apr;12(4):537-43, 547; discussion 547-8, 553 [9575527.001]
  • [Cites] Mol Cancer Ther. 2002 Nov;1(13):1229-36 [12479704.001]
  • [Cites] Cancer Res. 2004 Oct 1;64(19):6892-9 [15466178.001]
  • [Cites] Oncology. 2002;63(1):38-41 [12187069.001]
  • [Cites] J Natl Cancer Inst. 2006 Nov 1;98(21):1528-37 [17077355.001]
  • [Cites] Acta Neuropathol. 2007 Aug;114(2):97-109 [17618441.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2005 Feb 1;61(2):380-6 [15667956.001]
  • [Cites] No Shinkei Geka. 1992 Apr;20(4):493-7 [1570077.001]
  • [Cites] Eur J Cancer. 1993;29A(7):940-2 [8499146.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):997-1003 [15758010.001]
  • [Cites] Neuro Oncol. 1999 Jul;1(3):169-76 [11550311.001]
  • [Cites] Acta Oncol. 2004;43(6):579-84 [15370616.001]
  • [Cites] Ann Oncol. 1998 Jun;9(6):589-600 [9681071.001]
  • [Cites] J BUON. 2002 Jan-Mar;7(1):35-41 [17577258.001]
  • [Cites] Oncologist. 2006 Feb;11(2):165-80 [16476837.001]
  • [Cites] Cancer. 1983 Sep 15;52(6):997-1007 [6349785.001]
  • [Cites] Br J Neurosurg. 2002 Aug;16(4):335-42 [12389885.001]
  • [Cites] J Clin Oncol. 2005 Oct 1;23(28):7178-87 [16192602.001]
  • [Cites] Ann Oncol. 2005 Jun;16(6):942-9 [15870090.001]
  • [Cites] J Pharmacol Exp Ther. 2000 Aug;294(2):664-71 [10900246.001]
  • [Cites] Cancer. 2006 Jan 1;106(1):172-9 [16323194.001]
  • [Cites] J Clin Oncol. 2007 Jun 20;25(18):2601-6 [17577040.001]
  • [Cites] Anticancer Res. 2006 Nov-Dec;26(6C):4675-86 [17214326.001]
  • [Cites] J Clin Oncol. 1998 Jan;16(1):139-44 [9440735.001]
  • [Cites] J Neurosurg. 1989 Jul;71(1):1-9 [2661738.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):987-96 [15758009.001]
  • [Cites] Acta Neurochir (Wien). 2003 Jan;145(1):5-10 [12545256.001]
  • [Cites] J Clin Oncol. 1999 Aug;17(8):2572-8 [10561324.001]
  • [Cites] Qual Life Res. 1996 Dec;5(6):555-67 [8993101.001]
  • [Cites] J Neurooncol. 2007 Feb;81(3):295-303 [17001519.001]
  • [Cites] J Clin Oncol. 2002 Mar 1;20(5):1375-82 [11870182.001]
  • [Cites] J Clin Oncol. 1999 Sep;17(9):2762-71 [10561351.001]
  • [Cites] J Clin Oncol. 2006 Sep 20;24(27):4412-7 [16983109.001]
  • [Cites] Nat Rev Cancer. 2004 Apr;4(4):296-307 [15057289.001]
  • [Cites] Biochemistry. 1994 Aug 9;33(31):9045-51 [8049205.001]
  • [Cites] Cancer. 2004 Apr 15;100(8):1712-6 [15073861.001]
  • [Cites] Am J Clin Oncol. 2002 Dec;25(6):606-11 [12478010.001]
  • [Cites] N Engl J Med. 1977 Mar 31;296(13):716-21 [402576.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2000 Jun 1;47(3):779-84 [10837964.001]
  • [Cites] J Clin Oncol. 2000 Apr;18(7):1481-91 [10735896.001]
  • [Cites] Lancet. 2002 Mar 23;359(9311):1011-8 [11937180.001]
  • [Cites] Anticancer Drugs. 1997 Jan;8(1):92-7 [9147618.001]
  • [Cites] Br J Cancer. 2004 Sep 13;91(6):1038-44 [15305187.001]
  • [Cites] J Neurooncol. 2007 Feb;81(3):271-7 [17031561.001]
  • [Cites] Br J Cancer. 2000 Sep;83(5):588-93 [10944597.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1996 Sep 1;36(2):433-41 [8892469.001]
  • [Cites] Neuro Oncol. 2004 Jan;6(1):38-43 [14769139.001]
  • [Cites] Neuroepidemiology. 2006;27(1):55-6 [16825795.001]
  • [Cites] Br J Cancer. 2003 Jul 21;89(2):248-51 [12865911.001]
  • [Cites] Curr Mol Med. 2003 Feb;3(1):73-84 [12558076.001]
  • [Cites] J Neurooncol. 1994;21(2):135-40 [7861189.001]
  • [Cites] J Clin Oncol. 2002 Mar 1;20(5):1383-8 [11870183.001]
  • [Cites] Eur J Cancer. 2000 Sep;36(14):1788-95 [10974627.001]
  • [Cites] J Neurooncol. 2004 Jan;66(1-2):203-8 [15015788.001]
  • [Cites] J Neurosurg. 2003 Sep;99(3):467-73 [12959431.001]
  • [Cites] Pharmacoeconomics. 2005;23(8):803-15 [16097842.001]
  • [Cites] J Neurooncol. 2007 Mar;82(1):85-9 [17031555.001]
  • [Cites] J Health Econ. 1988 Sep;7(3):289-90 [10291478.001]
  • [Cites] Clin Cancer Res. 2004 Jun 1;10(11):3728-36 [15173079.001]
  • [Cites] J Neurosurg. 2001 Aug;95(2):190-8 [11780887.001]
  • [Cites] Int J Radiat Biol. 2002 Oct;78(10):931-6 [12465658.001]
  • (PMID = 20694068.001).
  • [ISSN] 1555-175X
  • [Journal-full-title] Core evidence
  • [ISO-abbreviation] Core Evid
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] New Zealand
  • [Other-IDs] NLM/ PMC2899776
  • [Keywords] NOTNLM ; anaplastic astrocytoma / evidence / glioblastoma / glioma / malignant astrocytoma / temozolomide
  •  go-up   go-down


76. Guan X, Lai S, Lackey J, Shi J, Techavipoo U, Moulding HD, Flanders AE, Andrews DW: Revisiting anaplastic astrocytomas II: further characterization of an expansive growth pattern with visually enhanced diffusion tensor imaging. J Magn Reson Imaging; 2008 Dec;28(6):1322-36
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Revisiting anaplastic astrocytomas II: further characterization of an expansive growth pattern with visually enhanced diffusion tensor imaging.
  • PURPOSE: To seek to distinguish and visualize the different magnetic resonance imaging (MRI) growth patterns among malignant gliomas utilizing visually enhanced diffusion tensor imaging (DTI).
  • MATERIALS AND METHODS: Nineteen consecutive patients undergoing image-guided resection of a newly diagnosed malignant glioma underwent add-on acquisition of DTI data based on an Institutional Review Board (IRB)-approved imaging protocol during preoperative MRI scans for routine intraoperative image guidance.
  • Tumor growth patterns were assigned to expansive or mixed/infiltrative classes as described in the companion article (24).
  • Infiltrating tumors were WHO Grade IV astrocytomas and all expansive tumors were either WHO Grade III astrocytomas or WHO Grade II astrocytomas.
  • DTI-based white matter tractography was conducted and the DTI data were fused with anatomical images using an in-house software package we developed to enhance the visualization of the tumor/fiber interface.
  • RESULTS: Out of the 19 tumor patients studied, 11 had infiltrative tumors and the other 8 had expansive tumors.
  • While less clear with 2D axial diffusion color maps, visually enhanced 3D reconstructions of the tumor/fiber interface successfully corroborated distinctive growth patterns.
  • This was particularly evident when viewed in 3D video loops of each tumor/fiber interface.
  • CONCLUSION: We have successfully developed software that visually enhances the anatomic details of the tumor/fiber interface in patients with anaplastic astrocytomas.
  • These data support the existence of a subgroup of patients within the WHO Grade III classification with expansive tumors and a significantly better prognosis.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Diffusion Magnetic Resonance Imaging / methods. Image Enhancement / methods. Image Processing, Computer-Assisted
  • [MeSH-minor] Adult. Aged. Female. Humans. Imaging, Three-Dimensional. Magnetic Resonance Imaging, Interventional. Male. Middle Aged. Neoplasm Staging

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2008 Wiley-Liss, Inc.
  • (PMID = 19025901.001).
  • [ISSN] 1053-1807
  • [Journal-full-title] Journal of magnetic resonance imaging : JMRI
  • [ISO-abbreviation] J Magn Reson Imaging
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


77. Zhang L, Zhang WP, Hu H, Wang ML, Sheng WW, Yao HT, Ding W, Chen Z, Wei EQ: Expression patterns of 5-lipoxygenase in human brain with traumatic injury and astrocytoma. Neuropathology; 2006 Apr;26(2):99-106
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression patterns of 5-lipoxygenase in human brain with traumatic injury and astrocytoma.
  • However, there is still no information available for the expression patterns of 5-LOX in human brain following trauma or with astrocytomas.
  • Furthermore, 5-LOX expression increased and showed a granular pattern in high-grade (grade III/IV) astrocytoma.
  • [MeSH-major] Arachidonate 5-Lipoxygenase / biosynthesis. Astrocytoma / metabolism. Brain / metabolism. Brain Injuries / metabolism. Brain Neoplasms / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16708542.001).
  • [ISSN] 0919-6544
  • [Journal-full-title] Neuropathology : official journal of the Japanese Society of Neuropathology
  • [ISO-abbreviation] Neuropathology
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Australia
  • [Chemical-registry-number] 0 / Glial Fibrillary Acidic Protein; EC 1.13.11.34 / Arachidonate 5-Lipoxygenase
  •  go-up   go-down


78. Murakami H, Sawa H, Kamada H: [Expression of cyclooxygenase (COX)-2 in astrocytic tumors and anti-tumor effects of selective COX-2 inhibitors]. No To Shinkei; 2006 Jan;58(1):43-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Expression of cyclooxygenase (COX)-2 in astrocytic tumors and anti-tumor effects of selective COX-2 inhibitors].
  • Cyclooxygenase (COX)-2 of astrocytic tumors was studied by immunohistochemistry.
  • COX-2 was expressed in 8 of 12 (75%) glioblastoma multiforme, 1 of 7 (14%) anaplastic astrocytoma, but none in astrocytoma.
  • The result showed that COX-2 expression may be related with histological grades and COX-2 inhibitors will be one of promising therapeutic tools in human astrocytic tumors.
  • [MeSH-major] Astrocytoma / enzymology. Cyclooxygenase 2 / analysis. Cyclooxygenase 2 Inhibitors / therapeutic use
  • [MeSH-minor] Adult. Aged. Etodolac / pharmacology. Female. Glioblastoma / drug therapy. Glioblastoma / enzymology. Humans. Immunoblotting. Immunohistochemistry. Male. Middle Aged. Nitrobenzenes / pharmacology. Sulfonamides / pharmacology. Tumor Cells, Cultured

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16482921.001).
  • [ISSN] 0006-8969
  • [Journal-full-title] Nō to shinkei = Brain and nerve
  • [ISO-abbreviation] No To Shinkei
  • [Language] jpn
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] Japan
  • [Chemical-registry-number] 0 / Cyclooxygenase 2 Inhibitors; 0 / Nitrobenzenes; 0 / Sulfonamides; 123653-11-2 / N-(2-cyclohexyloxy-4-nitrophenyl)methanesulfonamide; 2M36281008 / Etodolac; EC 1.14.99.1 / Cyclooxygenase 2
  •  go-up   go-down


79. Jang FF, Wei W, De WM: Vascular endothelial growth factor and basic fibroblast growth factor expression positively correlates with angiogenesis and peritumoural brain oedema in astrocytoma. J Ayub Med Coll Abbottabad; 2008 Apr-Jun;20(2):105-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Vascular endothelial growth factor and basic fibroblast growth factor expression positively correlates with angiogenesis and peritumoural brain oedema in astrocytoma.
  • BACKGROUND: Astrocytoma is the most malignant intracranial neoplasm and is characterized by high neovascularization and peritumoural brain oedema.
  • METHODS: The expression of two angiogenic growth factors, vascular endothelial growth factor and basic fibroblast growth factor were investigated using immunohistochemistry for astrocytoma from 82 patients and 11 normal human tissues.
  • RESULTS: The expression of vascular endothelial growth factor and basic fibroblast growth factor positively correlate with the pathological grade of astrocytoma, microvessel density numbers and brain oedema, which may be responsible for the increased tumour neovascularization and peritumoural brain oedema.
  • CONCLUSION: The results support the idea that inhibiting vascular endothelial growth factor and basic fibroblast growth factor are useful for the treatment of human astrocytoma and to improve patient's clinical outcomes and prognosis.
  • [MeSH-major] Astrocytoma / blood supply. Brain Edema / etiology. Brain Neoplasms / blood supply. Fibroblast Growth Factor 2 / biosynthesis. Neovascularization, Pathologic / metabolism. Vascular Endothelial Growth Factor A / biosynthesis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19385471.001).
  • [ISSN] 1025-9589
  • [Journal-full-title] Journal of Ayub Medical College, Abbottabad : JAMC
  • [ISO-abbreviation] J Ayub Med Coll Abbottabad
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Pakistan
  • [Chemical-registry-number] 0 / Vascular Endothelial Growth Factor A; 103107-01-3 / Fibroblast Growth Factor 2
  •  go-up   go-down


80. Opstad KS, Bell BA, Griffiths JR, Howe FA: An investigation of human brain tumour lipids by high-resolution magic angle spinning 1H MRS and histological analysis. NMR Biomed; 2008 Aug;21(7):677-85
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Presaturation spectra were acquired from 24 adult human astrocytoma biopsy samples of grades II (8), III (2) and IV (14) using HRMAS 1H MRS and quantified using LCModel to determine lipid concentrations.
  • Droplet sizes ranged from 1 to 10 microm in diameter, and the size distribution was constant independent of tumour grade.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright (c) 2008 John Wiley & Sons, Ltd.
  • (PMID = 18186027.001).
  • [ISSN] 0952-3480
  • [Journal-full-title] NMR in biomedicine
  • [ISO-abbreviation] NMR Biomed
  • [Language] eng
  • [Grant] United Kingdom / Cancer Research UK / / C1459/A2592
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Lipids; 0 / Oxazines; P476F1L81G / nile red
  •  go-up   go-down


81. Tilleul P, Brignone M, Hassani Y, Taillandier L, Taillibert S, Cartalat-Carel S, Borget I, Chinot O: [Prescription guidebook for temozolomide usage in brain tumors]. Bull Cancer; 2009 May;96(5):579-89
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Transliterated title] Guide de prescription et de bon usage du témozolomide dans les tumeurs cérébrales.
  • Malignant gliomas are the most frequent primary brain tumors in adults.
  • Temozolomide is an oral alkylating cytotoxic agent of second generation, used in the treatment of high-grade gliomas.
  • It is indicated in newly diagnosed glioblastoma multiform as well as in recurrent or progressive malignant gliomas, such as glioblastoma multiform or anaplastic astrocytoma.
  • The literature review was analysed by experts who determined the evidence level (A to E) according to the scale of recommendations adopted by the "Haute Autorité de santé--HAS--(French National Authority for Health)".
  • For high-grade and low-grade gliomas, based on the level of evidence from the literature, the use of temozolomide can be justified, with a B2 score attributed to these indications.
  • [MeSH-minor] Age Factors. Astrocytoma / drug therapy. Drug Administration Schedule. Drug Labeling. Glioblastoma / drug therapy. Humans

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. DACARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19467988.001).
  • [ISSN] 1769-6917
  • [Journal-full-title] Bulletin du cancer
  • [ISO-abbreviation] Bull Cancer
  • [Language] fre
  • [Publication-type] English Abstract; Journal Article; Practice Guideline; Review
  • [Publication-country] France
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide
  • [Number-of-references] 55
  •  go-up   go-down


82. Ray WZ, Blackburn SL, Casavilca-Zambrano S, Barrionuevo C, Orrego JE, Heinicke H, Dowling JL, Perry A: Clinicopathologic features of recurrent dysembryoplastic neuroepithelial tumor and rare malignant transformation: a report of 5 cases and review of the literature. J Neurooncol; 2009 Sep;94(2):283-92
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Clinicopathologic features of recurrent dysembryoplastic neuroepithelial tumor and rare malignant transformation: a report of 5 cases and review of the literature.
  • More recently, case reports have described malignant gliomas arising after irradiation and recurrences following subtotal or even gross total resection.
  • Nonetheless, a probably radiation induced anaplastic astrocytoma was encountered in one case 7 years after therapy.
  • These findings suggest that these patients may need closer follow-up than initially suggested, lending further support to the notion that this tumor behaves more like a benign neoplasm, rather than a dysplastic or hamartomatous lesion.
  • [MeSH-major] Brain Neoplasms / pathology. Cell Transformation, Neoplastic / pathology. Neoplasm Recurrence, Local / diagnosis. Neoplasms, Neuroepithelial / pathology


83. Cabrera-Muñoz E, González-Arenas A, Saqui-Salces M, Camacho J, Larrea F, García-Becerra R, Camacho-Arroyo I: Regulation of progesterone receptor isoforms content in human astrocytoma cell lines. J Steroid Biochem Mol Biol; 2009 Jan;113(1-2):80-4
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Regulation of progesterone receptor isoforms content in human astrocytoma cell lines.
  • Both PR isoforms have been detected in human astrocytomas, the most common and aggressive primary brain tumours, but their regulation and function are unknown.
  • We studied the effects of estradiol, progesterone and their receptor antagonists (ICI 182,780 and RU 486) on PR isoforms content in U373 and D54 human astrocytoma cell lines, respectively derived from grades III and IV astrocytomas, by Western blot analysis.
  • Our results suggest a differential PR isoforms regulation depending on the evolution grade of human astrocytoma cells, and an inhibitory role of PR-A on progesterone effects on astrocytomas cell growth.
  • [MeSH-major] Astrocytoma / metabolism. Receptors, Progesterone / metabolism
  • [MeSH-minor] Cell Line, Tumor. Cell Proliferation. Humans. Protein Isoforms / metabolism. Transfection

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19095059.001).
  • [ISSN] 0960-0760
  • [Journal-full-title] The Journal of steroid biochemistry and molecular biology
  • [ISO-abbreviation] J. Steroid Biochem. Mol. Biol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Protein Isoforms; 0 / Receptors, Progesterone
  •  go-up   go-down


84. Dreyfuss JM, Johnson MD, Park PJ: Meta-analysis of glioblastoma multiforme versus anaplastic astrocytoma identifies robust gene markers. Mol Cancer; 2009 Sep 04;8:71
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Meta-analysis of glioblastoma multiforme versus anaplastic astrocytoma identifies robust gene markers.
  • BACKGROUND: Anaplastic astrocytoma (AA) and its more aggressive counterpart, glioblastoma multiforme (GBM), are the most common intrinsic brain tumors in adults and are almost universally fatal.
  • A deeper understanding of the molecular relationship of these tumor types is necessary to derive insights into the diagnosis, prognosis, and treatment of gliomas.
  • Although genomewide profiling of expression levels with microarrays can be used to identify differentially expressed genes between these tumor types, comparative studies so far have resulted in gene lists that show little overlap.
  • CONCLUSION: We have performed a meta-analysis of genome-scale mRNA expression data for 289 human malignant gliomas and have identified a list of >900 probe sets and >20 pathways that are significantly different between GBM and AA.
  • These feature lists could be utilized to aid in diagnosis, prognosis, and grade reduction of high-grade gliomas and to identify genes that were not previously suspected of playing an important role in glioma biology.

  • Genetic Alliance. consumer health - Glioblastoma.
  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Br J Cancer. 1999 Dec;81(8):1371-7 [10604735.001]
  • [Cites] Mol Endocrinol. 2000 Jun;14(6):848-62 [10847587.001]
  • [Cites] J Biol Chem. 2000 Jul 7;275(27):20315-23 [10783396.001]
  • [Cites] BMC Bioinformatics. 2008;9:63 [18226260.001]
  • [Cites] Genomics. 2008 May;91(5):395-406 [18343632.001]
  • [Cites] Mol Cancer Ther. 2008 May;7(5):1013-24 [18445660.001]
  • [Cites] Biochem Biophys Res Commun. 2008 Sep 5;373(4):539-44 [18590702.001]
  • [Cites] Nature. 2008 Oct 23;455(7216):1061-8 [18772890.001]
  • [Cites] BMC Bioinformatics. 2009;10:1 [19118496.001]
  • [Cites] Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6 [11134512.001]
  • [Cites] FASEB J. 2001 Feb;15(2):458-66 [11156961.001]
  • [Cites] Am J Pathol. 2002 Apr;160(4):1279-92 [11943713.001]
  • [Cites] Cancer Res. 2002 Aug 1;62(15):4427-33 [12154050.001]
  • [Cites] Am J Pathol. 2002 Nov;161(5):1695-700 [12414516.001]
  • [Cites] Cancer Res. 2002 Nov 1;62(21):6205-10 [12414648.001]
  • [Cites] Acta Neuropathol. 2003 Jan;105(1):49-57 [12471461.001]
  • [Cites] Pancreas. 2003 Jan;26(1):56-64 [12499918.001]
  • [Cites] Nucleic Acids Res. 2003 Feb 15;31(4):e15 [12582260.001]
  • [Cites] Cancer Res. 2003 Mar 1;63(5):1138-43 [12615733.001]
  • [Cites] Cancer Res. 2003 Apr 1;63(7):1602-7 [12670911.001]
  • [Cites] Oncogene. 2003 Apr 17;22(15):2361-73 [12700671.001]
  • [Cites] Genome Biol. 2003;4(4):210 [12702200.001]
  • [Cites] Nat Genet. 2003 Jul;34(3):267-73 [12808457.001]
  • [Cites] Bioinformatics. 2003;19 Suppl 1:i84-90 [12855442.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 [12883005.001]
  • [Cites] Surg Neurol. 2003 Nov;60(5):402-6; discussion 406 [14572960.001]
  • [Cites] Clin Cancer Res. 2004 Jan 1;10(1 Pt 1):212-21 [14734472.001]
  • [Cites] Bioinformatics. 2004 Feb 12;20(3):307-15 [14960456.001]
  • [Cites] Nat Biotechnol. 2004 May;22(5):615-21 [15122300.001]
  • [Cites] FEBS Lett. 2004 Aug 27;573(1-3):83-92 [15327980.001]
  • [Cites] Cancer Res. 2004 Sep 15;64(18):6503-10 [15374961.001]
  • [Cites] Genome Biol. 2004;5(10):R80 [15461798.001]
  • [Cites] Mol Cell Biol. 1996 Sep;16(9):4604-13 [8756616.001]
  • [Cites] J Biol Chem. 1996 Dec 20;271(51):32529-37 [8955077.001]
  • [Cites] Cancer Res. 1999 Feb 15;59(4):895-900 [10029081.001]
  • [Cites] Cancer Res. 1999 Aug 15;59(16):3915-8 [10463582.001]
  • [Cites] BMC Bioinformatics. 2004 Oct 25;5:159 [15504239.001]
  • [Cites] Bioinformatics. 2004 Nov 22;20(17):3166-78 [15231529.001]
  • [Cites] Genome Biol. 2005;6(2):R16 [15693945.001]
  • [Cites] Cancer Res. 2005 Mar 1;65(5):1678-86 [15753362.001]
  • [Cites] Clin Cancer Res. 2005 May 1;11(9):3326-34 [15867231.001]
  • [Cites] Nat Methods. 2005 May;2(5):345-50 [15846361.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13544-9 [16174746.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [16199517.001]
  • [Cites] J Bioinform Comput Biol. 2005 Oct;3(5):1171-89 [16278953.001]
  • [Cites] Nat Rev Genet. 2006 Jan;7(1):55-65 [16369572.001]
  • [Cites] Cancer Res. 2006 Jan 1;66(1):159-67 [16397228.001]
  • [Cites] Cancer Cell. 2006 Mar;9(3):157-73 [16530701.001]
  • [Cites] Cancer Cell. 2006 Apr;9(4):287-300 [16616334.001]
  • [Cites] J Neurooncol. 2006 Jul;78(3):233-47 [16612574.001]
  • [Cites] Biom J. 2006 Jun;48(3):435-50 [16845907.001]
  • [Cites] BMC Bioinformatics. 2006;7:359 [16872483.001]
  • [Cites] Nucleic Acids Res. 2007 Jan;35(Database issue):D760-5 [17099226.001]
  • [Cites] Clin Cancer Res. 2007 Feb 15;13(4):1253-9 [17317837.001]
  • [Cites] Am J Pathol. 2007 May;170(5):1445-53 [17456751.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11736-41 [17606927.001]
  • [Cites] Cancer Res. 2007 Nov 1;67(21):10296-303 [17974971.001]
  • [Cites] Neurosurg Rev. 2008 Jan;31(1):83-9; discussion 89-90 [17917751.001]
  • [Cites] Comput Biol Chem. 2008 Feb;32(1):38-46 [17988949.001]
  • [Cites] Bioinformatics. 2008 Feb 1;24(3):374-82 [18204063.001]
  • [Cites] Ann Vasc Surg. 2008 Mar;22(2):273-84 [18346582.001]
  • (PMID = 19732454.001).
  • [ISSN] 1476-4598
  • [Journal-full-title] Molecular cancer
  • [ISO-abbreviation] Mol. Cancer
  • [Language] ENG
  • [Grant] United States / NIGMS NIH HHS / GM / R01 GM082798; United States / NIH HHS / OD / DP2 OD002319; United States / NIH HHS / OD / DP2OD002319; United States / NLM NIH HHS / LM / U54 LM008748; United States / NLM NIH HHS / LM / U54LM008748
  • [Publication-type] Journal Article; Meta-Analysis; Research Support, N.I.H., Extramural
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / HIF1A protein, human; 0 / Hypoxia-Inducible Factor 1, alpha Subunit; 0 / VEGFA protein, human; 0 / Vascular Endothelial Growth Factor A
  • [Other-IDs] NLM/ PMC2743637
  •  go-up   go-down


85. Zhang K, Li C, Liu Y, Li L, Ma X, Meng X, Feng D: Evaluation of invasiveness of astrocytoma using 1H-magnetic resonance spectroscopy: correlation with expression of matrix metalloproteinase-2. Neuroradiology; 2007 Nov;49(11):913-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Evaluation of invasiveness of astrocytoma using 1H-magnetic resonance spectroscopy: correlation with expression of matrix metalloproteinase-2.
  • INTRODUCTION: Even low-grade astrocytomas infiltrate the entire brain, a feature that precludes their successful therapy.
  • So to assess the invasive potential of astrocytoma is very important.
  • The aim of this study was determine whether there is a significant correlation between the results of (1)H-magnetic resonance spectroscopy ((1)H-MRS) and tumor invasive potential of astrocytoma, which is reflected by expression of matrix metalloproteinase-2 (MMP-2).
  • METHODS: The (1)H-MRS spectra of 41 histologically verified astrocytomas were obtained on a 3-T MR scanner.
  • According to the World Health Organization classification criteria for central nervous system tumors, there were 16 low-grade astrocytomas (2 pilocytic astrocytomas, 14 grade II astrocytomas) and 25 high-grade astrocytomas (5 anaplastic astrocytomas, 20 glioblastomas).The choline/N-acetylaspartate (Cho/NAA) and choline/creatine (Cho/Cr) ratios were calculated.
  • Of the 41 astrocytomas, 19 (8 low-grade and 11 high-grade) were analyzed immunohistochemically.
  • The correlations between metabolite ratios and the quantitative data from the immunohistochemical tests in the 19 astrocytomas were determined.
  • RESULTS: The Cho/NAA and Cho/Cr ratios of high-grade astrocytoma were both significantly greater than those of low-grade astrocytoma (t = -6.222, P = 0.000; t = -6.533, P = 0.000, respectively).
  • MMP-2 COD values of high-grade astrocytomas were also significantly greater than those of low-grade astrocytomas (t = -5.892, P = 0.000).
  • CONCLUSION: (1)H-MRS is helpful in evaluating the invasiveness of astrocytomas and predicting prognosis preoperatively by determining the Cho/NAA and Cho/Cr ratios.
  • [MeSH-major] Astrocytoma / metabolism. Astrocytoma / pathology. Brain Neoplasms / metabolism. Brain Neoplasms / pathology. Magnetic Resonance Spectroscopy. Matrix Metalloproteinase 2 / metabolism
  • [MeSH-minor] Adolescent. Adult. Aged. Aspartic Acid / analogs & derivatives. Aspartic Acid / metabolism. Choline / metabolism. Creatine / metabolism. Female. Humans. Male. Middle Aged. Neoplasm Invasiveness. Predictive Value of Tests. Treatment Outcome

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. (L)-ASPARTIC ACID .
  • Hazardous Substances Data Bank. CREATINE .
  • Hazardous Substances Data Bank. CHOLINE CHLORIDE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Nat Rev Mol Cell Biol. 2002 Mar;3(3):207-14 [11994741.001]
  • [Cites] Int J Dev Neurosci. 1999 Aug-Oct;17(5-6):495-502 [10571411.001]
  • [Cites] Neuroradiology. 2006 May;48(5):312-8 [16552583.001]
  • [Cites] Radiology. 2006 Mar;238(3):958-69 [16424238.001]
  • [Cites] Pharmacol Res. 2002 Aug;46(2):155-63 [12220955.001]
  • [Cites] J Neurooncol. 2000 Dec;50(3):215-26 [11263501.001]
  • [Cites] NMR Biomed. 2004 Feb;17(1):10-20 [15011246.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8904-9 [12861074.001]
  • [Cites] AJNR Am J Neuroradiol. 1999 Jan;20(1):117-23 [9974066.001]
  • [Cites] Br J Cancer. 2000 Jan;82(1):52-5 [10638966.001]
  • [Cites] J Neurooncol. 2003 Jul;63(3):233-45 [12892229.001]
  • [Cites] Stereotact Funct Neurosurg. 2004;82(2-3):90-7 [15305081.001]
  • [Cites] Am J Pathol. 1998 Aug;153(2):429-37 [9708803.001]
  • [Cites] Neuroradiology. 2002 May;44(5):371-81 [12012120.001]
  • [Cites] AJNR Am J Neuroradiol. 2001 Apr;22(4):604-12 [11290466.001]
  • [Cites] Nat Rev Neurosci. 2001 Jul;2(7):502-11 [11433375.001]
  • [Cites] AJNR Am J Neuroradiol. 2000 Apr;21(4):659-65 [10782774.001]
  • [Cites] AJNR Am J Neuroradiol. 2002 Nov-Dec;23 (10 ):1775-8 [12427638.001]
  • (PMID = 17763847.001).
  • [ISSN] 0028-3940
  • [Journal-full-title] Neuroradiology
  • [ISO-abbreviation] Neuroradiology
  • [Language] eng
  • [Publication-type] Clinical Trial; Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 30KYC7MIAI / Aspartic Acid; 997-55-7 / N-acetylaspartate; EC 3.4.24.24 / Matrix Metalloproteinase 2; MU72812GK0 / Creatine; N91BDP6H0X / Choline
  •  go-up   go-down


86. Shrivastava RK, Epstein FJ, Perin NI, Post KD, Jallo GI: Intramedullary spinal cord tumors in patients older than 50 years of age: management and outcome analysis. J Neurosurg Spine; 2005 Mar;2(3):249-55
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Ependymoma was the most common tumor (83%), and 55% were located in the thoracic spine.
  • There were two deaths due tumor progression (both malignant tumors) and one recurrence (anaplastic astrocytoma).
  • All three patients in whom malignant astrocytomas were diagnosed underwent postoperative radiation therapy.
  • The authors recommend motor evoked potential-guided aggressive microsurgical resection, because the long-term outcome of benign lesions is excellent (good functional recovery and no tumor recurrence).
  • [MeSH-minor] Aged. Astrocytoma / surgery. Chi-Square Distribution. Female. Humans. Male. Middle Aged. Quality of Life. Retrospective Studies. Survival Rate. Treatment Outcome

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15796348.001).
  • [ISSN] 1547-5654
  • [Journal-full-title] Journal of neurosurgery. Spine
  • [ISO-abbreviation] J Neurosurg Spine
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


87. Khwaja FW, Reed MS, Olson JJ, Schmotzer BJ, Gillespie GY, Guha A, Groves MD, Kesari S, Pohl J, Van Meir EG: Proteomic identification of biomarkers in the cerebrospinal fluid (CSF) of astrocytoma patients. J Proteome Res; 2007 Feb;6(2):559-70
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Proteomic identification of biomarkers in the cerebrospinal fluid (CSF) of astrocytoma patients.
  • In this report, we used two proteomic techniques, two-dimensional gel electrophoresis (2-DE), and cleavable Isotope-Coded Affinity Tag (cICAT) to compare CSF proteomes to identify tumor- and grade-specific biomarkers in patients bearing brain tumors of differing histologies and grades.
  • Retrospective analyses were performed on 60 samples derived from astrocytomas WHO grade II, III, and IV, schwannomas, metastastic brain tumors, inflammatory samples, and non-neoplastic controls.
  • We identified 103 potential tumor-specific markers of which 20 were high-grade astrocytoma-specific.
  • These investigations allowed us to identify a spectrum of signature proteins that could be used to distinguish CSF derived from control patients versus those with low- (AII) or high-grade (AIV) astrocytoma.
  • These candidate biomarkers may also have functional properties that play a critical role in the development and malignant progression of human astrocytomas, thus possibly representing novel therapeutic targets for this highly lethal disease.

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer Res. 2005 May 15;65(10):4088-96 [15899798.001]
  • [Cites] J Clin Oncol. 2005 May 20;23(15):3614-21 [15908672.001]
  • [Cites] Cancer Res. 2005 May 15;65(10):4051-8 [15899794.001]
  • [Cites] Cancer Res. 2005 Mar 15;65(6):2303-13 [15781644.001]
  • [Cites] Acta Neurol Belg. 2004 Dec;104(4):148-53 [15742604.001]
  • [Cites] Lab Invest. 2005 Mar;85(3):328-41 [15716863.001]
  • [Cites] FASEB J. 2005 Jan;19(1):153-4 [15522907.001]
  • [Cites] Eur J Hum Genet. 2005 Jan;13(1):118-20 [15470364.001]
  • [Cites] Nat Biotechnol. 1999 Oct;17(10):994-9 [10504701.001]
  • [Cites] J Exp Med. 1997 Oct 20;186(8):1201-12 [9334359.001]
  • [Cites] Oncogene. 1997 Jan 16;14(2):171-83 [9010219.001]
  • [Cites] J Immunol. 1996 Mar 1;156(5):1714-21 [8596018.001]
  • [Cites] Glia. 1995 Nov;15(3):264-88 [8586463.001]
  • [Cites] Immunol Today. 1992 Dec;13(12):507-12 [1463583.001]
  • [Cites] Nature. 1992 Oct 29;359(6398):845-8 [1279432.001]
  • [Cites] J Invest Dermatol. 1991 Mar;96(3):318-22 [2002252.001]
  • [Cites] Am J Pathol. 1991 Feb;138(2):349-58 [1992762.001]
  • [Cites] Eur J Pediatr. 1988 Oct;148(1):3-8 [3058481.001]
  • [Cites] Cancer. 1983 Jul 1;52(1):101-4 [6189578.001]
  • [Cites] Dis Markers. 2005;21(2):81-92 [15920295.001]
  • [Cites] Proteomics. 2005 Aug;5(13):3223, 3225 [16104055.001]
  • [Cites] BMC Genomics. 2005;6:145 [16242023.001]
  • [Cites] J Dermatol Sci. 2005 Dec;40(3):157-68 [16150577.001]
  • [Cites] Clin Cancer Res. 2006 Nov 1;12(21):6331-6 [17085642.001]
  • [Cites] Int J Cancer. 2003 Sep 10;106(4):521-7 [12845647.001]
  • [Cites] Clin Cancer Res. 2000 Jan;6(1):102-11 [10656438.001]
  • [Cites] Adv Exp Med Biol. 2000;477:173-85 [10849745.001]
  • [Cites] Histol Histopathol. 2000 Jul;15(3):971-81 [10963139.001]
  • [Cites] Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):559-64 [11209055.001]
  • [Cites] Clin J Oncol Nurs. 2000 Jul-Aug;4(4):153-8 [11261094.001]
  • [Cites] Int J Neuropsychopharmacol. 2001 Mar;4(1):93-102 [11343634.001]
  • [Cites] J Neurooncol. 2001 Jun;53(2):149-60 [11716067.001]
  • [Cites] Adv Anat Pathol. 2002 Jan;9(1):24-36 [11756757.001]
  • [Cites] Neuron. 2002 Jul 3;35(1):25-38 [12123606.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Sep;61(9):767-77 [12230323.001]
  • [Cites] Cancer Res. 2002 Nov 1;62(21):6270-7 [12414657.001]
  • [Cites] J Proteome Res. 2002 Jan-Feb;1(1):47-54 [12643526.001]
  • [Cites] Nat Rev Cancer. 2003 Apr;3(4):267-75 [12671665.001]
  • [Cites] Cancer J. 2003 May-Jun;9(3):214-21 [12952306.001]
  • [Cites] J Neuropathol Exp Neurol. 2003 Aug;62(8):855-62 [14503641.001]
  • [Cites] Nature. 2003 Oct 30;425(6961):905 [14586448.001]
  • [Cites] Lab Invest. 2004 Apr;84(4):397-405 [14990981.001]
  • [Cites] Clin Biochem. 2004 Nov;37(11):943-52 [15498520.001]
  • [Cites] J Natl Cancer Inst. 1979 Mar;62(3):485-91 [216840.001]
  • [Cites] Clin Chem. 1980 Aug;26(9):1317-22 [7398046.001]
  • (PMID = 17269713.001).
  • [ISSN] 1535-3893
  • [Journal-full-title] Journal of proteome research
  • [ISO-abbreviation] J. Proteome Res.
  • [Language] ENG
  • [Grant] United States / NCRR NIH HHS / RR / RR 02878; United States / NCI NIH HHS / CA / R01 CA086335; United States / NCI NIH HHS / CA / R01 CA086335-05; United States / NCRR NIH HHS / RR / M01 RR000039; United States / NCRR NIH HHS / RR / RR 12878; United States / NCRR NIH HHS / RR / M01 RR 00039; United States / NCRR NIH HHS / RR / RR 13948; United States / NCI NIH HHS / CA / CA 86335
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Affinity Labels; 0 / Biomarkers, Tumor; 0 / Neoplasm Proteins; 0 / Proteome
  • [Other-IDs] NLM/ NIHMS61862; NLM/ PMC2566942
  •  go-up   go-down


88. Serrano J, Rayo JI, Infante JR, Domínguez L, García-Bernardo L, Durán C, Fernández Portales I, Cabezudo JM: Radioguided surgery in brain tumors with thallium-201. Clin Nucl Med; 2008 Dec;33(12):838-40
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • RATIONALE: Malignant astrocytomas show thallium uptake with a high target-to-background ratio, allowing the use of radioguided surgery.
  • METHOD: We report on 6 patients (3 men) diagnosed with malignant astrocytoma.
  • With the gamma probe we confirmed the tumor uptake, and a biopsy sample was taken.
  • After conventional tumor resection, we scanned the surgical bed with the gamma probe.
  • RESULTS: In all patients the biopsy confirmed a high-grade astrocytoma.
  • In all cases we found residual uptake in the surgical bed that was confirmed as residual tumor by pathologic examination.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19033782.001).
  • [ISSN] 1536-0229
  • [Journal-full-title] Clinical nuclear medicine
  • [ISO-abbreviation] Clin Nucl Med
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Thallium Radioisotopes
  •  go-up   go-down


89. Xiang C, Sarid R, Cazacu S, Finniss S, Lee HK, Ziv-Av A, Mikkelsen T, Brodie C: Cloning and characterization of human RTVP-1b, a novel splice variant of RTVP-1 in glioma cells. Biochem Biophys Res Commun; 2007 Oct 26;362(3):612-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • In contrast, RTVP-1 and RTVP-1b showed similar patterns of expression in astrocytic tumors; highly expressed in glioblastomas as compared to normal brains, low-grade astrocytomas and anaplastic oligodendrogliomas.
  • [MeSH-major] Brain Neoplasms / metabolism. Gene Expression Regulation, Neoplastic. Glioma / metabolism. Neoplasm Proteins / biosynthesis. Neoplasm Proteins / genetics. Nerve Tissue Proteins / biosynthesis. Nerve Tissue Proteins / genetics
  • [MeSH-minor] Alternative Splicing. Amino Acid Sequence. Base Sequence. Cell Line, Tumor. Cell Movement. Cell Proliferation. Cloning, Molecular. Humans. Molecular Sequence Data. Protein Isoforms. Tissue Distribution

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17825796.001).
  • [ISSN] 0006-291X
  • [Journal-full-title] Biochemical and biophysical research communications
  • [ISO-abbreviation] Biochem. Biophys. Res. Commun.
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / CA-R21-96965; United States / NCI NIH HHS / CA / R24 CA095809
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / GLIPR1 protein, human; 0 / Neoplasm Proteins; 0 / Nerve Tissue Proteins; 0 / Protein Isoforms
  •  go-up   go-down


90. Argyriou AA, Giannopoulou E, Kalofonos HP: Angiogenesis and anti-angiogenic molecularly targeted therapies in malignant gliomas. Oncology; 2009;77(1):1-11
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Angiogenesis and anti-angiogenic molecularly targeted therapies in malignant gliomas.
  • Angiogenesis is considered to be a regulating factor of vascular development and growth for malignant gliomas, including glioblastoma multiforme (GBM) and anaplastic astrocytomas.
  • The VEGF/VEGFR-2 is the predominant angiogenic signalling pathway in malignant gliomas.
  • Our aim is to review current knowledge on angiogenesis as a molecular pathogenetic mechanism of malignant gliomas and to critically look at and discuss antiangiogenic molecularly targeted therapies for these brain malignancies.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright 2009 S. Karger AG, Basel.
  • (PMID = 19439998.001).
  • [ISSN] 1423-0232
  • [Journal-full-title] Oncology
  • [ISO-abbreviation] Oncology
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0 / Angiogenesis Inhibitors
  • [Number-of-references] 98
  •  go-up   go-down


91. Arakawa Y, Tachibana O, Hasegawa M, Miyamori T, Yamashita J, Hayashi Y: Frequent gene amplification and overexpression of decoy receptor 3 in glioblastoma. Acta Neuropathol; 2005 Mar;109(3):294-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • DcR3 has been demonstrated to produce a secreted member of the tumor necrosis factor receptor superfamily that negatively regulates Fas-mediated apoptosis.
  • In this study we examined DcR3 gene amplification, DcR3 mRNA expression, and DcR3 protein expression in 46 human astrocytic brain tumors by quantitative genomic PCR, quantitative reverse transcription-PCR, and immunohistochemistry, respectively.
  • The DcR3 gene amplification was detected in none of 6 (0%) low-grade astrocytomas, 1 of 16 (6%) anaplastic astrocytomas, and 6 of 24 ( 25%) glioblastomas.
  • We thus concluded that high DcR3 mRNA expression and protein expression may be positively related to the gene amplification in astrocytic brain tumors, especially glioblastomas.
  • Further, we speculated that the DcR3 gene amplification with overexpression may be responsible for malignant features in glioblastomas.
  • [MeSH-minor] Adolescent. Adult. Aged. Child. Female. Humans. Immunohistochemistry / methods. Male. Middle Aged. RNA, Messenger / biosynthesis. Receptors, Tumor Necrosis Factor. Receptors, Tumor Necrosis Factor, Member 6b. Reverse Transcriptase Polymerase Chain Reaction / methods

  • Genetic Alliance. consumer health - Glioblastoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15627206.001).
  • [ISSN] 0001-6322
  • [Journal-full-title] Acta neuropathologica
  • [ISO-abbreviation] Acta Neuropathol.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Membrane Glycoproteins; 0 / RNA, Messenger; 0 / Receptors, Cell Surface; 0 / Receptors, Tumor Necrosis Factor; 0 / Receptors, Tumor Necrosis Factor, Member 6b; 0 / TNFRSF6B protein, human
  •  go-up   go-down


92. Perry SL, Bohlin C, Reardon DA, Desjardins A, Friedman AH, Friedman HS, Vredenburgh JJ: Tinzaparin prophylaxis against venous thromboembolic complications in brain tumor patients. J Neurooncol; 2009 Oct;95(1):129-134
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.