[X] Close
You are about to erase all the values you have customized, search history, page format, etc.
Click here to RESET all values       Click here to GO BACK without resetting any value
Items 1 to 100 of about 632
1. Adam Y, Benezech J, Blanquet A, Fuentes JM, Bousigue JY, Debono B, Duplessis E, Espagno C, Plas JY, Lescure JP, Destandau J, Hladky JP, Grunewald P, Mahla K, Remond J, Louis E: [Intramedullary tumors. Results of a national investigation in private neurosurgery]. Neurochirurgie; 2010 Aug;56(4):344-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • MATERIAL: Seventy-nine cases were distributed in the following manner: ependymomas, 38; astrocytomas, 22; oligodendrogliomas, four; gangliogliomas, two; hemangioblastomas, 10 (nine sporadic cases and one case of Von Hippel-Lindau disease); primitive melanoma, one; and intramedullary neurinomas, two.
  • Tumor removal was complete in the cases of ependymoma and hemangioblastoma and subtotal in the cases of astrocytoma.
  • Astrocytomas: 22 cases, with 14 cases of astrocytoma, two pilocytic astrocytoma, four malignant astrocytoma, and two glioblastoma.
  • Diagnostic delay: malignant tumors, one to nine months; low grades; three to six years (range, eight months to 25 years).
  • [MeSH-minor] Adolescent. Adult. Aged. Delayed Diagnosis. Female. Follow-Up Studies. France / epidemiology. Humans. Magnetic Resonance Imaging. Male. Microsurgery. Middle Aged. Neoplasm Recurrence, Local. Neurosurgical Procedures. Treatment Outcome. Young Adult

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
  • (PMID = 20097390.001).
  • [ISSN] 1773-0619
  • [Journal-full-title] Neuro-Chirurgie
  • [ISO-abbreviation] Neurochirurgie
  • [Language] fre
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] France
  •  go-up   go-down


2. Shirai K, Suzuki Y, Okamoto M, Wakatsuki M, Noda SE, Takahashi T, Ishiuchi S, Hasegawa M, Nakazato Y, Nakano T: Influence of histological subtype on survival after combined therapy of surgery and radiation in WHO grade 3 glioma. J Radiat Res; 2010;51(5):589-94
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Influence of histological subtype on survival after combined therapy of surgery and radiation in WHO grade 3 glioma.
  • World Health Organization (WHO) grade 3 glioma is one of the common brain tumors and has three main histological subtypes, including anaplastic astrocytoma (AA), anaplastic oligoastrocytoma (AOA) and anaplastic oligodendroglioma (AO).
  • In this study, 68 patients with histologically proven WHO grade 3 glioma, consecutively received postoperative radiotherapy at the Gunma University Hospital, Japan, between 1983 and 2005, were investigated to assess the impact of histological subtype on the survival.
  • In our study, histological subtype was one of the most important prognostic factors of WHO grade 3 glioma.
  • [MeSH-major] Astrocytoma / radiotherapy. Brain Neoplasms / radiotherapy. Glioma / radiotherapy. Oligodendroglioma / radiotherapy

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20921826.001).
  • [ISSN] 1349-9157
  • [Journal-full-title] Journal of radiation research
  • [ISO-abbreviation] J. Radiat. Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Japan
  •  go-up   go-down


3. Chamberlain MC, Wei-Tsao DD, Blumenthal DT, Glantz MJ: Salvage chemotherapy with CPT-11 for recurrent temozolomide-refractory anaplastic astrocytoma. Cancer; 2008 May 1;112(9):2038-45
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Salvage chemotherapy with CPT-11 for recurrent temozolomide-refractory anaplastic astrocytoma.
  • BACKGROUND: The primary objective of this prospective phase 2 study of CPT-11 in adult patients with recurrent temozolomide-refractory anaplastic astrocytoma (AA) was to evaluate 6-month progression-free survival (PFS).
  • The median time to tumor progression was 4.1 month.
  • [MeSH-major] Antineoplastic Agents / therapeutic use. Astrocytoma / drug therapy. Brain Neoplasms / drug therapy. Camptothecin / analogs & derivatives. Dacarbazine / analogs & derivatives. Neoplasm Recurrence, Local / drug therapy. Salvage Therapy / methods

  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Cancer Chemotherapy.
  • Hazardous Substances Data Bank. DACARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18361434.001).
  • [ISSN] 0008-543X
  • [Journal-full-title] Cancer
  • [ISO-abbreviation] Cancer
  • [Language] eng
  • [Publication-type] Clinical Trial, Phase II; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 7673326042 / irinotecan; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide; XT3Z54Z28A / Camptothecin
  •  go-up   go-down


Advertisement
4. Lustig RA, Seiferheld W, Berkey B, Yung AW, Scarantino C, Movsas B, Jones CU, Simpson JR, Fishbach J, Curran WJ Jr: Imaging response in malignant glioma, RTOG 90-06. Am J Clin Oncol; 2007 Feb;30(1):32-7
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Imaging response in malignant glioma, RTOG 90-06.
  • OBJECTIVE: The purpose of this study was to determine if radiographic response correlates with survival for patients treated patients with malignant gliomas treated on Radiation Therapy Oncology Group (RTOG) protocol 90-06.
  • Histology included anaplastic astrocytoma (60) (AA), and glioblastoma multiforme (312) (GBM).
  • RESULTS: For patients with no tumor on the 4 month scan the median survival was 20.3 months and the 2 year survival 43%.
  • [MeSH-minor] Antineoplastic Agents, Alkylating / therapeutic use. Astrocytoma / drug therapy. Astrocytoma / pathology. Astrocytoma / radiography. Astrocytoma / radiotherapy. Biopsy. Brain Neoplasms / drug therapy. Brain Neoplasms / mortality. Brain Neoplasms / pathology. Brain Neoplasms / radiography. Brain Neoplasms / radiotherapy. Carmustine / administration & dosage. Carmustine / therapeutic use. Disease Progression. Female. Glioblastoma / drug therapy. Glioblastoma / pathology. Glioblastoma / radiography. Glioblastoma / radiotherapy. Humans. Magnetic Resonance Imaging. Male. Middle Aged. Survival Analysis. Tomography, X-Ray Computed

  • Genetic Alliance. consumer health - Glioma.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. Carmustine .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17278892.001).
  • [ISSN] 1537-453X
  • [Journal-full-title] American journal of clinical oncology
  • [ISO-abbreviation] Am. J. Clin. Oncol.
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / U10 CA 32115; United States / NCI NIH HHS / CA / U10 CA21661; United States / NCI NIH HHS / CA / U10 CA37422
  • [Publication-type] Journal Article; Multicenter Study; Research Support, N.I.H., Extramural
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; U68WG3173Y / Carmustine
  •  go-up   go-down


5. Mutter N, Stupp R: Temozolomide: a milestone in neuro-oncology and beyond? Expert Rev Anticancer Ther; 2006 Aug;6(8):1187-204
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Three pivotal Phase II trials showed modest activity in the treatment of recurrent anaplastic astrocytoma glioblastoma.
  • In 2005, the FDA and the European Agency for the Evaluation of Medicinal Products approved temozolomide for use in newly diagnosed glioblastoma, in conjunction with radiotherapy, based on an European Organisation for Research and Treatment of Cancer/National Cancer Institute of Canada Phase III trial.
  • Temozolomide is under investigation for other disease entities, in particular lower-grade glioma, brain metastases and melanoma.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • ClinicalTrials.gov. clinical trials - ClinicalTrials.gov .
  • Hazardous Substances Data Bank. DACARBAZINE .
  • SciCrunch. DrugBank: Data: Chemical .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16925485.001).
  • [ISSN] 1744-8328
  • [Journal-full-title] Expert review of anticancer therapy
  • [ISO-abbreviation] Expert Rev Anticancer Ther
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide
  • [Number-of-references] 143
  •  go-up   go-down


6. Attenello FJ, Mukherjee D, Datoo G, McGirt MJ, Bohan E, Weingart JD, Olivi A, Quinones-Hinojosa A, Brem H: Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol; 2008 Oct;15(10):2887-93
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience.
  • BACKGROUND: Gliadel (polifeprosan 20 with carmustine [BCNU] implant) is commonly used for local delivery of BCNU to high-grade gliomas after resection and is associated with increased survival.
  • We set out to characterize Gliadel-associated morbidity in our 10-year experience with Gliadel wafers for treatment of malignant glioma.
  • METHODS: We retrospectively reviewed records of 1013 patients undergoing craniotomy for resection of malignant brain astrocytoma (World Health Organization grade III/IV disease).
  • RESULTS: A total of 1013 craniotomies were performed for malignant brain astrocytoma.
  • A total of 288 (28%) received Gliadel wafer (250 glioblastoma multiforme (GBM), 38 anaplastic astrocytoma/anaplastic oligodendroglioma (AA/AO), 166 primary resection, 122 revision resection).
  • Patients in Gliadel versus non-Gliadel cohorts had similar incidences of perioperative surgical site infection (2.8% vs. 1.8%, P = .33), cerebrospinal fluid leak (2.8% vs. 1.8%, P = .33), meninigitis (.3% vs. .3%, P = 1.00), incisional wound healing difficulty (.7% vs. .4%, P = .63), symptomatic malignant edema (2.1% vs. 2.3%, P = 1.00), 3-month seizure incidence (14.6% vs. 15.7%, P = .65), deep-vein thrombosis (6.3% vs. 5.2%, P = .53), and pulmonary embolism (PE) (4.9% vs. 3.7%, P = .41).
  • CONCLUSION: In our experience, use of Gliadel wafer was not associated with an increase in perioperative morbidity after surgical treatment of malignant astrocytoma.

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. Carmustine .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18636295.001).
  • [ISSN] 1534-4681
  • [Journal-full-title] Annals of surgical oncology
  • [ISO-abbreviation] Ann. Surg. Oncol.
  • [Language] eng
  • [Publication-type] Clinical Trial; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 0 / Biocompatible Materials; 0 / Decanoic Acids; 0 / Drug Carriers; 0 / Polyesters; 90409-78-2 / decanedioic acid-4,4'-(1,3-propanediylbis(oxy))bis(benzoic acid) copolymer; U68WG3173Y / Carmustine
  •  go-up   go-down


7. Braun K, Wiessler M, Ehemann V, Pipkorn R, Spring H, Debus J, Didinger B, Koch M, Muller G, Waldeck W: Treatment of glioblastoma multiforme cells with temozolomide-BioShuttle ligated by the inverse Diels-Alder ligation chemistry. Drug Des Devel Ther; 2009;2:289-301
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Temozolomide (TMZ) was approved for second-line therapy of recurrent anaplastic astrocytoma.

  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neurosurg. 1978 Sep;49(3):333-43 [355604.001]
  • [Cites] Expert Opin Biol Ther. 2004 Jul;4(7):1093-101 [15268676.001]
  • [Cites] J Immunol Methods. 1991 Jun 3;139(2):271-9 [1710634.001]
  • [Cites] Br J Cancer. 1992 Feb;65(2):287-91 [1739631.001]
  • [Cites] Pharm Res. 2004 Aug;21(8):1419-27 [15359577.001]
  • [Cites] J Am Chem Soc. 2004 Nov 17;126(45):14730-1 [15535692.001]
  • [Cites] Chembiochem. 2005 Feb;6(2):422-31 [15651048.001]
  • [Cites] Hum Gene Ther. 2005 Jan;16(1):1-16 [15703484.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):997-1003 [15758010.001]
  • [Cites] Strahlenther Onkol. 2005 Jun;181(6):372-7 [15925979.001]
  • [Cites] Angew Chem Int Ed Engl. 2006 Jan 30;45(6):896-901 [16370010.001]
  • [Cites] Anticancer Res. 2006 Mar-Apr;26(2B):1327-36 [16619541.001]
  • [Cites] Biochem Biophys Res Commun. 2006 Jul 14;345(4):1547-57 [16735025.001]
  • [Cites] Oncol Rep. 2006 Dec;16(6):1253-60 [17089046.001]
  • [Cites] Cancer Chemother Pharmacol. 1990;26(6):429-36 [2225314.001]
  • [Cites] Biochim Biophys Acta. 1966 Sep 5;126(1):181-4 [5970539.001]
  • [Cites] Mol Cell Biochem. 1980 Jan 16;29(1):47-57 [6154231.001]
  • [Cites] Bioconjug Chem. 2007 Mar-Apr;18(2):469-76 [17302384.001]
  • [Cites] Pathol Oncol Res. 2007;13(2):84-90 [17607368.001]
  • [Cites] Hepatology. 2007 Sep;46(3):759-68 [17663418.001]
  • [Cites] Prostate. 2008 Feb 1;68(2):210-22 [18092350.001]
  • [Cites] Mol Cell Biol. 1982 Apr;2(4):426-36 [6180306.001]
  • [Cites] Biochemistry. 1994 Aug 9;33(31):9045-51 [8049205.001]
  • [Cites] J Biol Chem. 1996 Jul 26;271(30):18188-93 [8663410.001]
  • [Cites] Toxicol Appl Pharmacol. 1996 Nov;141(1):319-29 [8917705.001]
  • [Cites] Hybridoma. 1997 Feb;16(1):119-25 [9085138.001]
  • [Cites] J Biol Chem. 1997 Jun 20;272(25):16010-7 [9188504.001]
  • [Cites] Cancer Treat Rev. 1997 Jan;23(1):35-61 [9189180.001]
  • [Cites] Clin Cancer Res. 1997 Oct;3(10):1769-74 [9815562.001]
  • [Cites] Science. 1999 Jul 30;285(5428):760-3 [10427003.001]
  • [Cites] J Clin Oncol. 2000 Apr;18(7):1481-91 [10735896.001]
  • [Cites] J Cell Biochem. 2000 Apr;77(3):372-81 [10760946.001]
  • [Cites] Antimicrob Agents Chemother. 2000 Sep;44(9):2471-4 [10952597.001]
  • [Cites] Cancer Res. 2001 Aug 1;61(15):5843-9 [11479224.001]
  • [Cites] J Mol Biol. 2002 Apr 26;318(2):237-43 [12051833.001]
  • [Cites] Angew Chem Int Ed Engl. 2002 Jul 15;41(14):2596-9 [12203546.001]
  • [Cites] Adv Drug Deliv Rev. 2002 Sep 13;54(5):715-58 [12204600.001]
  • [Cites] Clin Microbiol Infect. 2002 Sep;8(9):551-63 [12427216.001]
  • [Cites] Cancer Res. 2002 Dec 1;62(23):7018-24 [12460922.001]
  • [Cites] Curr Pharm Biotechnol. 2002 Dec;3(4):299-315 [12463414.001]
  • [Cites] Cancer Lett. 2003 May 8;194(1):125-31 [12706866.001]
  • [Cites] Cancer Chemother Pharmacol. 2003 Dec;52(6):459-64 [13680160.001]
  • [Cites] Mol Cell Biol. 2003 Nov;23(22):8306-15 [14585987.001]
  • [Cites] Drug Discov Today. 2003 Dec 15;8(24):1128-37 [14678739.001]
  • [Cites] Angew Chem Int Ed Engl. 2004 Jun 14;43(24):3106-16 [15199557.001]
  • [Cites] Crit Rev Ther Drug Carrier Syst. 1992;9(2):135-87 [1386002.001]
  • (PMID = 19920915.001).
  • [ISSN] 1177-8881
  • [Journal-full-title] Drug design, development and therapy
  • [ISO-abbreviation] Drug Des Devel Ther
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] New Zealand
  • [Other-IDs] NLM/ PMC2761188
  • [Keywords] NOTNLM ; carrier molecules / drug delivery / facilitated transport / glioblastoma multiforme / temozolomide
  •  go-up   go-down


8. Hayatsu N, Kaneko MK, Mishima K, Nishikawa R, Matsutani M, Price JE, Kato Y: Podocalyxin expression in malignant astrocytic tumors. Biochem Biophys Res Commun; 2008 Sep 19;374(2):394-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Podocalyxin expression in malignant astrocytic tumors.
  • Recently, we revealed that highly sulfated KS or another mucin-like transmembrane sialoglycoprotein podoplanin/aggrus is upregulated in malignant astrocytic tumors.
  • The aim of this study is to examine the relationship between podocalyxin expression and malignant progression of astrocytic tumors.
  • In this study, 51 astrocytic tumors were investigated for podocalyxin expression using immunohistochemistry, Western blot analysis, and quantitative real-time PCR.
  • Immunohistochemistry detected podocalyxin on the surface of tumor cells in six of 14 anaplastic astrocytomas (42.9%) and in 17 of 31 glioblastomas (54.8%), especially around proliferating endothelial cells.
  • In diffuse astrocytoma, podocalyxin expression was observed only in vascular endothelial cells.
  • Podocalyxin might be associated with the malignant progression of astrocytic tumors, and be a useful prognostic marker for astrocytic tumors.
  • [MeSH-major] Astrocytoma / pathology. Biomarkers, Tumor / analysis. Central Nervous System Neoplasms / pathology. Sialoglycoproteins / analysis
  • [MeSH-minor] Blotting, Western. Humans. Immunohistochemistry. Polymerase Chain Reaction. Prognosis. RNA, Messenger / analysis. RNA, Messenger / biosynthesis. RNA, Messenger / genetics. Tumor Cells, Cultured

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18639524.001).
  • [ISSN] 1090-2104
  • [Journal-full-title] Biochemical and biophysical research communications
  • [ISO-abbreviation] Biochem. Biophys. Res. Commun.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / RNA, Messenger; 0 / Sialoglycoproteins; 0 / podocalyxin
  •  go-up   go-down


9. Lapointe M, Lanthier J, Moumdjian R, Régina A, Desrosiers RR: Expression and activity of l-isoaspartyl methyltransferase decrease in stage progression of human astrocytic tumors. Brain Res Mol Brain Res; 2005 Apr 27;135(1-2):93-103
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression and activity of l-isoaspartyl methyltransferase decrease in stage progression of human astrocytic tumors.
  • Here we investigated PIMT regulation in astrocytic tumors, which are the most common human brain tumors.
  • PIMT expression and enzyme activity were significantly decreased in all grades of human astrocytic tumors.
  • More precisely, PIMT levels were significantly lower by 76% in pilocytic astrocytomas (grade I), 46% in astrocytomas (grade II), 69% in anaplastic astrocytomas (grade III), and a marked 80% in glioblastomas (grade IV) as compared to normal brains.
  • RT-PCR analysis showed that levels of type I PIMT mRNA were up-regulated while those of type II PIMT mRNA were down-regulated in glioblastomas.
  • Furthermore, the reduced PIMT levels correlated closely with a decrease in the number of neuron cells in astrocytic tumors as assessed by measuring the neuron-specific enolase level.
  • Many proteins with abnormal aspartyl residues accumulated in brain tumors and some were specific to individual grades of astrocytic tumors.
  • Similar results were obtained, either by measuring the reduction in PIMT activity and expression or by measuring the formation of abnormal proteins, in an orthotopic rat brain tumor model implanted with invasive CNS-1 glioma cells.
  • The novelty of these findings was to provide the first evidence for a marked reduction of PIMT expression and activity during stage progression of astrocytic tumors in humans.
  • [MeSH-minor] Animals. Blotting, Northern. Glial Fibrillary Acidic Protein / metabolism. Humans. Immunohistochemistry / methods. Male. Methylation. Neoplasm Transplantation / methods. Phosphopyruvate Hydratase / metabolism. RNA, Messenger / metabolism. Rats. Rats, Inbred Lew. Reverse Transcriptase Polymerase Chain Reaction / methods

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15857672.001).
  • [ISSN] 0169-328X
  • [Journal-full-title] Brain research. Molecular brain research
  • [ISO-abbreviation] Brain Res. Mol. Brain Res.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Glial Fibrillary Acidic Protein; 0 / RNA, Messenger; EC 2.1.1.77 / Protein D-Aspartate-L-Isoaspartate Methyltransferase; EC 4.2.1.11 / Phosphopyruvate Hydratase
  •  go-up   go-down


10. Schenka AA, Machado CM, Grippo MC, Queiroz LS, Schenka NG, Chagas CA, Verinaud L, Brousset P, Vassallo J: Immunophenotypic and ultrastructural validation of a new human glioblastoma cell line. Cell Mol Neurobiol; 2005 Aug;25(5):929-41
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • 1. A human glioma cell line, NG97, was established by Grippo et al. in 2001 from tissue obtained from a grade III astrocytoma (WHO, 2000).
  • The injection of NG97 cells into nude mice induced an aggressive tumor characterized by: severe cytological atypia, vascular proliferation and pseudopalisading necrosis (glioblastoma multiforme features).
  • 2. The purpose of the present study was to characterize the immunophenotype and ultrastructural aspects of this cell line, using the parental tumor, cultured cells and the xenotransplant, in order to assess its glial nature and possible divergent differentiation.
  • GFAP was similarly expressed in the parental tumor and in the cells in culture, but decreased in the xenotransplant.
  • The xenotransplant's ultrastructural features were those of a highly undifferentiated tumor.
  • 4. Thus, our data demonstrate that NG97 cells constitute a pure glial-committed cell line, which may prove useful as a malignant glioma model in studies addressing pathophysiological, diagnostic and therapeutic issues.
  • [MeSH-major] Brain Neoplasms / pathology. Cell Culture Techniques / standards. Cell Line, Tumor. Glioblastoma / pathology
  • [MeSH-minor] Animals. Biomarkers. Cell Differentiation. Humans. Immunophenotyping. Mice. Mice, Nude. Microscopy, Electron. Neoplasm Transplantation. Neuroglia / cytology. Reproducibility of Results. Transplantation, Heterologous

  • Genetic Alliance. consumer health - Glioblastoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cell Mol Neurobiol. 2001 Aug;21(4):421-8 [11775071.001]
  • [Cites] In Vitro Cell Dev Biol Anim. 1998 Jun;34(6):455-62 [9661048.001]
  • [Cites] CA Cancer J Clin. 1993 Sep-Oct;43(5):263-71 [8364768.001]
  • [Cites] Acta Neuropathol. 1981;53(1):21-8 [7211194.001]
  • [Cites] Arq Neuropsiquiatr. 2003 Jun;61(2A):234-40 [12806502.001]
  • [Cites] In Vitro Cell Dev Biol Anim. 1995 Sep;31(8):610-6 [8528516.001]
  • [Cites] Pathol Res Pract. 1991 Dec;187(8):1031-5; discussion 1036-8 [1792185.001]
  • [Cites] Acta Neurol Scand. 1985 Dec;72(6):529-49 [3913271.001]
  • [Cites] Semin Diagn Pathol. 2000 Aug;17(3):204-15 [10968706.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1989 Dec;17(6):1295-7 [2557308.001]
  • [Cites] Cancer Res. 1984 Jan;44(1):254-8 [6690037.001]
  • [Cites] Semin Oncol. 2000 Jun;27(3 Suppl 6):1-10 [10866344.001]
  • [Cites] Neurosurgery. 1995 Jan;36(1):1-21; discussion 21-2 [7708144.001]
  • [Cites] Tumori. 1986 Apr 30;72(2):163-70 [3705189.001]
  • [Cites] Curr Opin Neurol. 1997 Dec;10(6):452-8 [9425558.001]
  • [Cites] Acta Neuropathol. 1990;79(5):506-12 [2327250.001]
  • [Cites] J Neurooncol. 1996 Feb;27(2):141-7 [8699236.001]
  • [Cites] Braz J Med Biol Res. 1998 Oct;31(10):1281-4 [9876299.001]
  • [Cites] Braz J Med Biol Res. 2001 May;34(5):653-61 [11323753.001]
  • (PMID = 16133944.001).
  • [ISSN] 0272-4340
  • [Journal-full-title] Cellular and molecular neurobiology
  • [ISO-abbreviation] Cell. Mol. Neurobiol.
  • [Language] eng
  • [Publication-type] Journal Article; Validation Studies
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers
  •  go-up   go-down


11. Phi JH, Chung CK: Brain tumors in the mesial temporal lobe: long-term oncological outcome. Neurosurg Focus; 2009 Aug;27(2):E5
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • METHODS: Thirty-six patients with an MTL tumor were studied.
  • The tumors were confined to the MTL (Schramm Type A) in 25 patients (69%).
  • Extension of the tumor into the fusiform gyrus (Schramm Type C) and temporal stem (Schramm Type D) was observed in 4 and 7 patients (11 and 19%), respectively.
  • There was a significant difference in the tumor size according to Schramm types (p = 0.001).
  • Complete tumor resection was achieved in 26 patients (72%).
  • All tumors were low-grade lesions except for 1 anaplastic astrocytoma.
  • The degree of tumor resection was significantly related to the tumor control failure (p < 0.001) and malignant transformation of a low-grade tumor (p < 0.001).
  • Univariate analyses using a Cox proportional hazards model showed that the following factors were significantly associated with a failure to control the tumor:.
  • 1) extent of the tumor (Schramm Type D; p = 0.003, relative risk [RR] 12.04);.
  • 2) size of the tumor (p = 0.033, RR 1.052/mm);.
  • Complete tumor resection is strongly recommended for long-term tumor control.
  • Older age, short duration of epilepsy, and tumor size are all associated with poor outcome.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19645561.001).
  • [ISSN] 1092-0684
  • [Journal-full-title] Neurosurgical focus
  • [ISO-abbreviation] Neurosurg Focus
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


12. Ashley DM, Riffkin CD, Muscat AM, Knight MJ, Kaye AH, Novak U, Hawkins CJ: Caspase 8 is absent or low in many ex vivo gliomas. Cancer; 2005 Oct 1;104(7):1487-96
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • BACKGROUND: Better treatments are required urgently for patients with malignant glioma, which currently is incurable.
  • Death ligands, such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), may offer promise for the treatment high-grade glioma if such ligands induce apoptotic signaling in vivo in glioma cells.
  • It also may act as a tumor suppressor protein.
  • METHODS: Eleven glioblastomas, 5 anaplastic astrocytomas, and 3 low-grade astrocytomas were studied.
  • [MeSH-major] Astrocytoma / pathology. Biomarkers, Tumor / metabolism. Brain Neoplasms / pathology. Caspases / metabolism. Glioblastoma / pathology
  • [MeSH-minor] Base Sequence. Blotting, Northern. Caspase 10. Caspase 8. DNA Methylation. DNA, Neoplasm / analysis. Female. Humans. Male. Molecular Sequence Data. Probability. Reverse Transcriptase Polymerase Chain Reaction / methods. Risk Assessment. Sampling Studies. Sensitivity and Specificity. Statistics, Nonparametric. Tissue Culture Techniques

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16080161.001).
  • [ISSN] 0008-543X
  • [Journal-full-title] Cancer
  • [ISO-abbreviation] Cancer
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / CASP10 protein, human; 0 / DNA, Neoplasm; EC 3.4.22.- / CASP8 protein, human; EC 3.4.22.- / Caspase 10; EC 3.4.22.- / Caspase 8; EC 3.4.22.- / Caspases
  •  go-up   go-down


13. Kita D, Yonekawa Y, Weller M, Ohgaki H: PIK3CA alterations in primary (de novo) and secondary glioblastomas. Acta Neuropathol; 2007 Mar;113(3):295-302
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] PIK3CA alterations in primary (de novo) and secondary glioblastomas.
  • We assessed alterations in the EGFR/PTEN/PI3K pathway in 107 primary (de novo) glioblastomas and 32 secondary glioblastomas that progressed from low-grade or anaplastic astrocytomas.
  • Furthermore, this signaling pathway was altered by either PTEN mutations or PIK3CA amplification in 10 of 12 (83%) malignant glioma cell lines analyzed.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17235514.001).
  • [ISSN] 0001-6322
  • [Journal-full-title] Acta neuropathologica
  • [ISO-abbreviation] Acta Neuropathol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Germany
  • [Chemical-registry-number] EC 2.7.1.- / Phosphatidylinositol 3-Kinases; EC 2.7.1.137 / PIK3CA protein, human; EC 2.7.10.1 / EGFR protein, human; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 3.1.3.48 / PTEN protein, human; EC 3.1.3.67 / PTEN Phosphohydrolase
  •  go-up   go-down


14. McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A, Weingart JD, Brem H, Quiñones-Hinojosa AR: Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg; 2009 Jan;110(1):156-62
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Independent association of extent of resection with survival in patients with malignant brain astrocytoma.
  • OBJECT: With recent advances in the adjuvant treatment of malignant brain astrocytomas, it is increasingly debated whether extent of resection affects survival.
  • METHODS: The authors retrospectively reviewed the cases of 1215 patients who underwent surgery for malignant brain astrocytomas (World Health Organization [WHO] Grade III or IV) at a single institution from 1996 to 2006.
  • Surgery consisted of primary resection in 549 patients (58%) and revision resection for tumor recurrence in 400 patients (42%).
  • The lesion was WHO Grade IV in 700 patients (74%) and Grade III in 249 (26%); there were 167 astrocytomas and 82 mixed oligoastrocytoma.
  • Adjusting for factors associated with survival for WHO Grade III astrocytoma (age, KPS score, and revision resection), GTR versus STR (p < 0.05) was associated with improved survival.
  • Gross-total resection versus NTR was not associated with an independent survival benefit in patients with WHO Grade III astrocytomas.
  • The median survival after primary resection of WHO Grade III (mixed oligoastrocytomas excluded) for GTR, NTR, and STR was 58, 46, and 34 months, respectively.
  • CONCLUSIONS: In the authors' experience with both primary and secondary resection of malignant brain astrocytomas, increasing extent of resection was associated with improved survival independent of age, degree of disability, WHO grade, or subsequent treatment modalities used.
  • [MeSH-major] Astrocytoma / surgery. Brain Neoplasms / surgery

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. Carmustine .
  • Hazardous Substances Data Bank. DACARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18847342.001).
  • [ISSN] 0022-3085
  • [Journal-full-title] Journal of neurosurgery
  • [ISO-abbreviation] J. Neurosurg.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 0 / Decanoic Acids; 0 / Polyesters; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide; 90409-78-2 / decanedioic acid-4,4'-(1,3-propanediylbis(oxy))bis(benzoic acid) copolymer; U68WG3173Y / Carmustine
  •  go-up   go-down


15. Marton E, Feletti A, Orvieto E, Longatti P: Malignant progression in pleomorphic xanthoastrocytoma: personal experience and review of the literature. J Neurol Sci; 2007 Jan 31;252(2):144-53
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Malignant progression in pleomorphic xanthoastrocytoma: personal experience and review of the literature.
  • Pleomorphic xanthoastrocytoma (PXA) is a rare primary low-grade astrocytic tumor, recently classified as a neuroglial tumor.
  • It generally occurs in children and young adults and shows benign behaviour (WHO II), although an anaplastic variant and malignant potential have been described.
  • Pleomorphic xanthoastrocytomas with malignant transformation have been reported in three out of eight patients operated on for this type of tumor in our department in the last 15 years.
  • Histological examination revealed simple PXA in two patients and a PXA with anaplastic foci in the other.
  • Mean recurrence time was 5.7 years, with the original xanthoastrocytoma evolving to glioblastoma in two cases and anaplastic astrocytoma in the third.
  • Two died from tumor progression and one from brain edema after intracerebral haemorrhage.
  • A review of the available PXA literature dating back to 1979 revealed 16 cases of primary anaplastic astrocytoma and 21 cases of PXA with malignant transformation.
  • Our experience adds three more cases of malignant transformations, outlining once again the potential malignancy of pleomorphic xanthoastrocytomas and the fact that prognosis in these cases is the same as for primary anaplastic astrocytoma and glioblastoma.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Glioblastoma / pathology
  • [MeSH-minor] Adult. Cell Transformation, Neoplastic. Child. Disease Progression. Fatal Outcome. Female. Humans. Magnetic Resonance Imaging. Middle Aged. Neoplasm Recurrence, Local / pathology. Tomography, X-Ray Computed


16. Murakami R, Sugahara T, Nakamura H, Hirai T, Kitajima M, Hayashida Y, Baba Y, Oya N, Kuratsu J, Yamashita Y: Malignant supratentorial astrocytoma treated with postoperative radiation therapy: prognostic value of pretreatment quantitative diffusion-weighted MR imaging. Radiology; 2007 May;243(2):493-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Malignant supratentorial astrocytoma treated with postoperative radiation therapy: prognostic value of pretreatment quantitative diffusion-weighted MR imaging.
  • PURPOSE: To retrospectively evaluate whether the minimum apparent diffusion coefficient (ADC) of the tumor seen on pretreatment magnetic resonance (MR) images is of prognostic value in patients with malignant supratentorial astrocytoma.
  • Between June 1996 and November 2003, 79 patients (44 male, 35 female; age range, 16-76 years) with malignant supratentorial astrocytoma underwent pretreatment MR imaging.
  • Patient age, symptom duration, neurologic function, mental status, Karnofsky performance scale (KPS) score, extent of surgery, histopathologic diagnosis, tumor component enhancement, and minimum ADC were assessed at factor analysis of survival.
  • RESULTS: Twenty-nine patients had anaplastic astrocytoma, and 50 had glioblastoma multiforme.
  • The minimum ADC was significantly lower in patients with glioblastoma multiforme than in those with anaplastic astrocytoma (P < .001).
  • CONCLUSION: The minimum ADC at pretreatment MR imaging is a useful clinical prognostic biomarker for survival in patients with malignant supratentorial astrocytoma.
  • [MeSH-major] Astrocytoma / diagnosis. Diffusion Magnetic Resonance Imaging / methods. Radiotherapy, Adjuvant / methods. Supratentorial Neoplasms / diagnosis. Supratentorial Neoplasms / therapy

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17356177.001).
  • [ISSN] 0033-8419
  • [Journal-full-title] Radiology
  • [ISO-abbreviation] Radiology
  • [Language] eng
  • [Publication-type] Clinical Trial; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


17. Abou-Ghazal M, Yang DS, Qiao W, Reina-Ortiz C, Wei J, Kong LY, Fuller GN, Hiraoka N, Priebe W, Sawaya R, Heimberger AB: The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas. Clin Cancer Res; 2008 Dec 15;14(24):8228-35
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas.
  • We sought to determine the incidence of phosphorylated STAT3 (p-STAT3) expression in malignant gliomas of different pathologic types, whether p-STAT3 expression is a negative prognostic factor, and whether p-STAT3 expression influences the inflammatory response within gliomas.
  • RESULTS: We did not detect p-STAT3 expression in normal brain tissues or low-grade astrocytomas.
  • We observed significant differences in the incidence of p-STAT3 expression between the different grades of astrocytomas and different pathologic glioma types. p-STAT3 expression was associated with the population of tumor-infiltrating immune cells but not with that of T regulatory cells.
  • On univariate analysis, we found that p-STAT3 expression within anaplastic astrocytomas was a negative prognostic factor.
  • CONCLUSIONS: p-STAT3 expression is common within gliomas of both the astrocytic and oligodendroglial lineages and portends poor survival in patients with anaplastic astrocytomas. p-STAT3 expression differs significantly between gliomas of different pathologic types and grades and correlated with the degree of immune infiltration.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer Res. 2002 Jun 15;62(12):3351-5 [12067972.001]
  • [Cites] Clin Cancer Res. 2006 Sep 15;12(18):5423-34 [17000676.001]
  • [Cites] J Immunol. 2002 Sep 1;169(5):2253-63 [12193690.001]
  • [Cites] Cancer Res. 2003 Mar 15;63(6):1270-9 [12649187.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4138-43 [12640143.001]
  • [Cites] Clin Cancer Res. 2003 Sep 1;9(10 Pt 1):3692-9 [14506160.001]
  • [Cites] Cancer Res. 2003 Nov 1;63(21):7443-50 [14612544.001]
  • [Cites] Nat Rev Cancer. 2004 Feb;4(2):97-105 [14964307.001]
  • [Cites] Anticancer Res. 2004 Jan-Feb;24(1):37-42 [15015573.001]
  • [Cites] J Clin Oncol. 2004 May 1;22(9):1682-8 [15117990.001]
  • [Cites] Lab Invest. 2004 Aug;84(8):941-51 [15184909.001]
  • [Cites] Nat Med. 2004 Sep;10(9):942-9 [15322536.001]
  • [Cites] J Clin Invest. 2004 Sep;114(5):720-8 [15343391.001]
  • [Cites] Biochem Biophys Res Commun. 2004 Sep 3;321(4):828-34 [15358102.001]
  • [Cites] Cancer Chemother Rep. 1966 Mar;50(3):163-70 [5910392.001]
  • [Cites] Ann Neurol. 1978 Sep;4(3):219-24 [718133.001]
  • [Cites] J Neurosurg. 1984 Jun;60(6):1138-47 [6374063.001]
  • [Cites] Endocrinology. 1995 Mar;136(3):897-902 [7867598.001]
  • [Cites] Stroke. 1995 Aug;26(8):1393-8 [7631343.001]
  • [Cites] EMBO J. 1998 Feb 16;17(4):1006-18 [9463379.001]
  • [Cites] Immunity. 1999 Jan;10(1):39-49 [10023769.001]
  • [Cites] Clin Cancer Res. 2005 Jan 1;11(1):267-72 [15671555.001]
  • [Cites] Oncogene. 2005 Feb 3;24(6):1053-65 [15558012.001]
  • [Cites] Oncogene. 2005 Feb 3;24(6):970-9 [15592503.001]
  • [Cites] Clin Cancer Res. 2005 Dec 1;11(23):8288-94 [16322287.001]
  • [Cites] Nat Med. 2005 Dec;11(12):1314-21 [16288283.001]
  • [Cites] Int J Biol Markers. 2006 Jul-Sep;21(3):175-83 [17013800.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 Dec;65(12):1181-8 [17146292.001]
  • [Cites] Nat Rev Immunol. 2007 Jan;7(1):41-51 [17186030.001]
  • [Cites] J Clin Pathol. 2007 Feb;60(2):173-9 [17264243.001]
  • [Cites] Clin Cancer Res. 2007 Feb 1;13(3):902-11 [17289884.001]
  • [Cites] Lung Cancer. 2007 Mar;55(3):349-55 [17161498.001]
  • [Cites] Clin Cancer Res. 2007 Mar 1;13(5):1362-6 [17332277.001]
  • [Cites] Clin Cancer Res. 2007 Apr 1;13(7):2075-81 [17404089.001]
  • [Cites] Oncogene. 2007 Apr 12;26(17):2435-44 [17043651.001]
  • [Cites] J Immunother. 2007 Feb-Mar;30(2):131-9 [17471161.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 May 1;104(18):7391-6 [17463090.001]
  • [Cites] J Clin Pathol. 2007 Jun;60(6):642-8 [16901975.001]
  • [Cites] Clin Cancer Res. 2007 Jun 15;13(12):3559-67 [17575219.001]
  • [Cites] J Clin Oncol. 2007 Jun 20;25(18):2586-93 [17577038.001]
  • [Cites] Cancer Res. 2007 Oct 15;67(20):9630-6 [17942891.001]
  • [Cites] Clin Cancer Res. 2008 Aug 15;14(16):5166-72 [18698034.001]
  • [Cites] Clin Cancer Res. 2008 Sep 15;14(18):5759-68 [18794085.001]
  • [Cites] J Neurotrauma. 2001 Mar;18(3):351-9 [11284554.001]
  • [Cites] Clin Cancer Res. 2005 Feb 15;11(4):1386-93 [15746037.001]
  • [Cites] Clin Cancer Res. 2005 Feb 15;11(4):1462-6 [15746047.001]
  • [Cites] World J Gastroenterol. 2005 Jun 14;11(22):3385-91 [15948243.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9589-94 [15976028.001]
  • [Cites] J Clin Pathol. 2005 Aug;58(8):833-8 [16049285.001]
  • [Cites] Gynecol Oncol. 2005 Sep;98(3):446-52 [16005944.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18538-43 [16344461.001]
  • [Cites] Ai Zheng. 2006 Mar;25(3):269-74 [16536977.001]
  • [Cites] Cancer Res. 2006 Mar 15;66(6):3188-96 [16540670.001]
  • [Cites] Clin Cancer Res. 2006 Jun 1;12(11 Pt 1):3355-60 [16740757.001]
  • [Cites] Neuro Oncol. 2006 Jul;8(3):261-79 [16775224.001]
  • [Cites] Blood. 2006 Sep 1;108(5):1571-9 [16645171.001]
  • [Cites] J Urol. 2002 Aug;168(2):762-5 [12131365.001]
  • (PMID = 19088040.001).
  • [ISSN] 1078-0432
  • [Journal-full-title] Clinical cancer research : an official journal of the American Association for Cancer Research
  • [ISO-abbreviation] Clin. Cancer Res.
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / CA120813-01A1; United States / NCI NIH HHS / CA / R01 CA120813; United States / NCI NIH HHS / CA / R01 CA120813-01A1
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / STAT3 Transcription Factor; 0 / STAT3 protein, human
  • [Other-IDs] NLM/ NIHMS78715; NLM/ PMC2605668
  •  go-up   go-down


18. Greco Crasto S, Soffietti R, Rudà R, Cassoni P, Ducati A, Davini O, De Lucchi R, Rizzo L: Diffusion-Weighted Magnetic Resonance Imaging and ADC Maps in the Diagnosis of Intracranial Cystic or Necrotic Lesions. A Retrospective Study on 49 Patients. Neuroradiol J; 2007 Dec 31;20(6):666-75
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Eleven tumours (11/44) appeared hyperintense on DWI: eight metastases from lung cancer (mean ADC value 0.86 mm(2)/s, range 0.75-1.2 mm(2)/s), two GBMs (mean 0.7 mm(2)/s, range 0.67-0.76 mm(2)/s) and one anaplastic astrocytoma (ADC value 1.24 mm(2)/s).

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 24300002.001).
  • [ISSN] 1971-4009
  • [Journal-full-title] The neuroradiology journal
  • [ISO-abbreviation] Neuroradiol J
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


19. Gu J, Zhang C, Chen R, Pan J, Wang Y, Ming M, Gui W, Wang D: Clinical implications and prognostic value of EMMPRIN/CD147 and MMP2 expression in pediatric gliomas. Eur J Pediatr; 2009 Jun;168(6):705-10
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Extracellular matrix metalloproteinase inducer (EMMPRIN), a member of the immunoglobulin superfamily, is present on the surface of tumor cells where it stimulates adjacent fibroblasts to produce matrix metalloproteinases (MMPs).
  • The intensively positive expression rates of EMMPRIN (22/27) and MMP2 (21/27) in anaplastic astrocytoma and glioblastoma tissues were significantly higher than those in normal brain and low-grade astrocytoma tissues (2/28 and (1/2)8, respectively).
  • The positive expression of EMMPRIN and MMP2 was associated with higher grade gliomas.
  • [MeSH-major] Antigens, CD147 / metabolism. Astrocytoma / metabolism. Brain Neoplasms / metabolism. Brain Neoplasms / mortality. Matrix Metalloproteinase 2 / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Am J Pathol. 2002 Apr;160(4):1215-21 [11943706.001]
  • [Cites] Brain Pathol. 1993 Jul;3(3):255-68 [8293185.001]
  • [Cites] Int J Cancer. 2003 Feb 20;103(5):647-51 [12494473.001]
  • [Cites] Am J Pathol. 1999 Feb;154(2):417-28 [10027400.001]
  • [Cites] Cancer Res. 2004 Feb 15;64(4):1229-32 [14983875.001]
  • [Cites] Am J Pathol. 2001 Jun;158(6):1921-8 [11395366.001]
  • [Cites] Brain Pathol. 2007 Jul;17(3):276-81 [17465990.001]
  • [Cites] Cancer Res. 2001 Mar 1;61(5):2276-81 [11280798.001]
  • [Cites] Pathol Int. 2006 Jul;56(7):359-67 [16792544.001]
  • [Cites] Rev Recent Clin Trials. 2006 May;1(2):119-31 [18473963.001]
  • [Cites] Int J Cancer. 2002 May 10;99(2):157-66 [11979428.001]
  • [Cites] Mol Cancer Res. 2005 Oct;3(10):541-51 [16254188.001]
  • [Cites] Cancer Gene Ther. 2003 Nov;10(11):823-32 [14605668.001]
  • [Cites] Cancer. 2004 Nov 1;101(9):1994-2000 [15372476.001]
  • [Cites] Br J Cancer. 1996 Jun;73(11):1401-8 [8645587.001]
  • [Cites] Cancer Res. 2005 Apr 15;65(8):3193-9 [15833850.001]
  • [Cites] Int J Cancer. 2003 Sep 20;106(5):745-51 [12866035.001]
  • [Cites] Cancer Immunol Immunother. 2008 Sep;57(9):1367-79 [18273614.001]
  • [Cites] Am J Pathol. 1996 Jul;149(1):273-82 [8686751.001]
  • [Cites] Cancer Res. 2007 May 1;67(9):4088-97 [17483319.001]
  • [Cites] Am J Pathol. 2005 Jan;166(1):209-19 [15632013.001]
  • [Cites] Oncogene. 2007 Aug 9;26(36):5229-37 [17325663.001]
  • [Cites] Int J Cancer. 2006 Oct 15;119(8):1800-10 [16721788.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10 ):987-96 [15758009.001]
  • (PMID = 18795327.001).
  • [ISSN] 1432-1076
  • [Journal-full-title] European journal of pediatrics
  • [ISO-abbreviation] Eur. J. Pediatr.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / BSG protein, human; 136894-56-9 / Antigens, CD147; EC 3.4.24.24 / Matrix Metalloproteinase 2
  •  go-up   go-down


20. Korshunov A, Meyer J, Capper D, Christians A, Remke M, Witt H, Pfister S, von Deimling A, Hartmann C: Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol; 2009 Sep;118(3):401-5
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma.
  • Separation of pilocytic astrocytoma from diffuse astrocytomas frequently poses problems mostly related to small sample size.
  • Precise classification and grading are essential due to different therapeutic strategies prompted by diagnoses of pilocytic astrocytoma WHO grade I, diffuse astrocytomas WHO grade II or anaplastic astrocytoma WHO grade III.
  • Pilocytic astrocytomas carry a duplication at chromosome band 7q34 containing a BRAF-KIAA1549 gene fusion in the majority of cases.
  • IDH1 mutations are observed very frequently in adult astrocytomas and IDH2 mutations have been reported in some astrocytomas.
  • We examined a series of 120 astrocytomas including 70 pilocytic astrocytomas WHO grade I and 50 diffuse astrocytomas WHO grade II for both, BRAF-KIAA1549 fusion with a newly developed FISH assay and mutations in IDH1 and IDH2 by direct sequencing.
  • Pilocytic astrocytomas contained the BRAF fusion in 49 cases (70%) but neither IDH1 nor IDH2 mutations.
  • Astrocytomas WHO grade II exhibited IDH1 mutations in 38 cases (76%) but neither IDH2 mutations nor BRAF fusions.
  • Thus, combined molecular analysis of BRAF and IDH1 is a sensitive and highly specific approach to separate pilocytic astrocytoma from diffuse astrocytoma.
  • [MeSH-major] Astrocytoma / diagnosis. Brain Neoplasms / diagnosis. Isocitrate Dehydrogenase / genetics. Proto-Oncogene Proteins B-raf / genetics
  • [MeSH-minor] Adolescent. Adult. Aged. Biomarkers, Tumor. Child. Child, Preschool. Diagnosis, Differential. Female. Humans. In Situ Hybridization, Fluorescence. Male. Middle Aged. Mutation. Tissue Array Analysis


21. Nakagawa Y, Kageji T, Mizobuchi Y, Kumada H, Nakagawa Y: Clinical results of BNCT for malignant brain tumors in children. Appl Radiat Isot; 2009 Jul;67(7-8 Suppl):S27-30
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Clinical results of BNCT for malignant brain tumors in children.
  • It is very difficult to treat the patients with malignant brain tumor in children, especially under 3 years, because the conventional irradiation cannot be applied due to the damage of normal brain tissue.
  • However, boron neutron capture therapy (BNCT) has tumor selectivity such that it can make damage only in tumor cells.
  • We evaluated the clinical results and courses in patients with malignant glioma under 15 years.
  • There were 3 glioblastomas (GBM), 6 anaplastic astrocytomas(AAS), 7 primitive neuroectodermal tumors (PNET), 6 pontine gliomas and 1 anaplastic ependymoma.
  • All GBM and PNET patients died due to CSF and/or CNS dissemination without local tumor regrowth.
  • All pontine glioma patients died due to regrowth of the tumor.
  • Four of 6 anaplastic astrocytoma and 1 anaplastic ependymoma patients alive without tumor recurrence.
  • BNCT can be applied to malignant brain tumors in children, especially under 3 years instead of conventional radiation.
  • [MeSH-minor] Adolescent. Astrocytoma / pathology. Astrocytoma / radiotherapy. Child. Child, Preschool. Ependymoma / pathology. Ependymoma / radiotherapy. Fatal Outcome. Female. Glioblastoma / pathology. Glioblastoma / radiotherapy. Humans. Infant. Magnetic Resonance Angiography. Magnetic Resonance Imaging. Male. Neoplasm Invasiveness / pathology. Neuroectodermal Tumors, Primitive / pathology. Neuroectodermal Tumors, Primitive / radiotherapy

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19406652.001).
  • [ISSN] 1872-9800
  • [Journal-full-title] Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine
  • [ISO-abbreviation] Appl Radiat Isot
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  •  go-up   go-down


22. Tuominen H, Lohi J, Maiche A, Törmänen J, Baumann P: Mediastinal metastasis of glioblastoma multiforme evolving from anaplastic astrocytoma. J Neurooncol; 2005 Nov;75(2):225-6
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Mediastinal metastasis of glioblastoma multiforme evolving from anaplastic astrocytoma.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Glioblastoma / pathology. Mediastinal Neoplasms / pathology. Mediastinal Neoplasms / secondary
  • [MeSH-minor] Adult. Disease Progression. Fatal Outcome. Follow-Up Studies. Gene Deletion. Genes, p16. Glial Fibrillary Acidic Protein / metabolism. Homozygote. Humans. Male. Neoplasm Recurrence, Local / genetics. Neoplasm Recurrence, Local / pathology. Neoplasm Recurrence, Local / radiotherapy. Salvage Therapy. Survival Analysis. Time Factors. Tomography, X-Ray Computed

  • Genetic Alliance. consumer health - Glioblastoma.
  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer. 1985 Oct 1;56(7 Suppl):1778-82 [4027909.001]
  • [Cites] Arch Anat Cytol Pathol. 1995;43(5-6):342-9 [8729851.001]
  • [Cites] J Neurosurg. 1971 May;34(5):697-701 [4326303.001]
  • [Cites] Digestion. 2000;61(3):219-22 [10773729.001]
  • [Cites] Lancet Oncol. 2002 Aug;3(8):498-507 [12147436.001]
  • [Cites] Cancer. 1980 Jan 1;45(1):112-25 [6985826.001]
  • [Cites] J Am Acad Dermatol. 2002 Feb;46(2):297-300 [11807444.001]
  • [Cites] J Neurosurg. 1969 Jul;31(1):50-8 [4307543.001]
  • [Cites] J Neurooncol. 2001 Jun;53(2):107-14 [11716064.001]
  • [Cites] J Neurosurg. 2000 Nov;93(5):887-90 [11059674.001]
  • (PMID = 16132499.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Case Reports; Letter
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Glial Fibrillary Acidic Protein
  •  go-up   go-down


23. Mott RT, Murphy BA, Geisinger KR: Ovarian malignant mixed mesodermal tumor with neuroectodermal differentiation: a multifaceted evaluation. Int J Gynecol Pathol; 2010 May;29(3):234-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Ovarian malignant mixed mesodermal tumor with neuroectodermal differentiation: a multifaceted evaluation.
  • Malignant mixed mesodermal tumors (MMMTs) of the ovary are rare, highly aggressive neoplasms that arise most commonly in postmenopausal women.
  • Histologically, they consist of a mixed population of malignant epithelial and mesenchymal elements.
  • Histologically, the tumor was composed of epithelial, mesenchymal, and neuroectodermal elements.
  • The neuroectodermal component was predominantly that of a medulloepithelioma, with scattered areas displaying features of an anaplastic astrocytoma, including rare ganglion cell differentiation.
  • DNA ploidy analysis was also performed on the various components of the tumor and compared with 3 additional cases of MMMT without neuroectodermal differentiation and 2 ovarian immature teratomas.
  • Our findings suggest that the neuroectodermal component may arise from a separate clone or at least evolves at an earlier stage of tumor development.
  • [MeSH-major] Mixed Tumor, Mesodermal / pathology. Neuroectodermal Tumors / pathology. Ovarian Neoplasms / pathology
  • [MeSH-minor] Aged. Cell Differentiation / physiology. DNA, Neoplasm / genetics. Female. Humans. Immunohistochemistry. Microscopy, Electron, Transmission. Ploidies

  • MedlinePlus Health Information. consumer health - Ovarian Cancer.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20407321.001).
  • [ISSN] 1538-7151
  • [Journal-full-title] International journal of gynecological pathology : official journal of the International Society of Gynecological Pathologists
  • [ISO-abbreviation] Int. J. Gynecol. Pathol.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / DNA, Neoplasm
  •  go-up   go-down


24. Giller CA, Berger BD, Pistenmaa DA, Sklar F, Weprin B, Shapiro K, Winick N, Mulne AF, Delp JL, Gilio JP, Gall KP, Dicke KA, Swift D, Sacco D, Harris-Henderson K, Bowers D: Robotically guided radiosurgery for children. Pediatr Blood Cancer; 2005 Sep;45(3):304-10
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Three had pilocytic astrocytomas, two had anaplastic astrocytomas, three had ependymomas (two anaplastic), four had medulloblastomas, three had atypical teratoid/rhabdoid tumors, three had craniopharyngiomas, and three had other pathologies.
  • RESULTS: Local control was achieved in the patients with pilocytic and anaplastic astrocytoma, three of the patients with medulloblastoma, and the three with craniopharyngioma, but not for those with ependymoma.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • ClinicalTrials.gov. clinical trials - ClinicalTrials.gov .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2004 Wiley-Liss, Inc.
  • (PMID = 15558704.001).
  • [ISSN] 1545-5009
  • [Journal-full-title] Pediatric blood & cancer
  • [ISO-abbreviation] Pediatr Blood Cancer
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


25. Quaranta M, Divella R, Daniele A, Di Tardo S, Venneri MT, Lolli I, Troccoli G: Epidermal growth factor receptor serum levels and prognostic value in malignant gliomas. Tumori; 2007 May-Jun;93(3):275-80
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Epidermal growth factor receptor serum levels and prognostic value in malignant gliomas.
  • Increased EGFR expression might therefore be a strong prognostic feature in multiple tumor types, and inhibition of its cellular actions may have substantial therapeutic benefit.
  • METHODS AND STUDY DESIGN: Serum samples obtained from 50 healthy individuals and 65 brain cancer patients (35 glioblastoma multiforme and 30 anaplastic astrocytomas) were collected before and after treatment and assayed for EGFR extracellular domain serum concentrations by a sandwich ELISA.
  • There was a significant difference in the mean serum levels of EGFR between glioblastoma multiforme patients (96.2 +/- 12 ng/ml) and anaplastic astrocytoma patients (71.6 +/- 18 ng/ml, P = 0.04).
  • For all patients, median overall survival was 13 months (anaplastic astrocytoma, 18 months; glioblastoma multiforme, 12.5 months).
  • In 47 patients with high EGFR serum levels, overall survival was reduced (P = 0.01), with a median survival time corresponding to 11.5 months (anaplastic astrocytoma, 14.5 months; glioblastoma multiforme, 10.5 months).
  • [MeSH-major] Biomarkers, Tumor / blood. Brain Neoplasms / blood. Glioma / blood. Neoplasm Proteins / blood. Receptor, Epidermal Growth Factor / blood
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Antineoplastic Agents, Alkylating / therapeutic use. Astrocytoma / blood. Astrocytoma / drug therapy. Astrocytoma / mortality. Astrocytoma / radiotherapy. Astrocytoma / surgery. Chemotherapy, Adjuvant. Combined Modality Therapy. Dacarbazine / analogs & derivatives. Dacarbazine / therapeutic use. Disease-Free Survival. Enzyme-Linked Immunosorbent Assay. Female. Follow-Up Studies. Glioblastoma / blood. Glioblastoma / drug therapy. Glioblastoma / mortality. Glioblastoma / radiotherapy. Glioblastoma / surgery. Humans. Kaplan-Meier Estimate. Male. Middle Aged. Prognosis. Protein Structure, Tertiary. Radiotherapy, Adjuvant. Signal Transduction. Survival Analysis. Treatment Outcome

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. DACARBAZINE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17679463.001).
  • [ISSN] 0300-8916
  • [Journal-full-title] Tumori
  • [ISO-abbreviation] Tumori
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 0 / Biomarkers, Tumor; 0 / Neoplasm Proteins; 7GR28W0FJI / Dacarbazine; EC 2.7.10.1 / EGFR protein, human; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; YF1K15M17Y / temozolomide
  •  go-up   go-down


26. Benesch M, Windelberg M, Sauseng W, Witt V, Fleischhack G, Lackner H, Gadner H, Bode U, Urban C: Compassionate use of bevacizumab (Avastin) in children and young adults with refractory or recurrent solid tumors. Ann Oncol; 2008 Apr;19(4):807-13
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • PATIENTS AND METHODS: Fifteen patients (male: n = 8; female: n = 7; median age, 14.6 years) received bevacizumab for recurrent or progressive solid tumors (carcinoma: n = 3; neuroblastoma: n = 2; astrocytoma grade III: n = 2; rhabdomyosarcoma: n = 2; nephroblastoma: n = 2; benign vascular tumors: n = 2; synovial sarcoma: n = 1; and malignant hemangiopericytoma: n = 1) on a compassionate basis.
  • Radiographic objective responses (partial responses) were observed in two patients with astrocytoma grade III and in one patient each with neuroblastoma and pleomorphic rhabdomyosarcoma, respectively.

  • MedlinePlus Health Information. consumer health - Cancer Chemotherapy.
  • MedlinePlus Health Information. consumer health - Cancer in Children.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18056650.001).
  • [ISSN] 1569-8041
  • [Journal-full-title] Annals of oncology : official journal of the European Society for Medical Oncology
  • [ISO-abbreviation] Ann. Oncol.
  • [Language] ENG
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Angiogenesis Inhibitors; 0 / Antibodies, Monoclonal; 0 / Antibodies, Monoclonal, Humanized; 2S9ZZM9Q9V / Bevacizumab
  •  go-up   go-down


27. Kirby S, Gertler SZ, Mason W, Watling C, Forsyth P, Aniagolu J, Stagg R, Wright M, Powers J, Eisenhauer EA: Phase 2 study of T138067-sodium in patients with malignant glioma: Trial of the National Cancer Institute of Canada Clinical Trials Group. Neuro Oncol; 2005 Apr;7(2):183-8
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Phase 2 study of T138067-sodium in patients with malignant glioma: Trial of the National Cancer Institute of Canada Clinical Trials Group.
  • We studied the activity of T138067-sodium in patients with malignant gliomas.
  • Patients with recurrent anaplastic astrocytoma or glioblastoma multiforme were treated intravenously with 330 mg/m(2) of T138067-sodium weekly.
  • There were two patients with anaplastic astrocytoma and 16 with glioblastoma multiforme.
  • Our results suggest that given in this dose and schedule T138067-sodium does not have activity in this population of anaplastic astrocytoma and glioblastoma multiforme.

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Br J Cancer. 2000 Sep;83(5):588-93 [10944597.001]
  • [Cites] Arch Pathol Lab Med. 2001 May;125(5):613-24 [11300931.001]
  • [Cites] J Med Chem. 2001 Oct 25;44(22):3599-605 [11606124.001]
  • [Cites] Cochrane Database Syst Rev. 2002;(4):CD003913 [12519620.001]
  • [Cites] Cell Motil Cytoskeleton. 2003 Sep;56(1):45-56 [12905530.001]
  • [Cites] Biochim Biophys Acta. 2001;1471(2):O1-9 [11342188.001]
  • [Cites] Biometrics. 1982 Mar;38(1):143-51 [7082756.001]
  • [Cites] J Clin Oncol. 1990 Jul;8(7):1277-80 [2358840.001]
  • [Cites] J Natl Cancer Inst. 1993 May 5;85(9):704-10 [8478956.001]
  • [Cites] Proc Natl Acad Sci U S A. 1999 May 11;96(10):5686-91 [10318945.001]
  • [Cites] J Neurosurg. 1977 Sep;47(3):329-35 [894339.001]
  • (PMID = 15831236.001).
  • [ISSN] 1522-8517
  • [Journal-full-title] Neuro-oncology
  • [ISO-abbreviation] Neuro-oncology
  • [Language] eng
  • [Publication-type] Clinical Trial; Clinical Trial, Phase II; Journal Article; Multicenter Study; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Sulfonamides; T4NP8G3K6Q / batabulin
  • [Other-IDs] NLM/ PMC1871890
  •  go-up   go-down


28. McGirt MJ, Mukherjee D, Chaichana KL, Than KD, Weingart JD, Quinones-Hinojosa A: Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery; 2009 Sep;65(3):463-9; discussion 469-70
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • OBJECTIVE: Balancing the benefits of extensive tumor resection with the consequence of potential postoperative deficits remains a challenge in malignant astrocytoma surgery.


29. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, Felsberg J, Wolter M, Mawrin C, Wick W, Weller M, Herold-Mende C, Unterberg A, Jeuken JW, Wesseling P, Reifenberger G, von Deimling A: Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol; 2009 Oct;118(4):469-74
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas.
  • Somatic mutations in the IDH1 gene encoding cytosolic NADP+-dependent isocitrate dehydrogenase have been shown in the majority of astrocytomas, oligodendrogliomas and oligoastrocytomas of WHO grades II and III.
  • Preliminary data suggest an importance of IDH1 mutation for prognosis showing that patients with anaplastic astrocytomas, oligodendrogliomas and oligoastrocytomas harboring IDH1 mutations seem to fare much better than patients without this mutation in their tumors.
  • We found 165 IDH1 (72.7%) and 2 IDH2 mutations (0.9%) in 227 diffuse astrocytomas WHO grade II, 146 IDH1 (64.0%) and 2 IDH2 mutations (0.9%) in 228 anaplastic astrocytomas WHO grade III, 105 IDH1 (82.0%) and 6 IDH2 mutations (4.7%) in 128 oligodendrogliomas WHO grade II, 121 IDH1 (69.5%) and 9 IDH2 mutations (5.2%) in 174 anaplastic oligodendrogliomas WHO grade III, 62 IDH1 (81.6%) and 1 IDH2 mutations (1.3%) in 76 oligoastrocytomas WHO grade II and 117 IDH1 (66.1%) and 11 IDH2 mutations (6.2%) in 177 anaplastic oligoastrocytomas WHO grade III.
  • We report on an inverse association of IDH1 and IDH2 mutations in these gliomas and a non-random distribution of the mutation types within the tumor entities.
  • IDH1 mutations of the R132C type are strongly associated with astrocytoma, while IDH2 mutations predominantly occur in oligodendroglial tumors.
  • In addition, patients with anaplastic glioma harboring IDH1 mutations were on average 6 years younger than those without these alterations.
  • [MeSH-minor] Adult. Age Factors. Brain / pathology. Cell Differentiation. DNA Mutational Analysis. Female. Humans. Male. Middle Aged. Mutation. Prognosis. Tumor Cells, Cultured

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19554337.001).
  • [ISSN] 1432-0533
  • [Journal-full-title] Acta neuropathologica
  • [ISO-abbreviation] Acta Neuropathol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Germany
  • [Chemical-registry-number] EC 1.1.1.41 / Isocitrate Dehydrogenase
  •  go-up   go-down


30. Hunter SB, Varma V, Shehata B, Nolen JD, Cohen C, Olson JJ, Ou CY: Apolipoprotein D expression in primary brain tumors: analysis by quantitative RT-PCR in formalin-fixed, paraffin-embedded tissue. J Histochem Cytochem; 2005 Aug;53(8):963-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Apolipoprotein D (apoD) expression has been shown to correlate both with cell cycle arrest and with prognosis in several types of malignancy, including central nervous system astrocytomas and medulloblastomas.
  • Sixteen poorly infiltrating WHO grade I glial neoplasms (i.e., pilocytic astrocytomas and gangliogliomas) showed an average 20-fold higher apoD expression level compared with the 20 diffusely infiltrating glial neoplasms (i.e., glioblastoma, anaplastic astrocytoma, oligodendrogliomas; p=0.00004).
  • Analyzed as individual tumor groups, poorly infiltrating grade I pilocytic astrocytomas and gangliogliomas differed significantly from each tumor type within the diffusely infiltrating higher-grade category (p<0.05 for each comparison) but not from each other (p>0.05).
  • Conversely, each individual tumor type within the diffusely infiltrating category differed significantly from both pilocytic astrocytomas and gangliogliomas (p<0.05) but did not vary from other infiltrating tumors (p>0.05).
  • Ependymomas, non-infiltrating grade II neoplasms, expressed levels of apoD similar to or lower than levels expressed by the diffusely infiltrating gliomas.
  • In addition, apoD expression was 5-fold higher in the slowly proliferating grade I glial neoplasms compared with non-proliferating normal brain tissue (p=0.01), suggesting that apoD expression is not simply an inverse measure of proliferation.
  • ApoD expression measured by quantitative RT-PCR may be useful in the differential diagnosis of primary brain tumors, particularly pilocytic astrocytomas and gangliogliomas.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. FORMALDEHYDE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16055749.001).
  • [ISSN] 0022-1554
  • [Journal-full-title] The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society
  • [ISO-abbreviation] J. Histochem. Cytochem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Apolipoproteins; 0 / Apolipoproteins D; 0 / Fixatives; 0 / Ki-67 Antigen; 1HG84L3525 / Formaldehyde; 8002-74-2 / Paraffin
  •  go-up   go-down


31. Paulino AC, Mai WY, Chintagumpala M, Taher A, Teh BS: Radiation-induced malignant gliomas: is there a role for reirradiation? Int J Radiat Oncol Biol Phys; 2008 Aug 1;71(5):1381-7
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Radiation-induced malignant gliomas: is there a role for reirradiation?
  • PURPOSE: To review the literature regarding the role of radiotherapy (RT) in the treatment of patients with radiation-induced malignant gliomas (RIMGs).
  • RESULTS: Initial tumor types treated with RT included brain tumor in 37 patients (40%), acute lymphoblastic leukemia in 33 (36%), benign disease in 11 (12%), and other in 11 (12%).
  • Type of RIMG was glioblastoma in 69 (75%) and anaplastic astrocytoma in 23 (25%).
  • One-, 2-, and 5-year overall survival rates were 29.3%, 7.3%, and 0% for patients with glioblastoma and 59.7%, 30.3%, and 20.2% for patients with anaplastic astrocytoma.
  • [MeSH-minor] Astrocytoma / radiotherapy. Glioblastoma / radiotherapy. Humans. Precursor Cell Lymphoblastic Leukemia-Lymphoma / radiotherapy. Retreatment. Survival Rate

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentIn] Int J Radiat Oncol Biol Phys. 2008 Sep 1;72(1):304-5; author reply 305 [18722290.001]
  • (PMID = 18262733.001).
  • [ISSN] 0360-3016
  • [Journal-full-title] International journal of radiation oncology, biology, physics
  • [ISO-abbreviation] Int. J. Radiat. Oncol. Biol. Phys.
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Number-of-references] 62
  •  go-up   go-down


32. Tanaka S, Akimoto J, Kobayashi I, Oka H, Ujiie H: Individual adjuvant therapy for malignant gliomas based on O6-methylguanine-DNA methyltransferase messenger RNA quantitation by real-time reverse-transcription polymerase chain-reaction. Oncol Rep; 2008 Jul;20(1):165-71
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Individual adjuvant therapy for malignant gliomas based on O6-methylguanine-DNA methyltransferase messenger RNA quantitation by real-time reverse-transcription polymerase chain-reaction.
  • A new adjuvant therapy, individual adjuvant therapy (IAT), which is individualized according to the results of real-time reverse-transcription polymerase chain-reaction (RT-PCR) for O6-methylguanine-DNA methyltransferase (MGMT), was used to treat malignant gliomas.
  • Immediately after the operation, mRNA expression for drug-resistance genes was investigated in frozen samples of malignant gliomas from 55 patients (30 glioblastoma multiformes, 20 anaplastic astrocytomas and 5 anaplastic oligodendroglial tumors) by real-time quantitative RT-PCR with specific primers for MGMT.
  • The response rate was 40.9% for glioblastoma multiformes, 60.0% for anaplastic astrocytomas and 80.0% for anaplastic oligodendroglial tumors.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. DACARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18575733.001).
  • [ISSN] 1021-335X
  • [Journal-full-title] Oncology reports
  • [ISO-abbreviation] Oncol. Rep.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / RNA, Messenger; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide; EC 2.1.1.63 / O(6)-Methylguanine-DNA Methyltransferase
  •  go-up   go-down


33. Walker DG, Laherty R, Tomlinson FH, Chuah T, Schmidt C: Results of a phase I dendritic cell vaccine trial for malignant astrocytoma: potential interaction with adjuvant chemotherapy. J Clin Neurosci; 2008 Feb;15(2):114-21
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Results of a phase I dendritic cell vaccine trial for malignant astrocytoma: potential interaction with adjuvant chemotherapy.
  • Dendritic cell vaccination has been applied to the treatment of a variety of cancers, including malignant astrocytoma.
  • We have treated 13 patients with malignant astrocytoma using dendritic cell vaccination and have shown that this treatment is safe and is likely to be effective in combination with standard adjuvant therapy.
  • [MeSH-major] Astrocytoma / therapy. Brain Neoplasms / therapy. Cancer Vaccines / therapeutic use. Chemotherapy, Adjuvant / methods. Dendritic Cells / immunology. Immunotherapy, Active / methods

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18083572.001).
  • [ISSN] 0967-5868
  • [Journal-full-title] Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
  • [ISO-abbreviation] J Clin Neurosci
  • [Language] eng
  • [Publication-type] Clinical Trial, Phase I; Journal Article
  • [Publication-country] Scotland
  • [Chemical-registry-number] 0 / Antigens, CD8; 0 / Cancer Vaccines; EC 3.1.3.48 / Antigens, CD45
  •  go-up   go-down


34. Torii K, Tsuyuguchi N, Kawabe J, Sunada I, Hara M, Shiomi S: Correlation of amino-acid uptake using methionine PET and histological classifications in various gliomas. Ann Nucl Med; 2005 Dec;19(8):677-83
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • OBJECTIVE: The uptake of L-methyl-11C-methionine (MET) by gliomas is greater than that by intact tissue, making methionine very useful for evaluation of tumor extent.
  • Tumors included diffuse astrocytoma, anaplastic astrocytoma, glioblastoma, ependymoma, oligodendroglioma, medulloblastoma, dysembryoplastic neuroepithelial tumor, choroid plexus papilloma, central neurocytoma, optic glioma, gliomatosis cerebri, pleomorphic xanthoastrocytoma, and ganglioglioma.
  • Tumor activity and degree of malignancy were evaluated using Ki-67LI (LI: labeling index) and Kaplan-Meier survival curves.
  • The correlations between methionine uptake and tumor proliferation (tumor versus contralateral gray matter ratio (T/N) and Ki-67LI) were determined for the group of all subjects.
  • The existence of significant correlations between T/N and Ki-67LI and between SUV and Ki-67LI was determined for astrocytic tumors.
  • Receiver operating characteristics (ROC) analysis of T/N and standardized uptake value (SUV) was performed for the group of astrocytic tumors.
  • Ki-67LI differed significantly between the high-grade group and low-grade group at T/N levels between 1.5 and 1.8 on analysis using tumor proliferative potential (p = 0.019-0.031).
  • The prognosis differed significantly between the high-grade and low-grade groups when T/N was in the range of 1.6-1.8 (p = 0.028-0.032).
  • CONCLUSIONS: When analysis was confined to cases of astrocytic tumor, a correlation was noted between methionine accumulation and Ki-67LI.
  • For the astrocytic tumors, T/N ratio seemed to be more useful as a diagnostic indicator than SUV.
  • The cut-off level of T/N ratio for distinction between high-grade and low-grade astrocytoma appears to lie between 1.5 and 1.6.


35. Sadones J, Michotte A, Veld P, Chaskis C, Sciot R, Menten J, Joossens EJ, Strauven T, D'Hondt LA, Sartenaer D, Califice SF, Bierau K, Svensson C, De Grève J, Neyns B: MGMT promoter hypermethylation correlates with a survival benefit from temozolomide in patients with recurrent anaplastic astrocytoma but not glioblastoma. Eur J Cancer; 2009 Jan;45(1):146-53
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] MGMT promoter hypermethylation correlates with a survival benefit from temozolomide in patients with recurrent anaplastic astrocytoma but not glioblastoma.
  • AIMS: To investigate the correlation between O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter methylation and benefit from temozolomide in patients with recurrent high-grade glioma.
  • RESULTS: A subgroup of 38 patients who were chemotherapy-naive at recurrence was analysed (22 glioblastoma, 12 anaplastic astrocytoma [AA] and 4 anaplastic oligoastrocytoma [AOA]); none had 1p/19q loss.
  • By Cox multivariate analysis, tumour grade and MGMT promoter methylation correlated with time to progression (p<0.05); MGMT promoter methylation correlated with superior overall survival in AA/AOA but not in glioblastoma.
  • [MeSH-major] Antineoplastic Agents, Alkylating / therapeutic use. Astrocytoma / drug therapy. Brain Neoplasms / drug therapy. Dacarbazine / analogs & derivatives. O(6)-Methylguanine-DNA Methyltransferase / genetics. Promoter Regions, Genetic
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. DNA Methylation. Female. Glioblastoma / drug therapy. Humans. Kaplan-Meier Estimate. Male. Middle Aged. Neoplasm Recurrence, Local / drug therapy. Neoplasm Recurrence, Local / mortality. Prognosis. Retrospective Studies. Survival Rate. Young Adult

  • Genetic Alliance. consumer health - Glioblastoma.
  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. DACARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18945611.001).
  • [ISSN] 1879-0852
  • [Journal-full-title] European journal of cancer (Oxford, England : 1990)
  • [ISO-abbreviation] Eur. J. Cancer
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide; EC 2.1.1.63 / O(6)-Methylguanine-DNA Methyltransferase
  •  go-up   go-down


36. Stettner MR, Wang W, Nabors LB, Bharara S, Flynn DC, Grammer JR, Gillespie GY, Gladson CL: Lyn kinase activity is the predominant cellular SRC kinase activity in glioblastoma tumor cells. Cancer Res; 2005 Jul 1;65(13):5535-43
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Lyn kinase activity is the predominant cellular SRC kinase activity in glioblastoma tumor cells.
  • As we have found that Lyn, but not Fyn, activity promotes migration of glioblastoma cells in response to the cooperative signal generated by platelet-derived growth factor receptor beta and integrin alpha(v)beta3, we compared the activity and expression of Lyn and Fyn in glioblastoma (grade IV) tumor biopsy samples with that in anaplastic astrocytoma (grade III) tumors, nonneoplastic brain, and normal autopsy brain samples.
  • Lyn kinase activity was significantly elevated in glioblastoma tumor samples.
  • The levels of phosphorylation of the autophosphorylation site were consistent with significantly higher Lyn activity in glioblastoma tumor tissue than nonneoplastic brain.
  • Immunostaining revealed that Lyn is located primarily in the glioblastoma cells in the tumor biopsies.
  • These data indicate that Lyn kinase activity is significantly elevated in glioblastoma tumors and suggest that it is the Lyn activity that promotes the malignant phenotype in these tumors.
  • [MeSH-minor] Astrocytoma / enzymology. Astrocytoma / genetics. Astrocytoma / pathology. Biopsy. Brain / enzymology. Endothelial Cells / enzymology. Humans. Immunohistochemistry. Phosphotransferases / genetics. Phosphotransferases / metabolism. Protein-Tyrosine Kinases. Proto-Oncogene Proteins / genetics. Proto-Oncogene Proteins / metabolism. Proto-Oncogene Proteins c-fyn. RNA, Messenger / genetics. RNA, Messenger / metabolism

  • Genetic Alliance. consumer health - Glioblastoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15994925.001).
  • [ISSN] 0008-5472
  • [Journal-full-title] Cancer research
  • [ISO-abbreviation] Cancer Res.
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / CA97110; United States / NCI NIH HHS / CA / P50 CA97247
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Proto-Oncogene Proteins; 0 / RNA, Messenger; EC 2.7.- / Phosphotransferases; EC 2.7.10.1 / Protein-Tyrosine Kinases; EC 2.7.10.2 / CSK tyrosine-protein kinase; EC 2.7.10.2 / FYN protein, human; EC 2.7.10.2 / Proto-Oncogene Proteins c-fyn; EC 2.7.10.2 / lyn protein-tyrosine kinase; EC 2.7.10.2 / src-Family Kinases
  •  go-up   go-down


37. Barbashina V, Salazar P, Holland EC, Rosenblum MK, Ladanyi M: Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin Cancer Res; 2005 Feb 1;11(3):1119-28
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene.
  • PURPOSE: Allelic loss at 1p is seen in 70% to 85% of oligodendrogliomas (typically in association with 19q allelic loss) and 20-30% of astrocytomas.
  • Because most 1p deletions in gliomas involve almost the entire chromosome arm, narrowing the region of the putative tumor suppressor gene has been difficult.
  • The latter group included both low-grade tumors (oligodendroglioma, diffuse astrocytoma, and "oligoastrocytoma") and high-grade tumors (anaplastic oligodendrogliomas, anaplastic astrocytomas, anaplastic oligoastrocytomas).
  • RESULTS: Allelic losses on 1p and 19q, either separately or combined, were more common in classic oligodendrogliomas than in either astrocytomas or oligoastrocytomas (P < 0.0001).
  • There was no significant difference in 1p/19q LOH status between low-grade and anaplastic oligodendrogliomas.
  • In contrast, no astrocytomas and only 6 of 30 (20%) oligoastrocytic tumors had combined 1p/19q loss.
  • Although rare, 1p deletions were more often segmental in astrocytomas (5 of 6, 83%) than in oligodendrogliomas (3 of 35, 9%; P = 0.006).
  • Eleven tumors (6 oligodendrogliomas or having oligodendroglial components, 5 purely astrocytic) with small segmental 1p losses underwent further detailed LOH mapping.
  • All informative tumors in the oligodendroglial group and 2 of 3 informative astrocytomas showed LOH at 1p36.23, with a 150-kb MDR located between D1S2694 and D1S2666, entirely within the CAMTA1 transcription factor gene.
  • [MeSH-minor] Adult. Astrocytoma / genetics. Astrocytoma / pathology. Calcium-Binding Proteins / genetics. Chromosome Deletion. Chromosome Mapping. Expressed Sequence Tags. Gene Expression Profiling. Gene Expression Regulation, Neoplastic. Genes, Tumor Suppressor. Humans. Microsatellite Repeats. Mutation. Oligodendroglioma / genetics. Oligodendroglioma / pathology. Reverse Transcriptase Polymerase Chain Reaction. Trans-Activators / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15709179.001).
  • [ISSN] 1078-0432
  • [Journal-full-title] Clinical cancer research : an official journal of the American Association for Cancer Research
  • [ISO-abbreviation] Clin. Cancer Res.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / CAMTA1 protein, human; 0 / Calcium-Binding Proteins; 0 / Trans-Activators
  •  go-up   go-down


38. Nano R, Capelli E, Facoetti A, Benericetti E: Immunobiological and experimental aspects of malignant astrocytoma. Anticancer Res; 2009 Jul;29(7):2461-5
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Immunobiological and experimental aspects of malignant astrocytoma.
  • Starting from 1992, the goal of our studies was to obtain new biological data on malignant astrocytomas to better understand the basic biology of the tumour and these are reviewed here.
  • [MeSH-major] Astrocytoma / immunology. Brain Neoplasms / immunology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19596914.001).
  • [ISSN] 1791-7530
  • [Journal-full-title] Anticancer research
  • [ISO-abbreviation] Anticancer Res.
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / Interleukin-2
  • [Number-of-references] 51
  •  go-up   go-down


39. Jeannin S, Lebrun C, Van Den Bos F, Olschwang S, Bourg V, Frenay M: [Turcot's syndrome confirmed by molecular biological tests]. Rev Neurol (Paris); 2006 Jun;162(6-7):741-6
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Transliterated title] Syndrome de Turcot confirmé par biologie moléculaire.
  • INTRODUCTION: Turcot's syndrome is characterized clinically by the concurrence of a primary brain tumor and a familial adenomatous polyposis or a hereditary nonpolyposis colorectal cancer.
  • OBSERVATION: We report a case of a 45-year-old woman who underwent in 1995 neuro-oncological treatment for an anaplastic astrocytoma (grade III according to the World Health Organization classification).

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Colorectal Cancer.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16840983.001).
  • [ISSN] 0035-3787
  • [Journal-full-title] Revue neurologique
  • [ISO-abbreviation] Rev. Neurol. (Paris)
  • [Language] fre
  • [Publication-type] Case Reports; English Abstract; Journal Article
  • [Publication-country] France
  • [Chemical-registry-number] 0 / Adaptor Proteins, Signal Transducing; 0 / Carrier Proteins; 0 / MLH1 protein, human; 0 / Nuclear Proteins; EC 3.6.1.3 / MSH2 protein, human; EC 3.6.1.3 / MutS Homolog 2 Protein
  •  go-up   go-down


40. Chamberlain MC, Johnston S: Salvage chemotherapy with bevacizumab for recurrent alkylator-refractory anaplastic astrocytoma. J Neurooncol; 2009 Feb;91(3):359-67
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Salvage chemotherapy with bevacizumab for recurrent alkylator-refractory anaplastic astrocytoma.
  • A retrospective study of bevacizumab only in adults with recurrent temozolomide (TMZ)-refractory anaplastic astrocytoma (AA) with a primary objective of determining progression free survival (PFS).
  • Bevacizumab-related toxicity included fatigue (14 patients; 2 grade 3), leukopenia (7; 1 grade 3), deep vein thrombosis (5; 2 grade 3), hypertension (5; 1 grade 3), anemia (4; 0 grade 3) and wound dehiscence (1; 1 grade 3).
  • Time to tumor progression ranged from 1 to 20 months (median: 7).
  • [MeSH-major] Angiogenesis Inhibitors / therapeutic use. Antibodies, Monoclonal / therapeutic use. Astrocytoma / drug therapy. Astrocytoma / mortality. Brain Neoplasms / drug therapy. Brain Neoplasms / mortality. Neoplasm Recurrence, Local

  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neurosurg. 1981 Nov;55(5):749-56 [7310496.001]
  • [Cites] J Clin Oncol. 1991 May;9(5):860-4 [1849986.001]
  • [Cites] J Clin Oncol. 1992 Sep;10(9):1379-85 [1325539.001]
  • [Cites] Ann Neurol. 2003 Oct;54(4):479-87 [14520660.001]
  • [Cites] J Clin Oncol. 2001 Jan 15;19(2):509-18 [11208845.001]
  • [Cites] Neuro Oncol. 2004 Jul;6(3):253-8 [15279718.001]
  • [Cites] Cancer. 2000 Aug 1;89(3):640-6 [10931464.001]
  • [Cites] Eur J Cancer. 1997 Sep;33(10):1592-6 [9389920.001]
  • [Cites] J Clin Oncol. 1999 Nov;17(11):3389-95 [10550132.001]
  • [Cites] J Clin Oncol. 2007 Oct 20;25(30):4722-9 [17947719.001]
  • [Cites] J Clin Oncol. 1990 Jul;8(7):1277-80 [2358840.001]
  • [Cites] Neuro Oncol. 2007 Apr;9(2):89-95 [17327573.001]
  • [Cites] Cancer. 2003 Feb 15;97(4):1063-71 [12569607.001]
  • [Cites] Neuro Oncol. 2003 Apr;5(2):79-88 [12672279.001]
  • [Cites] Stat Med. 1991 May;10(5):749-55 [2068428.001]
  • [Cites] Neurology. 2008 Mar 4;70(10):779-87 [18316689.001]
  • [Cites] J Clin Oncol. 1999 Sep;17 (9):2762-71 [10561351.001]
  • [Cites] Surg Neurol. 1993 Jun;39(6):538-43 [8390727.001]
  • [Cites] J Neurosurg. 2007 Apr;106(4):601-8 [17432710.001]
  • [Cites] Cancer Cell. 2007 Jan;11(1):83-95 [17222792.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1990 Feb;18(2):321-4 [2154418.001]
  • [Cites] J Clin Oncol. 2003 Jun 15;21(12 ):2305-11 [12805331.001]
  • [Cites] Neurology. 2006 Apr 25;66(8):1258-60 [16636248.001]
  • [Cites] J Clin Oncol. 2006 Jun 20;24(18):2707-14 [16782910.001]
  • [Cites] J Clin Oncol. 1999 Aug;17(8):2572-8 [10561324.001]
  • [Cites] J Clin Oncol. 1987 Mar;5(3):459-63 [3546620.001]
  • [Cites] Semin Oncol. 2000 Jun;27(3 Suppl 6):1-10 [10866344.001]
  • [Cites] J Neurosurg. 1990 Apr;72 (4):583-8 [2319317.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1991 Aug;21(3):601-6 [1651302.001]
  • [Cites] Lancet. 2002 Mar 23;359(9311):1011-8 [11937180.001]
  • [Cites] Clin Cancer Res. 2007 Feb 15;13(4):1253-9 [17317837.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1992;23(1):3-8 [1572829.001]
  • [Cites] J Clin Oncol. 2006 Jun 20;24(18):2715-22 [16782911.001]
  • [Cites] Cancer. 1993 Apr 15;71(8):2585-97 [8453582.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1992;24(4):593-7 [1429080.001]
  • [Cites] Cancer. 2004 Mar 15;100(6):1213-20 [15022289.001]
  • [Cites] J Clin Oncol. 2003 Apr 15;21(8):1485-91 [12697871.001]
  • [Cites] Lancet. 1995 Apr 22;345(8956):1008-12 [7723496.001]
  • [Cites] J Clin Oncol. 2007 Oct 20;25(30):4714-21 [17947718.001]
  • (PMID = 18953491.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Evaluation Studies; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Angiogenesis Inhibitors; 0 / Antibodies, Monoclonal; 0 / Antibodies, Monoclonal, Humanized; 2S9ZZM9Q9V / Bevacizumab
  •  go-up   go-down


41. Da Fonseca CO, Silva JT, Lins IR, Simão M, Arnobio A, Futuro D, Quirico-Santos T: Correlation of tumor topography and peritumoral edema of recurrent malignant gliomas with therapeutic response to intranasal administration of perillyl alcohol. Invest New Drugs; 2009 Dec;27(6):557-64
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Correlation of tumor topography and peritumoral edema of recurrent malignant gliomas with therapeutic response to intranasal administration of perillyl alcohol.
  • BACKGROUND: The aim of this study was to establish a correlation of tumor topography and peritumoral brain edema with the therapeutic response to intranasal administration of perillyl alcohol (POH) in a cohort of patients with recurrent malignant gliomas.
  • METHODS: The retrospective study reviewed clinical and neuroradiological data from patients with recurrent malignant gliomas who received intranasal daily administration of POH 440 mg.
  • The following parameters were assessed: demographic characteristics, initial symptoms, overall survival, tumor topography and tumor size, presence of midline shift and extent of peritumoral edema.
  • RESULTS: A cohort of 67 patients included 52 (78%) with glioblastoma (GBM), ten (15%) with anaplastic astrocytoma (AA) and five (7%) with anaplastic oligodendroglioma (AO).
  • Accordingly to tumor topography lobar localization was present in all (5/5) AO; eight (8/10) and 41 GBM patients whereas in the basal ganglia two AA and 11 GBM patients.
  • It was also observed a relation between the tumor size and area of peritumoral brain edema (PTBE).
  • Patients with good therapeutic response showed reduction of tumor size and PTBE area, but poor prognosis was associated with lack of response to treatment and persistence of high PTBE.
  • Patients with tumor in the basal ganglia survived significantly longer than those with lobar gliomas (log rank test, p = 0.0003).
  • (2) presence of PTBE contributes to symptoms, likely to be implicated in the morbidity and invading potential of malignant gliomas.
  • [MeSH-major] Antineoplastic Agents / therapeutic use. Brain Edema / pathology. Brain Neoplasms / drug therapy. Glioma / drug therapy. Glioma / pathology. Monoterpenes / therapeutic use. Neoplasm Recurrence, Local / pathology

  • Genetic Alliance. consumer health - Edema.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Cancer Chemotherapy.
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Lancet Neurol. 2005 Jul;4(7):413-22 [15963444.001]
  • [Cites] AJNR Am J Neuroradiol. 2007 Mar;28(3):462-9 [17353313.001]
  • [Cites] J Neurooncol. 1996 Jan;27(1):65-73 [8699228.001]
  • [Cites] J BUON. 2007 Apr-Jun;12(2):239-43 [17600879.001]
  • [Cites] Vojnosanit Pregl. 2003 Mar-Apr;60(2):147-54 [12852156.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2000 Dec 1;48(5):1359-62 [11121634.001]
  • [Cites] Surg Neurol. 2006;65 Suppl 1:S1:2-1:8; discussion S1:8-1:9 [16427438.001]
  • [Cites] Am J Surg Pathol. 2007 May;31(5):760-9 [17460461.001]
  • [Cites] Surg Neurol. 2006 Dec;66(6):611-5 [17145324.001]
  • [Cites] Am J Dermatopathol. 2008 Aug;30(4):381-4 [18645311.001]
  • [Cites] Arch Immunol Ther Exp (Warsz). 2008 Jul-Aug;56(4):267-76 [18726148.001]
  • [Cites] J Natl Cancer Inst. 2007 Nov 7;99(21):1583-93 [17971532.001]
  • [Cites] J Neurol Sci. 2007 Sep 15;260(1-2):49-56 [17475281.001]
  • [Cites] J Neurooncol. 2005 Jul;73(3):211-7 [15980971.001]
  • [Cites] Neurol India. 2002 Mar;50(1):37-40 [11960149.001]
  • [Cites] Glia. 2008 Jun;56(8):917-24 [18383343.001]
  • [Cites] Surg Neurol. 2008 Sep;70(3):259-66; discussion 266-7 [18295834.001]
  • [Cites] Bull Mem Acad R Med Belg. 2007;162(5-6):331-8 [18405003.001]
  • [Cites] Bull Cancer. 2008 Jan;95(1):51-6 [18230570.001]
  • [Cites] J Neurooncol. 2003 Sep;64(3):227-37 [14558598.001]
  • [Cites] Acta Neurochir Suppl. 2003;85:47-53 [12570137.001]
  • [Cites] J Neurol Sci. 2003 Dec 15;216(1):1-10 [14607296.001]
  • [Cites] J Neuropathol Exp Neurol. 2007 Jan;66(1):1-9 [17204931.001]
  • [Cites] Onkologie. 2004 Jun;27(3):261-6 [15249715.001]
  • [Cites] Cancer Res. 2003 Apr 1;63(7):1602-7 [12670911.001]
  • (PMID = 19139816.001).
  • [ISSN] 1573-0646
  • [Journal-full-title] Investigational new drugs
  • [ISO-abbreviation] Invest New Drugs
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Monoterpenes; 319R5C7293 / perillyl alcohol
  •  go-up   go-down


42. Raza SM, Garzon-Muvdi T, Boaehene K, Olivi A, Gallia G, Lim M, Subramanian P, Quinones-Hinojosa A: The supraorbital craniotomy for access to the skull base and intraaxial lesions: a technique in evolution. Minim Invasive Neurosurg; 2010 Feb;53(1):1-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Intra-axial pathology ranged from anaplastic astrocytoma to metastasis while extra-axial lesions included meningiomas and skull-based metastases.
  • [MeSH-minor] Adenoma / surgery. Astrocytoma / surgery. Breast Neoplasms / surgery. Craniopharyngioma / surgery. Esthetics. Eyebrows. Eyelids. Female. Follow-Up Studies. Frontal Lobe / surgery. Humans. Male. Meningeal Neoplasms / surgery. Meningioma / surgery. Middle Aged. Pituitary Neoplasms / surgery. Postoperative Complications / etiology. Treatment Outcome

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) Georg Thieme Verlag KG Stuttgart . New York.
  • (PMID = 20376737.001).
  • [ISSN] 1439-2291
  • [Journal-full-title] Minimally invasive neurosurgery : MIN
  • [ISO-abbreviation] Minim Invasive Neurosurg
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  •  go-up   go-down


43. Kim JH, Choi C, Benveniste EN, Kwon D: TRAIL induces MMP-9 expression via ERK activation in human astrocytoma cells. Biochem Biophys Res Commun; 2008 Dec 5;377(1):195-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] TRAIL induces MMP-9 expression via ERK activation in human astrocytoma cells.
  • Matrix metalloproteinase-9 (MMP-9) is an important angiogenic and prognostic factor in malignant tumors.
  • Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known as the death ligand, which induces preferential apoptosis of transformed tumor cells.
  • We demonstrated that TRAIL induces MMP-9 expression in human astrocytoma cells, which is preceded by activation of extracellular signal-regulated protein kinase (ERK).
  • These findings indicate that TRAIL treatment in human astrocytoma cells leads to the activation of NF-kappaB and subsequent expression of MMP-9, which are dependent on ERK activation.
  • Collectively, these results suggest that TRAIL has alternative biological functions in addition to its role in inducing apoptosis in human malignant astrocytoma cells.
  • [MeSH-major] Astrocytoma / enzymology. Extracellular Signal-Regulated MAP Kinases / metabolism. Matrix Metalloproteinase 9 / biosynthesis. TNF-Related Apoptosis-Inducing Ligand / physiology
  • [MeSH-minor] Butadienes / pharmacology. Cell Line, Tumor. Enzyme Activation. Humans. NF-kappa B / metabolism. Nitriles / pharmacology. Protein Kinase Inhibitors

  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18834856.001).
  • [ISSN] 1090-2104
  • [Journal-full-title] Biochemical and biophysical research communications
  • [ISO-abbreviation] Biochem. Biophys. Res. Commun.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Butadienes; 0 / NF-kappa B; 0 / Nitriles; 0 / Protein Kinase Inhibitors; 0 / TNF-Related Apoptosis-Inducing Ligand; 0 / U 0126; EC 2.7.11.24 / Extracellular Signal-Regulated MAP Kinases; EC 3.4.24.35 / Matrix Metalloproteinase 9
  •  go-up   go-down


44. Tanaka S, Kobayashi I, Utsuki S, Iwamoto K, Takanashi J: Biopsy of brain stem glioma using motor-evoked potential mapping by direct peduncular stimulation and individual adjuvant therapy. Case report. Neurol Med Chir (Tokyo); 2005 Jan;45(1):49-55
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Partial resection of the tumor was safely performed, with slight temporary neurological worsening.
  • The histological diagnosis was anaplastic astrocytoma.
  • Individual adjuvant therapy based on the results of real-time reverse transcription-polymerase chain reaction of O6-methylguanine-deoxyribonucleic acid methyltransferase achieved an almost complete tumor response.
  • [MeSH-major] Astrocytoma / surgery. Brain Mapping. Brain Stem Neoplasms / surgery. Evoked Potentials, Motor. Mesencephalon / physiopathology. Neurosurgical Procedures / methods

  • Genetic Alliance. consumer health - Glioma.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15699622.001).
  • [ISSN] 0470-8105
  • [Journal-full-title] Neurologia medico-chirurgica
  • [ISO-abbreviation] Neurol. Med. Chir. (Tokyo)
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Japan
  •  go-up   go-down


45. Reddy PS, Umesh S, Thota B, Tandon A, Pandey P, Hegde AS, Balasubramaniam A, Chandramouli BA, Santosh V, Rao MR, Kondaiah P, Somasundaram K: PBEF1/NAmPRTase/Visfatin: a potential malignant astrocytoma/glioblastoma serum marker with prognostic value. Cancer Biol Ther; 2008 May;7(5):663-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] PBEF1/NAmPRTase/Visfatin: a potential malignant astrocytoma/glioblastoma serum marker with prognostic value.
  • Malignant astrocytomas comprise anaplastic astrocytoma (AA; grade III) and Glioblastoma (GBM; grade IV).
  • GBM is the most malignant with a median survival of 10-12 months in patients.
  • Using cDNA microarray based expression profiling of different grades of astrocytomas, we identified several fold increased levels of PBEF1 transcripts in GBM samples.
  • Further validation using real time RT-qPCR on an independent set of tumor samples (n=91) and normal brain samples (n=9), GBM specific higher expression of PBEF1 was confirmed.
  • We carried out ELISA analysis on serum samples of astrocytoma patients to determine whether this protein levels would correlate with the presence of tumor and tumor grade.
  • Statistical analysis of these data indicates that in patients with astrocytoma, serum PBEF1 levels correlate with tumor grade and is highest in GBM.
  • Immunohistochemical analysis of an independent set of 51 retrospective GBM cases with known survival data revealed that PBEF1 expression in the tumor tissue along with its co-expression with p53 was associated with poor survival.
  • Thus, we have identified PBEF1 as a potential malignant astrocytoma serum marker and prognostic indicator among GBMs.
  • [MeSH-major] Astrocytoma / metabolism. Biomarkers, Tumor. Brain / metabolism. Brain Neoplasms / metabolism. Cytokines / physiology. Gene Expression Regulation, Neoplastic. Glioblastoma / metabolism. Nicotinamide Phosphoribosyltransferase / metabolism
  • [MeSH-minor] Enzyme-Linked Immunosorbent Assay. Humans. Immunohistochemistry / methods. Oligonucleotide Array Sequence Analysis. Prognosis. Reverse Transcriptase Polymerase Chain Reaction. Tumor Suppressor Protein p53 / metabolism

  • Genetic Alliance. consumer health - Glioblastoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18728403.001).
  • [ISSN] 1555-8576
  • [Journal-full-title] Cancer biology & therapy
  • [ISO-abbreviation] Cancer Biol. Ther.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Cytokines; 0 / Tumor Suppressor Protein p53; EC 2.4.2.12 / Nicotinamide Phosphoribosyltransferase; EC 2.4.2.12 / nicotinamide phosphoribosyltransferase, human
  •  go-up   go-down


46. Zhang Y, Zhang N, Dai B, Liu M, Sawaya R, Xie K, Huang S: FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res; 2008 Nov 1;68(21):8733-42
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • We previously found that FoxM1B is overexpressed in human glioblastomas and that forced FoxM1B expression in anaplastic astrocytoma cells leads to the formation of highly angiogenic glioblastoma in nude mice.
  • Our findings provide both clinical and mechanistic evidence that FoxM1 contributes to glioma progression by enhancing VEGF gene transcription and thus tumor angiogenesis.

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neurosurg. 2000 Feb;92(2):326-33 [10659021.001]
  • [Cites] Genes Dev. 2008 Feb 15;22(4):449-62 [18258752.001]
  • [Cites] Cancer Res. 2000 Oct 15;60(20):5879-86 [11059786.001]
  • [Cites] Cancer Res. 2001 May 15;61(10):4143-54 [11358838.001]
  • [Cites] Genes Dev. 2001 Jun 1;15(11):1311-33 [11390353.001]
  • [Cites] Cancer Res. 2001 Sep 15;61(18):6885-91 [11559565.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Mar;61(3):215-25; discussion 226-9 [11895036.001]
  • [Cites] Oncogene. 2002 Mar 27;21(13):2058-65 [11960378.001]
  • [Cites] Am J Pathol. 2002 Jul;161(1):125-34 [12107097.001]
  • [Cites] Oncogene. 2002 Dec 5;21(55):8404-13 [12466961.001]
  • [Cites] Am J Pathol. 2003 Sep;163(3):1033-43 [12937144.001]
  • [Cites] Semin Cancer Biol. 2004 Apr;14(2):123-30 [15018896.001]
  • [Cites] Genes Dev. 2004 Apr 1;18(7):830-50 [15082532.001]
  • [Cites] BMC Cancer. 2003 Sep 17;3:23 [13678425.001]
  • [Cites] Lab Invest. 2004 Aug;84(8):941-51 [15184909.001]
  • [Cites] Cytokine Growth Factor Rev. 2004 Oct;15(5):297-324 [15450248.001]
  • [Cites] Nature. 1992 Oct 29;359(6398):843-5 [1279431.001]
  • [Cites] Brain Pathol. 1993 Jul;3(3):255-68 [8293185.001]
  • [Cites] J Neuropathol Exp Neurol. 1994 Jan;53(1):11-21 [8301315.001]
  • [Cites] J Biol Chem. 1995 Jun 2;270(22):13333-40 [7768934.001]
  • [Cites] Circ Res. 1995 Sep;77(3):638-43 [7641334.001]
  • [Cites] Mol Cell Biol. 1995 Oct;15(10):5363-8 [7565686.001]
  • [Cites] Nat Med. 1995 Jan;1(1):27-31 [7584949.001]
  • [Cites] Pediatr Neurosurg. 1996;24(1):41-9 [8817614.001]
  • [Cites] J Biol Chem. 1996 Nov 8;271(45):28220-8 [8910439.001]
  • [Cites] Mol Cell Biol. 1997 Mar;17(3):1626-41 [9032290.001]
  • [Cites] Nucleic Acids Res. 1997 May 1;25(9):1715-9 [9108152.001]
  • [Cites] J Biol Chem. 1997 Aug 8;272(32):19827-36 [9242644.001]
  • [Cites] Cancer Res. 1997 Sep 1;57(17):3860-4 [9288800.001]
  • [Cites] Mol Biol Cell. 1998 Feb;9(2):469-81 [9450968.001]
  • [Cites] Mod Pathol. 1998 Feb;11(2):155-68 [9504686.001]
  • [Cites] Int J Cancer. 1999 Mar 31;81(1):118-24 [10077162.001]
  • [Cites] Science. 1999 Apr 30;284(5415):808-12 [10221914.001]
  • [Cites] Curr Opin Oncol. 1999 May;11(3):162-7 [10328589.001]
  • [Cites] Nat Cell Biol. 2005 Feb;7(2):126-36 [15654331.001]
  • [Cites] Cancer Res. 2005 Mar 15;65(6):2065-9 [15781613.001]
  • [Cites] Int J Cancer. 2005 Jun 10;115(2):202-13 [15688401.001]
  • [Cites] Neuro Oncol. 2005 Apr;7(2):134-53 [15831232.001]
  • [Cites] Cancer Res. 2005 May 15;65(10):4051-8 [15899794.001]
  • [Cites] J Biol Chem. 2005 Jun 10;280(23):22278-86 [15817462.001]
  • [Cites] Cancer Res. 2005 Jun 15;65(12):5181-9 [15958562.001]
  • [Cites] Cancer Res. 2006 Feb 1;66(3):1712-20 [16452231.001]
  • [Cites] Cancer Res. 2006 Feb 15;66(4):2153-61 [16489016.001]
  • [Cites] Cancer Res. 2006 Apr 1;66(7):3593-602 [16585184.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 Jun;65(6):529-39 [16783163.001]
  • [Cites] Gastroenterology. 2007 Apr;132(4):1420-31 [17408638.001]
  • [Cites] Cancer Res. 2007 Sep 1;67(17):8293-300 [17804744.001]
  • [Cites] Oncogene. 2007 Sep 13;26(42):6212-9 [17404569.001]
  • [Cites] Clin Cancer Res. 2000 Jun;6(6):2562-72 [10873113.001]
  • (PMID = 18974115.001).
  • [ISSN] 1538-7445
  • [Journal-full-title] Cancer research
  • [ISO-abbreviation] Cancer Res.
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / CA-16672; United States / NCI NIH HHS / CA / P30 CA016672; United States / NCI NIH HHS / CA / R01 CA116528-03; United States / NCI NIH HHS / CA / CA116528-03; United States / NCI NIH HHS / CA / R01-CA-116528; United States / NCI NIH HHS / CA / R01 CA116528; United States / NCI NIH HHS / CA / R01 CA116528-02; United States / NCI NIH HHS / CA / CA116528-02
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / DNA Primers; 0 / FOXM1 protein, human; 0 / Forkhead Transcription Factors; 0 / Vascular Endothelial Growth Factor A
  • [Other-IDs] NLM/ NIHMS67455; NLM/ PMC2597644
  •  go-up   go-down


47. Waha A, Felsberg J, Hartmann W, von dem Knesebeck A, Mikeska T, Joos S, Wolter M, Koch A, Yan PS, Endl E, Wiestler OD, Reifenberger G, Pietsch T, Waha A: Epigenetic downregulation of mitogen-activated protein kinase phosphatase MKP-2 relieves its growth suppressive activity in glioma cells. Cancer Res; 2010 Feb 15;70(4):1689-99
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Critical tumor suppression pathways in brain tumors have yet to be fully defined.
  • In 83 astrocytic gliomas and 5 glioma cell lines examined, hypermethylation of the MKP-2 promoter was found to occur relatively more frequently in diffuse or anaplastic astrocytomas and secondary glioblastomas relative to primary glioblastomas.
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Cell Line, Tumor. DNA Methylation. Down-Regulation / physiology. Female. Gene Expression Regulation, Neoplastic / physiology. Gene Silencing / physiology. Genes, Tumor Suppressor / physiology. Humans. Male. Middle Aged

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20124482.001).
  • [ISSN] 1538-7445
  • [Journal-full-title] Cancer research
  • [ISO-abbreviation] Cancer Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] EC 3.1.3.- / Mitogen-Activated Protein Kinase Phosphatases; EC 3.1.3.48 / DUSP4 protein, human; EC 3.1.3.48 / Dual-Specificity Phosphatases
  •  go-up   go-down


48. Pavlisa G, Rados M, Pavlisa G, Pavic L, Potocki K, Mayer D: The differences of water diffusion between brain tissue infiltrated by tumor and peritumoral vasogenic edema. Clin Imaging; 2009 Mar-Apr;33(2):96-101
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The differences of water diffusion between brain tissue infiltrated by tumor and peritumoral vasogenic edema.
  • The differences between peritumoral brain tissue infiltrated by tumor and vasogenic edema were prospectively evaluated by comparing the apparent diffusion coefficient (ADC) of peritumoral areas of infiltrative tumors (anaplastic astrocytomas and glioblastomas) to that of peritumoral areas of noninfiltrative tumors (metastatic carcinomas) on 54 patients.
  • Peritumoral ADCs indicated the possibility of differentiation between tumor infiltration and vasogenic edema, as well as between primary gliomas and metastases.
  • [MeSH-minor] Astrocytoma / diagnosis. Astrocytoma / pathology. Female. Glioblastoma / diagnosis. Glioblastoma / pathology. Humans. Male. Middle Aged

  • Genetic Alliance. consumer health - Edema.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19237051.001).
  • [ISSN] 1873-4499
  • [Journal-full-title] Clinical imaging
  • [ISO-abbreviation] Clin Imaging
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


49. Omar AI, Mason WP: Temozolomide: The evidence for its therapeutic efficacy in malignant astrocytomas. Core Evid; 2010 Jun 15;4:93-111
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Temozolomide: The evidence for its therapeutic efficacy in malignant astrocytomas.
  • INTRODUCTION: Malignant gliomas are a heterogeneous group of primary central nervous system neoplasms that represent less than 2% of all cancers yet carry a significant burden to society.
  • Temozolomide (TMZ) is a new second generation DNA alkylating agent that has become part of malignant astrocytoma management paradigms because of its proven efficacy, ease of administration, and favorable toxicity profile.
  • AIMS: To review the role of TMZ in the management of malignant astrocytomas (World Health Organization grades III and IV) including newly diagnosed (n) and recurrent (r) anaplastic astrocytomas (AA) and glioblastomas.
  • EVIDENCE REVIEW: A series of pivotal clinical trials have established a role for TMZ in the treatment of malignant astrocytomas.
  • A recent large prospective randomized phase III trial showed that the addition of TMZ during and after radiation therapy (RT) in newly diagnosed (nGBM) patients prolonged median overall survival by 2.5 months; perhaps more importantly, the 2-year survival rate for patients receiving TMZ and RT was 26% compared with 10% for those receiving RT alone.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Ann Intern Med. 2000 May 16;132(10):769-79 [10819699.001]
  • [Cites] Cancer. 2004 Nov 1;101(9):2098-105 [15389472.001]
  • [Cites] Oncol Rep. 2000 Jul-Aug;7(4):899-904 [10854567.001]
  • [Cites] Cancer. 2003 May 1;97(9):2262-6 [12712481.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Mar;61(3):215-25; discussion 226-9 [11895036.001]
  • [Cites] J Clin Oncol. 2004 May 1;22(9):1598-604 [15117981.001]
  • [Cites] J Clin Oncol. 2005 Apr 1;23(10):2372-7 [15800329.001]
  • [Cites] Br J Cancer. 2003 Apr 7;88(7):1004-11 [12671695.001]
  • [Cites] J Clin Oncol. 2004 May 1;22(9):1583-8 [15051755.001]
  • [Cites] J Oncol Pharm Pract. 2006 Jun;12(2):105-11 [16984749.001]
  • [Cites] N Engl J Med. 1980 Dec 4;303(23):1323-9 [7001230.001]
  • [Cites] Neurosurgery. 1998 Aug;43(2):398-9 [9696102.001]
  • [Cites] Neuro Oncol. 2002 Jan;4(1):39-43 [11772431.001]
  • [Cites] Cancer. 2004 May 15;100(10):2208-14 [15139066.001]
  • [Cites] Qual Life Res. 1996 Feb;5(1):139-50 [8901377.001]
  • [Cites] J Natl Cancer Inst. 1993 May 5;85(9):704-10 [8478956.001]
  • [Cites] J Clin Oncol. 2001 Jan 15;19(2):509-18 [11208845.001]
  • [Cites] J Neurosurg. 1993 May;78(5):767-75 [8468607.001]
  • [Cites] J Neurooncol. 2004 Mar-Apr;67(1-2):191-200 [15072467.001]
  • [Cites] Ann Oncol. 2001 Feb;12(2):259-66 [11300335.001]
  • [Cites] Trends Biochem Sci. 1995 Oct;20(10):421-6 [8533156.001]
  • [Cites] Health Technol Assess. 2001;5(13):1-73 [11359682.001]
  • [Cites] Cancer. 1993 Oct 1;72(7):2227-33 [8374881.001]
  • [Cites] Mayo Clin Proc. 2007 Jun;82(6):771-3 [17550757.001]
  • [Cites] Int J Cancer. 1999 Mar 1;80(5):764-72 [10048980.001]
  • [Cites] Anticancer Drugs. 2004 Jun;15(5):499-502 [15166625.001]
  • [Cites] Brain Pathol. 1995 Apr;5(2):145-51 [7670655.001]
  • [Cites] Radiother Oncol. 2001 May;59(2):127-37 [11325440.001]
  • [Cites] Eur J Cancer. 1996 Dec;32A(13):2236-41 [9038604.001]
  • [Cites] Crit Rev Oncol Hematol. 2007 Jul;63(1):72-80 [17478095.001]
  • [Cites] Nat Clin Pract Oncol. 2006 Jun;3(6):339-43; quiz following 343 [16757971.001]
  • [Cites] Cancer Treat Rev. 2006 Oct;32(6):483-6 [16730911.001]
  • [Cites] J Clin Oncol. 1990 Jul;8(7):1277-80 [2358840.001]
  • [Cites] Neuro Oncol. 2005 Apr;7(2):189-95 [15831237.001]
  • [Cites] Neuro Oncol. 1999 Apr;1(2):124-37 [11550308.001]
  • [Cites] J Clin Oncol. 2006 Jun 1;24(16):2563-9 [16735709.001]
  • [Cites] Semin Radiat Oncol. 2001 Apr;11(2):163-9 [11285554.001]
  • [Cites] Expert Rev Anticancer Ther. 2006 Nov;6(11):1593-607 [17134364.001]
  • [Cites] Br J Cancer. 1992 Feb;65(2):287-91 [1739631.001]
  • [Cites] N Engl J Med. 2007 Apr 12;356(15):1527-35 [17429084.001]
  • [Cites] J Clin Oncol. 2006 Jan 1;24(1):4-5 [16314613.001]
  • [Cites] J Neuropathol Exp Neurol. 2005 Jun;64(6):479-89 [15977639.001]
  • [Cites] J Natl Cancer Inst. 1993 Mar 3;85(5):365-76 [8433390.001]
  • [Cites] Oncology (Williston Park). 1998 Apr;12(4):537-43, 547; discussion 547-8, 553 [9575527.001]
  • [Cites] Mol Cancer Ther. 2002 Nov;1(13):1229-36 [12479704.001]
  • [Cites] Cancer Res. 2004 Oct 1;64(19):6892-9 [15466178.001]
  • [Cites] Oncology. 2002;63(1):38-41 [12187069.001]
  • [Cites] J Natl Cancer Inst. 2006 Nov 1;98(21):1528-37 [17077355.001]
  • [Cites] Acta Neuropathol. 2007 Aug;114(2):97-109 [17618441.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2005 Feb 1;61(2):380-6 [15667956.001]
  • [Cites] No Shinkei Geka. 1992 Apr;20(4):493-7 [1570077.001]
  • [Cites] Eur J Cancer. 1993;29A(7):940-2 [8499146.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):997-1003 [15758010.001]
  • [Cites] Neuro Oncol. 1999 Jul;1(3):169-76 [11550311.001]
  • [Cites] Acta Oncol. 2004;43(6):579-84 [15370616.001]
  • [Cites] Ann Oncol. 1998 Jun;9(6):589-600 [9681071.001]
  • [Cites] J BUON. 2002 Jan-Mar;7(1):35-41 [17577258.001]
  • [Cites] Oncologist. 2006 Feb;11(2):165-80 [16476837.001]
  • [Cites] Cancer. 1983 Sep 15;52(6):997-1007 [6349785.001]
  • [Cites] Br J Neurosurg. 2002 Aug;16(4):335-42 [12389885.001]
  • [Cites] J Clin Oncol. 2005 Oct 1;23(28):7178-87 [16192602.001]
  • [Cites] Ann Oncol. 2005 Jun;16(6):942-9 [15870090.001]
  • [Cites] J Pharmacol Exp Ther. 2000 Aug;294(2):664-71 [10900246.001]
  • [Cites] Cancer. 2006 Jan 1;106(1):172-9 [16323194.001]
  • [Cites] J Clin Oncol. 2007 Jun 20;25(18):2601-6 [17577040.001]
  • [Cites] Anticancer Res. 2006 Nov-Dec;26(6C):4675-86 [17214326.001]
  • [Cites] J Clin Oncol. 1998 Jan;16(1):139-44 [9440735.001]
  • [Cites] J Neurosurg. 1989 Jul;71(1):1-9 [2661738.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):987-96 [15758009.001]
  • [Cites] Acta Neurochir (Wien). 2003 Jan;145(1):5-10 [12545256.001]
  • [Cites] J Clin Oncol. 1999 Aug;17(8):2572-8 [10561324.001]
  • [Cites] Qual Life Res. 1996 Dec;5(6):555-67 [8993101.001]
  • [Cites] J Neurooncol. 2007 Feb;81(3):295-303 [17001519.001]
  • [Cites] J Clin Oncol. 2002 Mar 1;20(5):1375-82 [11870182.001]
  • [Cites] J Clin Oncol. 1999 Sep;17(9):2762-71 [10561351.001]
  • [Cites] J Clin Oncol. 2006 Sep 20;24(27):4412-7 [16983109.001]
  • [Cites] Nat Rev Cancer. 2004 Apr;4(4):296-307 [15057289.001]
  • [Cites] Biochemistry. 1994 Aug 9;33(31):9045-51 [8049205.001]
  • [Cites] Cancer. 2004 Apr 15;100(8):1712-6 [15073861.001]
  • [Cites] Am J Clin Oncol. 2002 Dec;25(6):606-11 [12478010.001]
  • [Cites] N Engl J Med. 1977 Mar 31;296(13):716-21 [402576.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2000 Jun 1;47(3):779-84 [10837964.001]
  • [Cites] J Clin Oncol. 2000 Apr;18(7):1481-91 [10735896.001]
  • [Cites] Lancet. 2002 Mar 23;359(9311):1011-8 [11937180.001]
  • [Cites] Anticancer Drugs. 1997 Jan;8(1):92-7 [9147618.001]
  • [Cites] Br J Cancer. 2004 Sep 13;91(6):1038-44 [15305187.001]
  • [Cites] J Neurooncol. 2007 Feb;81(3):271-7 [17031561.001]
  • [Cites] Br J Cancer. 2000 Sep;83(5):588-93 [10944597.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1996 Sep 1;36(2):433-41 [8892469.001]
  • [Cites] Neuro Oncol. 2004 Jan;6(1):38-43 [14769139.001]
  • [Cites] Neuroepidemiology. 2006;27(1):55-6 [16825795.001]
  • [Cites] Br J Cancer. 2003 Jul 21;89(2):248-51 [12865911.001]
  • [Cites] Curr Mol Med. 2003 Feb;3(1):73-84 [12558076.001]
  • [Cites] J Neurooncol. 1994;21(2):135-40 [7861189.001]
  • [Cites] J Clin Oncol. 2002 Mar 1;20(5):1383-8 [11870183.001]
  • [Cites] Eur J Cancer. 2000 Sep;36(14):1788-95 [10974627.001]
  • [Cites] J Neurooncol. 2004 Jan;66(1-2):203-8 [15015788.001]
  • [Cites] J Neurosurg. 2003 Sep;99(3):467-73 [12959431.001]
  • [Cites] Pharmacoeconomics. 2005;23(8):803-15 [16097842.001]
  • [Cites] J Neurooncol. 2007 Mar;82(1):85-9 [17031555.001]
  • [Cites] J Health Econ. 1988 Sep;7(3):289-90 [10291478.001]
  • [Cites] Clin Cancer Res. 2004 Jun 1;10(11):3728-36 [15173079.001]
  • [Cites] J Neurosurg. 2001 Aug;95(2):190-8 [11780887.001]
  • [Cites] Int J Radiat Biol. 2002 Oct;78(10):931-6 [12465658.001]
  • (PMID = 20694068.001).
  • [ISSN] 1555-175X
  • [Journal-full-title] Core evidence
  • [ISO-abbreviation] Core Evid
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] New Zealand
  • [Other-IDs] NLM/ PMC2899776
  • [Keywords] NOTNLM ; anaplastic astrocytoma / evidence / glioblastoma / glioma / malignant astrocytoma / temozolomide
  •  go-up   go-down


50. Murakami H, Sawa H, Kamada H: [Expression of cyclooxygenase (COX)-2 in astrocytic tumors and anti-tumor effects of selective COX-2 inhibitors]. No To Shinkei; 2006 Jan;58(1):43-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Expression of cyclooxygenase (COX)-2 in astrocytic tumors and anti-tumor effects of selective COX-2 inhibitors].
  • Cyclooxygenase (COX)-2 of astrocytic tumors was studied by immunohistochemistry.
  • COX-2 was expressed in 8 of 12 (75%) glioblastoma multiforme, 1 of 7 (14%) anaplastic astrocytoma, but none in astrocytoma.
  • The result showed that COX-2 expression may be related with histological grades and COX-2 inhibitors will be one of promising therapeutic tools in human astrocytic tumors.
  • [MeSH-major] Astrocytoma / enzymology. Cyclooxygenase 2 / analysis. Cyclooxygenase 2 Inhibitors / therapeutic use
  • [MeSH-minor] Adult. Aged. Etodolac / pharmacology. Female. Glioblastoma / drug therapy. Glioblastoma / enzymology. Humans. Immunoblotting. Immunohistochemistry. Male. Middle Aged. Nitrobenzenes / pharmacology. Sulfonamides / pharmacology. Tumor Cells, Cultured

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16482921.001).
  • [ISSN] 0006-8969
  • [Journal-full-title] Nō to shinkei = Brain and nerve
  • [ISO-abbreviation] No To Shinkei
  • [Language] jpn
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] Japan
  • [Chemical-registry-number] 0 / Cyclooxygenase 2 Inhibitors; 0 / Nitrobenzenes; 0 / Sulfonamides; 123653-11-2 / N-(2-cyclohexyloxy-4-nitrophenyl)methanesulfonamide; 2M36281008 / Etodolac; EC 1.14.99.1 / Cyclooxygenase 2
  •  go-up   go-down


51. Jang FF, Wei W, De WM: Vascular endothelial growth factor and basic fibroblast growth factor expression positively correlates with angiogenesis and peritumoural brain oedema in astrocytoma. J Ayub Med Coll Abbottabad; 2008 Apr-Jun;20(2):105-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Vascular endothelial growth factor and basic fibroblast growth factor expression positively correlates with angiogenesis and peritumoural brain oedema in astrocytoma.
  • BACKGROUND: Astrocytoma is the most malignant intracranial neoplasm and is characterized by high neovascularization and peritumoural brain oedema.
  • METHODS: The expression of two angiogenic growth factors, vascular endothelial growth factor and basic fibroblast growth factor were investigated using immunohistochemistry for astrocytoma from 82 patients and 11 normal human tissues.
  • RESULTS: The expression of vascular endothelial growth factor and basic fibroblast growth factor positively correlate with the pathological grade of astrocytoma, microvessel density numbers and brain oedema, which may be responsible for the increased tumour neovascularization and peritumoural brain oedema.
  • CONCLUSION: The results support the idea that inhibiting vascular endothelial growth factor and basic fibroblast growth factor are useful for the treatment of human astrocytoma and to improve patient's clinical outcomes and prognosis.
  • [MeSH-major] Astrocytoma / blood supply. Brain Edema / etiology. Brain Neoplasms / blood supply. Fibroblast Growth Factor 2 / biosynthesis. Neovascularization, Pathologic / metabolism. Vascular Endothelial Growth Factor A / biosynthesis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19385471.001).
  • [ISSN] 1025-9589
  • [Journal-full-title] Journal of Ayub Medical College, Abbottabad : JAMC
  • [ISO-abbreviation] J Ayub Med Coll Abbottabad
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Pakistan
  • [Chemical-registry-number] 0 / Vascular Endothelial Growth Factor A; 103107-01-3 / Fibroblast Growth Factor 2
  •  go-up   go-down


52. Tilleul P, Brignone M, Hassani Y, Taillandier L, Taillibert S, Cartalat-Carel S, Borget I, Chinot O: [Prescription guidebook for temozolomide usage in brain tumors]. Bull Cancer; 2009 May;96(5):579-89
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Transliterated title] Guide de prescription et de bon usage du témozolomide dans les tumeurs cérébrales.
  • Malignant gliomas are the most frequent primary brain tumors in adults.
  • Temozolomide is an oral alkylating cytotoxic agent of second generation, used in the treatment of high-grade gliomas.
  • It is indicated in newly diagnosed glioblastoma multiform as well as in recurrent or progressive malignant gliomas, such as glioblastoma multiform or anaplastic astrocytoma.
  • The literature review was analysed by experts who determined the evidence level (A to E) according to the scale of recommendations adopted by the "Haute Autorité de santé--HAS--(French National Authority for Health)".
  • For high-grade and low-grade gliomas, based on the level of evidence from the literature, the use of temozolomide can be justified, with a B2 score attributed to these indications.
  • [MeSH-minor] Age Factors. Astrocytoma / drug therapy. Drug Administration Schedule. Drug Labeling. Glioblastoma / drug therapy. Humans

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. DACARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19467988.001).
  • [ISSN] 1769-6917
  • [Journal-full-title] Bulletin du cancer
  • [ISO-abbreviation] Bull Cancer
  • [Language] fre
  • [Publication-type] English Abstract; Journal Article; Practice Guideline; Review
  • [Publication-country] France
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide
  • [Number-of-references] 55
  •  go-up   go-down


53. Yang SH, Hong YK, Yoon SC, Kim BS, Lee YS, Lee TK, Lee KS, Jeun SS, Kim MC, Park CK: Radiotherapy plus concurrent and adjuvant procarbazine, lomustine, and vincristine chemotherapy for patients with malignant glioma. Oncol Rep; 2007 Jun;17(6):1359-64
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Radiotherapy plus concurrent and adjuvant procarbazine, lomustine, and vincristine chemotherapy for patients with malignant glioma.
  • We analyzed the clinical efficacy and toxicity of concurrent therapy as a first line modality for malignant glioma patients.
  • From 1998 to 2004, 39 patients, 22 with glioblastoma (GM), nine with anaplastic astrocytoma (AA), 7 with anaplastic oligodendroglioma (AO) and 1 with anaplastic oligodendro-astrocytoma (AOA) were enrolled in this study.
  • Grade III/IV hematological toxicity was reduced from 25.6 to 13% after reduction of the dose of CCNU (75 mg/m(2)).
  • Modified concurrent chemoradiotherapy may be a feasible option for treating malignant glioma with acceptable toxicity.

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • Hazardous Substances Data Bank. LOMUSTINE .
  • Hazardous Substances Data Bank. VINCRISTINE .
  • Hazardous Substances Data Bank. PROCARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17487391.001).
  • [ISSN] 1021-335X
  • [Journal-full-title] Oncology reports
  • [ISO-abbreviation] Oncol. Rep.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Greece
  • [Chemical-registry-number] 35S93Y190K / Procarbazine; 5J49Q6B70F / Vincristine; 7BRF0Z81KG / Lomustine
  •  go-up   go-down


54. Ray WZ, Blackburn SL, Casavilca-Zambrano S, Barrionuevo C, Orrego JE, Heinicke H, Dowling JL, Perry A: Clinicopathologic features of recurrent dysembryoplastic neuroepithelial tumor and rare malignant transformation: a report of 5 cases and review of the literature. J Neurooncol; 2009 Sep;94(2):283-92
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Clinicopathologic features of recurrent dysembryoplastic neuroepithelial tumor and rare malignant transformation: a report of 5 cases and review of the literature.
  • More recently, case reports have described malignant gliomas arising after irradiation and recurrences following subtotal or even gross total resection.
  • Nonetheless, a probably radiation induced anaplastic astrocytoma was encountered in one case 7 years after therapy.
  • These findings suggest that these patients may need closer follow-up than initially suggested, lending further support to the notion that this tumor behaves more like a benign neoplasm, rather than a dysplastic or hamartomatous lesion.
  • [MeSH-major] Brain Neoplasms / pathology. Cell Transformation, Neoplastic / pathology. Neoplasm Recurrence, Local / diagnosis. Neoplasms, Neuroepithelial / pathology


55. Bäcklund LM, Nilsson BR, Liu L, Ichimura K, Collins VP: Mutations in Rb1 pathway-related genes are associated with poor prognosis in anaplastic astrocytomas. Br J Cancer; 2005 Jul 11;93(1):124-30
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Mutations in Rb1 pathway-related genes are associated with poor prognosis in anaplastic astrocytomas.
  • Anaplastic astrocytoma (AA, WHO grade III) is, second to Glioblastoma, the most common and most malignant type of adult CNS tumour.
  • The survival data on 37 carefully sampled AA was correlated with the results of a detailed analysis of the status of nine genes known to be involved in the development of astrocytic tumours.
  • We found that loss of both wild-type copies of any of the three tumour suppressor genes CDKN2A, CDKN2B and RB1 or gene amplification of CDK4, disrupting the Rb1 pathway, were associated with shorter survival (P=0.009).
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Genes, Retinoblastoma. Mutation


56. Anselmo NP, Rey JA, Almeida LO, Custódio AC, Almeida JR, Clara CA, Santos MJ, Casartelli C: Concurrent sequence variation of TP53 and TP73 genes in anaplastic astrocytoma. Genet Mol Res; 2009;8(4):1257-63
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Concurrent sequence variation of TP53 and TP73 genes in anaplastic astrocytoma.
  • Disruption or loss of tumor suppressor gene TP53 is implicated in the development or progression of almost all different types of human malignancies.
  • Using PCR-SSCP and gene sequencing, we analyzed the TP53 and TP73 genes in a case of a grade III anaplastic astrocytoma that progressed to glioblastoma.
  • The mutation found at exon 6 of the gene TP53 could be associated with the rapid tumoral progression found in this case, since the mutated p53 may inactivate the wild-type p53 and the p73alpha protein, which was conserved here, leading to an increase in cellular instability.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. DNA-Binding Proteins / genetics. Nuclear Proteins / genetics. Tumor Suppressor Protein p53 / genetics. Tumor Suppressor Proteins / genetics

  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19876867.001).
  • [ISSN] 1676-5680
  • [Journal-full-title] Genetics and molecular research : GMR
  • [ISO-abbreviation] Genet. Mol. Res.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Brazil
  • [Chemical-registry-number] 0 / DNA Primers; 0 / DNA-Binding Proteins; 0 / Nuclear Proteins; 0 / Tumor Suppressor Protein p53; 0 / Tumor Suppressor Proteins; 0 / tumor suppressor protein p73
  •  go-up   go-down


57. Dreyfuss JM, Johnson MD, Park PJ: Meta-analysis of glioblastoma multiforme versus anaplastic astrocytoma identifies robust gene markers. Mol Cancer; 2009 Sep 04;8:71
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Meta-analysis of glioblastoma multiforme versus anaplastic astrocytoma identifies robust gene markers.
  • BACKGROUND: Anaplastic astrocytoma (AA) and its more aggressive counterpart, glioblastoma multiforme (GBM), are the most common intrinsic brain tumors in adults and are almost universally fatal.
  • A deeper understanding of the molecular relationship of these tumor types is necessary to derive insights into the diagnosis, prognosis, and treatment of gliomas.
  • Although genomewide profiling of expression levels with microarrays can be used to identify differentially expressed genes between these tumor types, comparative studies so far have resulted in gene lists that show little overlap.
  • CONCLUSION: We have performed a meta-analysis of genome-scale mRNA expression data for 289 human malignant gliomas and have identified a list of >900 probe sets and >20 pathways that are significantly different between GBM and AA.
  • These feature lists could be utilized to aid in diagnosis, prognosis, and grade reduction of high-grade gliomas and to identify genes that were not previously suspected of playing an important role in glioma biology.

  • Genetic Alliance. consumer health - Glioblastoma.
  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Br J Cancer. 1999 Dec;81(8):1371-7 [10604735.001]
  • [Cites] Mol Endocrinol. 2000 Jun;14(6):848-62 [10847587.001]
  • [Cites] J Biol Chem. 2000 Jul 7;275(27):20315-23 [10783396.001]
  • [Cites] BMC Bioinformatics. 2008;9:63 [18226260.001]
  • [Cites] Genomics. 2008 May;91(5):395-406 [18343632.001]
  • [Cites] Mol Cancer Ther. 2008 May;7(5):1013-24 [18445660.001]
  • [Cites] Biochem Biophys Res Commun. 2008 Sep 5;373(4):539-44 [18590702.001]
  • [Cites] Nature. 2008 Oct 23;455(7216):1061-8 [18772890.001]
  • [Cites] BMC Bioinformatics. 2009;10:1 [19118496.001]
  • [Cites] Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6 [11134512.001]
  • [Cites] FASEB J. 2001 Feb;15(2):458-66 [11156961.001]
  • [Cites] Am J Pathol. 2002 Apr;160(4):1279-92 [11943713.001]
  • [Cites] Cancer Res. 2002 Aug 1;62(15):4427-33 [12154050.001]
  • [Cites] Am J Pathol. 2002 Nov;161(5):1695-700 [12414516.001]
  • [Cites] Cancer Res. 2002 Nov 1;62(21):6205-10 [12414648.001]
  • [Cites] Acta Neuropathol. 2003 Jan;105(1):49-57 [12471461.001]
  • [Cites] Pancreas. 2003 Jan;26(1):56-64 [12499918.001]
  • [Cites] Nucleic Acids Res. 2003 Feb 15;31(4):e15 [12582260.001]
  • [Cites] Cancer Res. 2003 Mar 1;63(5):1138-43 [12615733.001]
  • [Cites] Cancer Res. 2003 Apr 1;63(7):1602-7 [12670911.001]
  • [Cites] Oncogene. 2003 Apr 17;22(15):2361-73 [12700671.001]
  • [Cites] Genome Biol. 2003;4(4):210 [12702200.001]
  • [Cites] Nat Genet. 2003 Jul;34(3):267-73 [12808457.001]
  • [Cites] Bioinformatics. 2003;19 Suppl 1:i84-90 [12855442.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 [12883005.001]
  • [Cites] Surg Neurol. 2003 Nov;60(5):402-6; discussion 406 [14572960.001]
  • [Cites] Clin Cancer Res. 2004 Jan 1;10(1 Pt 1):212-21 [14734472.001]
  • [Cites] Bioinformatics. 2004 Feb 12;20(3):307-15 [14960456.001]
  • [Cites] Nat Biotechnol. 2004 May;22(5):615-21 [15122300.001]
  • [Cites] FEBS Lett. 2004 Aug 27;573(1-3):83-92 [15327980.001]
  • [Cites] Cancer Res. 2004 Sep 15;64(18):6503-10 [15374961.001]
  • [Cites] Genome Biol. 2004;5(10):R80 [15461798.001]
  • [Cites] Mol Cell Biol. 1996 Sep;16(9):4604-13 [8756616.001]
  • [Cites] J Biol Chem. 1996 Dec 20;271(51):32529-37 [8955077.001]
  • [Cites] Cancer Res. 1999 Feb 15;59(4):895-900 [10029081.001]
  • [Cites] Cancer Res. 1999 Aug 15;59(16):3915-8 [10463582.001]
  • [Cites] BMC Bioinformatics. 2004 Oct 25;5:159 [15504239.001]
  • [Cites] Bioinformatics. 2004 Nov 22;20(17):3166-78 [15231529.001]
  • [Cites] Genome Biol. 2005;6(2):R16 [15693945.001]
  • [Cites] Cancer Res. 2005 Mar 1;65(5):1678-86 [15753362.001]
  • [Cites] Clin Cancer Res. 2005 May 1;11(9):3326-34 [15867231.001]
  • [Cites] Nat Methods. 2005 May;2(5):345-50 [15846361.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13544-9 [16174746.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [16199517.001]
  • [Cites] J Bioinform Comput Biol. 2005 Oct;3(5):1171-89 [16278953.001]
  • [Cites] Nat Rev Genet. 2006 Jan;7(1):55-65 [16369572.001]
  • [Cites] Cancer Res. 2006 Jan 1;66(1):159-67 [16397228.001]
  • [Cites] Cancer Cell. 2006 Mar;9(3):157-73 [16530701.001]
  • [Cites] Cancer Cell. 2006 Apr;9(4):287-300 [16616334.001]
  • [Cites] J Neurooncol. 2006 Jul;78(3):233-47 [16612574.001]
  • [Cites] Biom J. 2006 Jun;48(3):435-50 [16845907.001]
  • [Cites] BMC Bioinformatics. 2006;7:359 [16872483.001]
  • [Cites] Nucleic Acids Res. 2007 Jan;35(Database issue):D760-5 [17099226.001]
  • [Cites] Clin Cancer Res. 2007 Feb 15;13(4):1253-9 [17317837.001]
  • [Cites] Am J Pathol. 2007 May;170(5):1445-53 [17456751.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11736-41 [17606927.001]
  • [Cites] Cancer Res. 2007 Nov 1;67(21):10296-303 [17974971.001]
  • [Cites] Neurosurg Rev. 2008 Jan;31(1):83-9; discussion 89-90 [17917751.001]
  • [Cites] Comput Biol Chem. 2008 Feb;32(1):38-46 [17988949.001]
  • [Cites] Bioinformatics. 2008 Feb 1;24(3):374-82 [18204063.001]
  • [Cites] Ann Vasc Surg. 2008 Mar;22(2):273-84 [18346582.001]
  • (PMID = 19732454.001).
  • [ISSN] 1476-4598
  • [Journal-full-title] Molecular cancer
  • [ISO-abbreviation] Mol. Cancer
  • [Language] ENG
  • [Grant] United States / NIGMS NIH HHS / GM / R01 GM082798; United States / NIH HHS / OD / DP2 OD002319; United States / NIH HHS / OD / DP2OD002319; United States / NLM NIH HHS / LM / U54 LM008748; United States / NLM NIH HHS / LM / U54LM008748
  • [Publication-type] Journal Article; Meta-Analysis; Research Support, N.I.H., Extramural
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / HIF1A protein, human; 0 / Hypoxia-Inducible Factor 1, alpha Subunit; 0 / VEGFA protein, human; 0 / Vascular Endothelial Growth Factor A
  • [Other-IDs] NLM/ PMC2743637
  •  go-up   go-down


58. Zhang K, Li C, Liu Y, Li L, Ma X, Meng X, Feng D: Evaluation of invasiveness of astrocytoma using 1H-magnetic resonance spectroscopy: correlation with expression of matrix metalloproteinase-2. Neuroradiology; 2007 Nov;49(11):913-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Evaluation of invasiveness of astrocytoma using 1H-magnetic resonance spectroscopy: correlation with expression of matrix metalloproteinase-2.
  • INTRODUCTION: Even low-grade astrocytomas infiltrate the entire brain, a feature that precludes their successful therapy.
  • So to assess the invasive potential of astrocytoma is very important.
  • The aim of this study was determine whether there is a significant correlation between the results of (1)H-magnetic resonance spectroscopy ((1)H-MRS) and tumor invasive potential of astrocytoma, which is reflected by expression of matrix metalloproteinase-2 (MMP-2).
  • METHODS: The (1)H-MRS spectra of 41 histologically verified astrocytomas were obtained on a 3-T MR scanner.
  • According to the World Health Organization classification criteria for central nervous system tumors, there were 16 low-grade astrocytomas (2 pilocytic astrocytomas, 14 grade II astrocytomas) and 25 high-grade astrocytomas (5 anaplastic astrocytomas, 20 glioblastomas).The choline/N-acetylaspartate (Cho/NAA) and choline/creatine (Cho/Cr) ratios were calculated.
  • Of the 41 astrocytomas, 19 (8 low-grade and 11 high-grade) were analyzed immunohistochemically.
  • The correlations between metabolite ratios and the quantitative data from the immunohistochemical tests in the 19 astrocytomas were determined.
  • RESULTS: The Cho/NAA and Cho/Cr ratios of high-grade astrocytoma were both significantly greater than those of low-grade astrocytoma (t = -6.222, P = 0.000; t = -6.533, P = 0.000, respectively).
  • MMP-2 COD values of high-grade astrocytomas were also significantly greater than those of low-grade astrocytomas (t = -5.892, P = 0.000).
  • CONCLUSION: (1)H-MRS is helpful in evaluating the invasiveness of astrocytomas and predicting prognosis preoperatively by determining the Cho/NAA and Cho/Cr ratios.
  • [MeSH-major] Astrocytoma / metabolism. Astrocytoma / pathology. Brain Neoplasms / metabolism. Brain Neoplasms / pathology. Magnetic Resonance Spectroscopy. Matrix Metalloproteinase 2 / metabolism
  • [MeSH-minor] Adolescent. Adult. Aged. Aspartic Acid / analogs & derivatives. Aspartic Acid / metabolism. Choline / metabolism. Creatine / metabolism. Female. Humans. Male. Middle Aged. Neoplasm Invasiveness. Predictive Value of Tests. Treatment Outcome

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. (L)-ASPARTIC ACID .
  • Hazardous Substances Data Bank. CREATINE .
  • Hazardous Substances Data Bank. CHOLINE CHLORIDE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Nat Rev Mol Cell Biol. 2002 Mar;3(3):207-14 [11994741.001]
  • [Cites] Int J Dev Neurosci. 1999 Aug-Oct;17(5-6):495-502 [10571411.001]
  • [Cites] Neuroradiology. 2006 May;48(5):312-8 [16552583.001]
  • [Cites] Radiology. 2006 Mar;238(3):958-69 [16424238.001]
  • [Cites] Pharmacol Res. 2002 Aug;46(2):155-63 [12220955.001]
  • [Cites] J Neurooncol. 2000 Dec;50(3):215-26 [11263501.001]
  • [Cites] NMR Biomed. 2004 Feb;17(1):10-20 [15011246.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8904-9 [12861074.001]
  • [Cites] AJNR Am J Neuroradiol. 1999 Jan;20(1):117-23 [9974066.001]
  • [Cites] Br J Cancer. 2000 Jan;82(1):52-5 [10638966.001]
  • [Cites] J Neurooncol. 2003 Jul;63(3):233-45 [12892229.001]
  • [Cites] Stereotact Funct Neurosurg. 2004;82(2-3):90-7 [15305081.001]
  • [Cites] Am J Pathol. 1998 Aug;153(2):429-37 [9708803.001]
  • [Cites] Neuroradiology. 2002 May;44(5):371-81 [12012120.001]
  • [Cites] AJNR Am J Neuroradiol. 2001 Apr;22(4):604-12 [11290466.001]
  • [Cites] Nat Rev Neurosci. 2001 Jul;2(7):502-11 [11433375.001]
  • [Cites] AJNR Am J Neuroradiol. 2000 Apr;21(4):659-65 [10782774.001]
  • [Cites] AJNR Am J Neuroradiol. 2002 Nov-Dec;23 (10 ):1775-8 [12427638.001]
  • (PMID = 17763847.001).
  • [ISSN] 0028-3940
  • [Journal-full-title] Neuroradiology
  • [ISO-abbreviation] Neuroradiology
  • [Language] eng
  • [Publication-type] Clinical Trial; Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 30KYC7MIAI / Aspartic Acid; 997-55-7 / N-acetylaspartate; EC 3.4.24.24 / Matrix Metalloproteinase 2; MU72812GK0 / Creatine; N91BDP6H0X / Choline
  •  go-up   go-down


59. Shrivastava RK, Epstein FJ, Perin NI, Post KD, Jallo GI: Intramedullary spinal cord tumors in patients older than 50 years of age: management and outcome analysis. J Neurosurg Spine; 2005 Mar;2(3):249-55
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Ependymoma was the most common tumor (83%), and 55% were located in the thoracic spine.
  • There were two deaths due tumor progression (both malignant tumors) and one recurrence (anaplastic astrocytoma).
  • All three patients in whom malignant astrocytomas were diagnosed underwent postoperative radiation therapy.
  • The authors recommend motor evoked potential-guided aggressive microsurgical resection, because the long-term outcome of benign lesions is excellent (good functional recovery and no tumor recurrence).
  • [MeSH-minor] Aged. Astrocytoma / surgery. Chi-Square Distribution. Female. Humans. Male. Middle Aged. Quality of Life. Retrospective Studies. Survival Rate. Treatment Outcome

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15796348.001).
  • [ISSN] 1547-5654
  • [Journal-full-title] Journal of neurosurgery. Spine
  • [ISO-abbreviation] J Neurosurg Spine
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


60. Serrano J, Rayo JI, Infante JR, Domínguez L, García-Bernardo L, Durán C, Fernández Portales I, Cabezudo JM: Radioguided surgery in brain tumors with thallium-201. Clin Nucl Med; 2008 Dec;33(12):838-40
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • RATIONALE: Malignant astrocytomas show thallium uptake with a high target-to-background ratio, allowing the use of radioguided surgery.
  • METHOD: We report on 6 patients (3 men) diagnosed with malignant astrocytoma.
  • With the gamma probe we confirmed the tumor uptake, and a biopsy sample was taken.
  • After conventional tumor resection, we scanned the surgical bed with the gamma probe.
  • RESULTS: In all patients the biopsy confirmed a high-grade astrocytoma.
  • In all cases we found residual uptake in the surgical bed that was confirmed as residual tumor by pathologic examination.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19033782.001).
  • [ISSN] 1536-0229
  • [Journal-full-title] Clinical nuclear medicine
  • [ISO-abbreviation] Clin Nucl Med
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Thallium Radioisotopes
  •  go-up   go-down


61. Xiang C, Sarid R, Cazacu S, Finniss S, Lee HK, Ziv-Av A, Mikkelsen T, Brodie C: Cloning and characterization of human RTVP-1b, a novel splice variant of RTVP-1 in glioma cells. Biochem Biophys Res Commun; 2007 Oct 26;362(3):612-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • In contrast, RTVP-1 and RTVP-1b showed similar patterns of expression in astrocytic tumors; highly expressed in glioblastomas as compared to normal brains, low-grade astrocytomas and anaplastic oligodendrogliomas.
  • [MeSH-major] Brain Neoplasms / metabolism. Gene Expression Regulation, Neoplastic. Glioma / metabolism. Neoplasm Proteins / biosynthesis. Neoplasm Proteins / genetics. Nerve Tissue Proteins / biosynthesis. Nerve Tissue Proteins / genetics
  • [MeSH-minor] Alternative Splicing. Amino Acid Sequence. Base Sequence. Cell Line, Tumor. Cell Movement. Cell Proliferation. Cloning, Molecular. Humans. Molecular Sequence Data. Protein Isoforms. Tissue Distribution

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17825796.001).
  • [ISSN] 0006-291X
  • [Journal-full-title] Biochemical and biophysical research communications
  • [ISO-abbreviation] Biochem. Biophys. Res. Commun.
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / CA-R21-96965; United States / NCI NIH HHS / CA / R24 CA095809
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / GLIPR1 protein, human; 0 / Neoplasm Proteins; 0 / Nerve Tissue Proteins; 0 / Protein Isoforms
  •  go-up   go-down


62. Argyriou AA, Giannopoulou E, Kalofonos HP: Angiogenesis and anti-angiogenic molecularly targeted therapies in malignant gliomas. Oncology; 2009;77(1):1-11
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Angiogenesis and anti-angiogenic molecularly targeted therapies in malignant gliomas.
  • Angiogenesis is considered to be a regulating factor of vascular development and growth for malignant gliomas, including glioblastoma multiforme (GBM) and anaplastic astrocytomas.
  • The VEGF/VEGFR-2 is the predominant angiogenic signalling pathway in malignant gliomas.
  • Our aim is to review current knowledge on angiogenesis as a molecular pathogenetic mechanism of malignant gliomas and to critically look at and discuss antiangiogenic molecularly targeted therapies for these brain malignancies.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright 2009 S. Karger AG, Basel.
  • (PMID = 19439998.001).
  • [ISSN] 1423-0232
  • [Journal-full-title] Oncology
  • [ISO-abbreviation] Oncology
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0 / Angiogenesis Inhibitors
  • [Number-of-references] 98
  •  go-up   go-down


63. Arakawa Y, Tachibana O, Hasegawa M, Miyamori T, Yamashita J, Hayashi Y: Frequent gene amplification and overexpression of decoy receptor 3 in glioblastoma. Acta Neuropathol; 2005 Mar;109(3):294-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • DcR3 has been demonstrated to produce a secreted member of the tumor necrosis factor receptor superfamily that negatively regulates Fas-mediated apoptosis.
  • In this study we examined DcR3 gene amplification, DcR3 mRNA expression, and DcR3 protein expression in 46 human astrocytic brain tumors by quantitative genomic PCR, quantitative reverse transcription-PCR, and immunohistochemistry, respectively.
  • The DcR3 gene amplification was detected in none of 6 (0%) low-grade astrocytomas, 1 of 16 (6%) anaplastic astrocytomas, and 6 of 24 ( 25%) glioblastomas.
  • We thus concluded that high DcR3 mRNA expression and protein expression may be positively related to the gene amplification in astrocytic brain tumors, especially glioblastomas.
  • Further, we speculated that the DcR3 gene amplification with overexpression may be responsible for malignant features in glioblastomas.
  • [MeSH-minor] Adolescent. Adult. Aged. Child. Female. Humans. Immunohistochemistry / methods. Male. Middle Aged. RNA, Messenger / biosynthesis. Receptors, Tumor Necrosis Factor. Receptors, Tumor Necrosis Factor, Member 6b. Reverse Transcriptase Polymerase Chain Reaction / methods

  • Genetic Alliance. consumer health - Glioblastoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15627206.001).
  • [ISSN] 0001-6322
  • [Journal-full-title] Acta neuropathologica
  • [ISO-abbreviation] Acta Neuropathol.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Membrane Glycoproteins; 0 / RNA, Messenger; 0 / Receptors, Cell Surface; 0 / Receptors, Tumor Necrosis Factor; 0 / Receptors, Tumor Necrosis Factor, Member 6b; 0 / TNFRSF6B protein, human
  •  go-up   go-down


64. Khalatbari M, Borghei-Razavi H, Shayanfar N, Behzadi AH, Sepehrnia A: Collision tumor of meningioma and malignant astrocytoma. Pediatr Neurosurg; 2010;46(5):357-61
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Collision tumor of meningioma and malignant astrocytoma.
  • The pathology of tumors reported collision tumors composed of meningioma and malignant astrocytoma.
  • [MeSH-major] Astrocytoma / surgery. Brain Neoplasms / surgery. Meningeal Neoplasms / surgery. Meningioma / surgery

  • Genetic Alliance. consumer health - Meningioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2011 S. Karger AG, Basel.
  • (PMID = 21389747.001).
  • [ISSN] 1423-0305
  • [Journal-full-title] Pediatric neurosurgery
  • [ISO-abbreviation] Pediatr Neurosurg
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Switzerland
  •  go-up   go-down


65. Pavon LF, Marti LC, Sibov TT, Malheiros SM, Oliveira DM, Guilhen DD, Camargo-Mathias MI, Amaro Junior E, Gamarra LF: The ultrastructural study of tumorigenic cells using nanobiomarkers. Cancer Biother Radiopharm; 2010 Jun;25(3):289-98
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Despite recent advances, patients with malignant brain tumors still have a poor prognosis.
  • Glioblastoma (WHO grade 4 astrocytoma), the most malignant brain tumor, represents 50% of all astrocytomas, with a median survival rate of <1 year.
  • The process of tumor cell labeling using nanoparticles can successfully contribute to the identification of tumorigenic cells and consequently for better understanding of glioblastoma genesis and recurrence.
  • In addition, this method may help further studies in tumor imaging, diagnosis, and prognostic markers detection.
  • [MeSH-minor] Antibodies, Monoclonal / chemistry. Antibodies, Monoclonal / immunology. Antibodies, Monoclonal / metabolism. Antigens, CD / immunology. Antigens, CD / metabolism. Antigens, CD29 / immunology. Antigens, CD29 / metabolism. Antigens, CD44 / immunology. Antigens, CD44 / metabolism. Biomarkers / analysis. Biomarkers / chemistry. Cell Line, Tumor. Cell Membrane / metabolism. Cell Nucleus / metabolism. Cytoplasm / metabolism. Cytoplasmic Vesicles / metabolism. Endocytosis / immunology. Flow Cytometry. Forkhead Transcription Factors / chemistry. Forkhead Transcription Factors / metabolism. Glycoproteins / immunology. Glycoproteins / metabolism. Humans. Immunophenotyping. Magnetite Nanoparticles / chemistry. Microscopy, Electron, Transmission. Nanomedicine / methods. Peptides / immunology. Peptides / metabolism. Quantum Dots. Receptors, Cell Surface / immunology. Receptors, Cell Surface / metabolism. Tumor Cells, Cultured

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20578834.001).
  • [ISSN] 1557-8852
  • [Journal-full-title] Cancer biotherapy & radiopharmaceuticals
  • [ISO-abbreviation] Cancer Biother. Radiopharm.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / AC133 antigen; 0 / Antibodies, Monoclonal; 0 / Antigens, CD; 0 / Antigens, CD29; 0 / Antigens, CD44; 0 / Biomarkers; 0 / CD44 protein, human; 0 / ENG protein, human; 0 / FOXM1 protein, human; 0 / Forkhead Transcription Factors; 0 / Glycoproteins; 0 / Magnetite Nanoparticles; 0 / Peptides; 0 / Receptors, Cell Surface
  •  go-up   go-down


66. Krzyszkowski T, Dziedzic T, Czepko R, Szczudlik A: Decreased levels of interleukin-10 and transforming growth factor-beta 2 in cerebrospinal fluid of patients with high grade astrocytoma. Neurol Res; 2008 Apr;30(3):294-6
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Decreased levels of interleukin-10 and transforming growth factor-beta 2 in cerebrospinal fluid of patients with high grade astrocytoma.
  • It is unknown if production of these cytokines is limited to the site of tumor or these molecules are also released to cerebrospinal fluid and blood.
  • The goal of our study was to determine if patients with astrocytoma have increased levels of IL-10 and TGF-beta 2 in cerebrospinal fluid (CSF) and serum.
  • METHODS: CSF and serum samples were taken from 16 patients with astrocytoma of grade III or grade IV according to the WHO classification and from 28 age- and gender-matched controls (patients with normal pressure hydrocephalus or with lumbar disk herniation).
  • Patients with astrocytoma had decreased levels of IL-10 (0.9 +/- 1.2 versus 3.5 +/- 9.2 pg/ml, p=0.01) and TGF-beta 2 (0.0 +/- 0.0 versus 5.4 +/- 9.4 pg/ml, p=0.05) in CSF compared to controls.
  • Because serum IL-10 and TGF-beta 2 levels are similar in patients with astrocytoma and in controls, these cytokines are probably not directly involved in peripheral monocyte and T cell deactivation.
  • [MeSH-major] Astrocytoma / blood. Astrocytoma / cerebrospinal fluid. Interleukin-10 / blood. Interleukin-10 / cerebrospinal fluid. Transforming Growth Factor beta2 / blood. Transforming Growth Factor beta2 / cerebrospinal fluid

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17848206.001).
  • [ISSN] 0161-6412
  • [Journal-full-title] Neurological research
  • [ISO-abbreviation] Neurol. Res.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Transforming Growth Factor beta2; 130068-27-8 / Interleukin-10
  •  go-up   go-down


67. Wagner S, Csatary CM, Gosztonyi G, Koch HC, Hartmann C, Peters O, Hernáiz-Driever P, Théallier-Janko A, Zintl F, Längler A, Wolff JE, Csatary LK: Combined treatment of pediatric high-grade glioma with the oncolytic viral strain MTH-68/H and oral valproic acid. APMIS; 2006 Oct;114(10):731-43
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Combined treatment of pediatric high-grade glioma with the oncolytic viral strain MTH-68/H and oral valproic acid.
  • The case of a 12-year-old boy with anaplastic astrocytoma of the left thalamus is reported.
  • Postoperative irradiation and chemotherapy could not repress tumor progression; therefore, treatment was undertaken with an oncolytic virus, MTH-68/H, an attenuated strain of Newcastle disease virus (NDV), and valproic acid (VPA), an antiepileptic drug, which also has antineoplastic properties.
  • This treatment resulted in a far-reaching regression of the thalamic glioma, but 4 months later a new tumor manifestation, an extension of the thalamic tumor, appeared in the wall of the IVth ventricle, which required a second neurosurgical intervention.
  • Under continuous MTH-68/H - VPA administration the thalamic tumor remained under control, but the rhombencephalic one progressed relentlessly and led to the fatal outcome.
  • In the final stage, a third tumor manifestation appeared in the left temporal lobe.
  • The possible reasons for the antagonistic behavior of the three manifestations of the same type of glioma to the initially most successful therapy are discussed.
  • The comparative histological study of the thalamic and rhombencephalic tumor manifestations revealed that MTH-68/H treatment induces, similar to in vitro observations, a massive apoptotic tumor cell decline.
  • In the rhombencephalic tumor, in and around the declining tumor cells, NDV antigen could be demonstrated immunohistochemically, and virus particles have been found in the cytoplasm of tumor cells at electron microscopic investigation.
  • [MeSH-major] Anticonvulsants / therapeutic use. Astrocytoma / drug therapy. Astrocytoma / therapy. Brain Neoplasms / therapy. Valproic Acid / therapeutic use. Viral Vaccines / therapeutic use

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • Hazardous Substances Data Bank. VALPROIC ACID .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17004977.001).
  • [ISSN] 0903-4641
  • [Journal-full-title] APMIS : acta pathologica, microbiologica, et immunologica Scandinavica
  • [ISO-abbreviation] APMIS
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Denmark
  • [Chemical-registry-number] 0 / Anticonvulsants; 0 / Antigens, Viral; 0 / Newcastle disease virus vaccine MTH-68-H; 0 / Viral Vaccines; 614OI1Z5WI / Valproic Acid
  •  go-up   go-down


68. Ehling R, Sterlacci W, Maier H, Berger T: A 45-year old male with left-sided hemihypesthesia. Brain Pathol; 2010 Mar;20(2):515-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Extensive immunological and radiological investigations were not able to differentiate between an intrinsic brain tumor and a demyelinating disease.
  • Stereotactic biopsies of the brainstem were performed; the findings of abundant Rosenthal fibers, interjacent spindle-shaped and gemistocytic cells partially with dark and irregularly formed nuclei favored primarily the diagnosis of a malignant astrocytoma, although a demyelinating disease could not be definitely excluded.

  • MedlinePlus Health Information. consumer health - Multiple Sclerosis.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20438473.001).
  • [ISSN] 1750-3639
  • [Journal-full-title] Brain pathology (Zurich, Switzerland)
  • [ISO-abbreviation] Brain Pathol.
  • [Language] eng
  • [Publication-type] Case Reports; Letter
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0Z5B2CJX4D / Fluorodeoxyglucose F18
  •  go-up   go-down


69. Capper D, Weissert S, Balss J, Habel A, Meyer J, Jäger D, Ackermann U, Tessmer C, Korshunov A, Zentgraf H, Hartmann C, von Deimling A: Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol; 2010 Jan;20(1):245-54
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Heterozygous point mutations of isocitrate dehydrogenase (IDH)1 codon 132 are frequent in grade II and III gliomas.
  • Here we investigate the capability of this antibody to differentiate wild type and mutated IDH1 protein in central nervous system (CNS) tumors by Western blot and immunohistochemistry.
  • Intriguing is the ability of mIDH1R132H to detect single infiltrating tumor cells.
  • The very high frequency and the distribution of this mutation among specific brain tumor entities allow the highly sensitive and specific discrimination of various tumors by immunohistochemistry, such as anaplastic astrocytoma from primary glioblastoma or diffuse astrocytoma World Health Organization (WHO) grade II from pilocytic astrocytoma or ependymoma.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / enzymology. Brain Neoplasms / genetics. Ependymoma / genetics. Glioma / enzymology. Glioma / genetics. Isocitrate Dehydrogenase / genetics. Isocitrate Dehydrogenase / immunology
  • [MeSH-minor] Adolescent. Adult. Aged. Antigen-Antibody Reactions. Blotting, Western. Child. Child, Preschool. Cloning, Molecular. DNA, Neoplasm / biosynthesis. DNA, Neoplasm / genetics. Female. Humans. Immunohistochemistry. Infant. Male. Middle Aged. Mutation / genetics. Mutation / physiology. Protein Biosynthesis. Reverse Transcriptase Polymerase Chain Reaction. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19903171.001).
  • [ISSN] 1750-3639
  • [Journal-full-title] Brain pathology (Zurich, Switzerland)
  • [ISO-abbreviation] Brain Pathol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0 / DNA, Neoplasm; EC 1.1.1.41 / Isocitrate Dehydrogenase; EC 1.1.1.42. / IDH1 protein, human
  •  go-up   go-down


70. Schittenhelm J, Mittelbronn M, Nguyen TD, Meyermann R, Beschorner R: WT1 expression distinguishes astrocytic tumor cells from normal and reactive astrocytes. Brain Pathol; 2008 Jul;18(3):344-53
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] WT1 expression distinguishes astrocytic tumor cells from normal and reactive astrocytes.
  • Particularly in small brain biopsies, it might be difficult to distinguish reactive astrogliosis from low-grade or infiltration zones of high-grade astrocytomas.
  • Recently, the over-expression of Wilms' tumor gene product WT1 was reported in astrocytic tumor cells.
  • Therefore, we investigated WT1 expression in paraffin-embedded brain sections from 28 controls, 48 cases with astrogliosis of various etiology and 219 astrocytomas [World Health Organization (WHO) grades I-IV] by immunohistochemistry.
  • In astrocytomas, WT1-positive tumor cells were found in pilocytic astrocytomas (66.7% of cases), diffuse astrocytomas (52.7%) WHO grade II (52.7%), anaplastic astrocytomas (83.4%) and glioblastomas (98.1%).
  • Overall, the majority of all astrocytic neoplasms (84.5%) expressed WT1.
  • Establishing a cut-off value of 0% immunoreactive tumor cells served to recognize neoplastic astrocytes with 100% specificity and 68% sensitivity and was associated with positive and negative predictive values of 1 and 0.68, respectively.
  • [MeSH-major] Astrocytes / metabolism. Astrocytoma / metabolism. Brain Neoplasms / metabolism. Gliosis / metabolism. WT1 Proteins / biosynthesis
  • [MeSH-minor] Adult. Aged. Biomarkers, Tumor / analysis. Endothelial Cells / metabolism. Female. Gene Expression. Humans. Immunohistochemistry. Male. Middle Aged

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18371184.001).
  • [ISSN] 1015-6305
  • [Journal-full-title] Brain pathology (Zurich, Switzerland)
  • [ISO-abbreviation] Brain Pathol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / WT1 Proteins
  •  go-up   go-down


71. Niizuma K, Fujimura M, Kumabe T, Tominaga T: Malignant transformation of high-grade astrocytoma associated with neurocysticercosis in a patient with Turcot syndrome. J Clin Neurosci; 2007 Jan;14(1):53-5
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Malignant transformation of high-grade astrocytoma associated with neurocysticercosis in a patient with Turcot syndrome.
  • A 45-year-old woman with anaplastic astrocytoma was clinically diagnosed with Turcot syndrome, and subsequently developed simultaneous neurocysticercosis and malignant transformation to glioblastoma.
  • The clinical course and histological findings suggest that the parasitic infection and/or genetic changes contributed to the malignant transformation of the astrocytic tumour.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Cell Transformation, Neoplastic / pathology. Glioblastoma / pathology. Neurocysticercosis / pathology

  • Genetic Alliance. consumer health - Turcot syndrome.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17138070.001).
  • [ISSN] 0967-5868
  • [Journal-full-title] Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
  • [ISO-abbreviation] J Clin Neurosci
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Scotland
  •  go-up   go-down


72. Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T: Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol; 2006 Jun;58(3):394-403
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors.
  • OBJECTIVE: Common contrast-enhancing malignant tumors of the brain are glioblastoma multiforme (GBMs), anaplastic astrocytomas (AAs), metastases, and lymphomas, all of which have sometimes similar conventional MRI findings.
  • Our aim was to evaluate the role of perfusion MR imaging (PWI) and diffusion-weighted imaging (DWI) in the differentiation of these contrast-enhancing malignant cerebral tumors.
  • Minimum ADC values (ADC(min)) of each tumor was later calculated from ADC map images.
  • PWI was applied using dynamic susceptibility contrast technique and maximum relative cerebral blood volume (rCBV(max)) was calculated from each tumor, given in ratio with contralateral normal white matter.
  • CONCLUSION: Combination of DWI and PWI, with ADC(min) and rCBV(max) calculations, may aid routine MR imaging in the differentiation of common cerebral contrast-enhancing malignant tumors.
  • [MeSH-major] Astrocytoma / diagnosis. Brain Neoplasms / diagnosis. Diffusion Magnetic Resonance Imaging / methods. Glioblastoma / diagnosis. Image Enhancement / methods. Lymphoma / diagnosis. Magnetic Resonance Angiography / methods

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • MedlinePlus Health Information. consumer health - Lymphoma.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16527438.001).
  • [ISSN] 0720-048X
  • [Journal-full-title] European journal of radiology
  • [ISO-abbreviation] Eur J Radiol
  • [Language] eng
  • [Publication-type] Clinical Trial; Journal Article
  • [Publication-country] Ireland
  • [Chemical-registry-number] 0 / Contrast Media
  •  go-up   go-down


73. Doherty MJ, Hampson NB: Partial seizure provoked by hyperbaric oxygen therapy: possible mechanisms and implications. Epilepsia; 2005 Jun;46(6):974-6
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • We report a patient after resection of anaplastic astrocytoma and 5,580 cGy of total external-beam radiation treatments with brain radiation necrosis who underwent HBO2 therapy and developed a partial seizure during treatment.
  • [MeSH-minor] Astrocytoma / radiotherapy. Astrocytoma / surgery. Brain Neoplasms / radiotherapy. Brain Neoplasms / surgery. Combined Modality Therapy. Humans. Male. Middle Aged. Necrosis / etiology. Necrosis / pathology. Necrosis / therapy. Radiotherapy, Conformal / adverse effects

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15946345.001).
  • [ISSN] 0013-9580
  • [Journal-full-title] Epilepsia
  • [ISO-abbreviation] Epilepsia
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


74. Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M, Westphal M, Schackert G, Meyermann R, Pietsch T, Reifenberger G, Weller M, Loeffler M, von Deimling A: Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol; 2010 Dec;120(6):707-18
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas.
  • WHO grading of human brain tumors extends beyond a strictly histological grading system by providing a basis predictive for the clinical behavior of the respective neoplasm.
  • For example, patients with glioblastoma WHO grade IV usually show a less favorable clinical course and receive more aggressive first-line treatment than patients with anaplastic astrocytoma WHO grade III.
  • Here we provide evidence that the IDH1 status is more prognostic for overall survival than standard histological criteria that differentiate high-grade astrocytomas.
  • We sequenced the isocitrate dehydrogenase 1 gene (IDH1) at codon 132 in 382 patients with anaplastic astrocytoma and glioblastoma from the NOA-04 trial and from a prospective translational cohort study of the German Glioma Network.
  • Patients with anaplastic astrocytomas carried IDH1 mutations in 60%, and patients with glioblastomas in 7.2%.
  • The sequence from more favorable to poorer outcome was (1) anaplastic astrocytoma with IDH1 mutation, (2) glioblastoma with IDH1 mutation, (3) anaplastic astrocytoma without IDH1 mutation and (4) glioblastoma without IDH1 mutation (p < 0.0001).
  • In this combined set of anaplastic astrocytomas and glioblastomas both, IDH1 mutation and IDH1 expression status were of greater prognostic relevance than histological diagnosis according to the current WHO classification system.
  • We propose to complement the current WHO classification and grading of high-grade astrocytic gliomas by the IDH1 mutation status and to use this combined histological and molecular classification in future clinical trials.
  • [MeSH-minor] Adolescent. Adult. Age Factors. Aged. Aged, 80 and over. Astrocytoma / diagnosis. Astrocytoma / genetics. Astrocytoma / pathology. Cohort Studies. Female. Humans. Male. Middle Aged. Prognosis. Prospective Studies. Young Adult


75. Stupp R, Reni M, Gatta G, Mazza E, Vecht C: Anaplastic astrocytoma in adults. Crit Rev Oncol Hematol; 2007 Jul;63(1):72-80
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Anaplastic astrocytoma in adults.
  • Anaplastic astrocytoma is an uncommon disease in the adult population.
  • Based on randomized data available, chemotherapy has consistently failed to improve the outcome of patients with anaplastic astrocytoma, while a meta-analysis showed a small, but significant improvement in survival favouring the use of chemotherapy.
  • In recurrent disease, chemotherapy with temozolomide has been proven to be active and well-tolerated in phase II trials, but no comparative phase III trials of other cytotoxic drugs have been conducted.
  • [MeSH-major] Antineoplastic Agents, Alkylating / therapeutic use. Astrocytoma / drug therapy. Brain Neoplasms / drug therapy. Dacarbazine / analogs & derivatives
  • [MeSH-minor] Adolescent. Adult. Aged. Clinical Trials as Topic. Clinical Trials, Phase II as Topic. Female. Humans. Incidence. Male. Middle Aged. Neoplasm Recurrence, Local / drug therapy. Prognosis. Risk Factors. Survival Analysis


76. Das A, Simmons C, Danielpour M: A congenital brain tumor associated with assisted in vitro fertilization. Case report. J Neurosurg; 2005 Nov;103(5 Suppl):451-3
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] A congenital brain tumor associated with assisted in vitro fertilization. Case report.
  • In this report the authors describe the clinical features of a rare neonatal anaplastic astrocytoma in the setting of in vitro fertilization (IVF).
  • Grosstotal resection of an anaplastic astrocytoma was followed by chemotherapy with temozolomide and vincristine.
  • [MeSH-major] Astrocytoma / congenital. Brain Neoplasms / congenital. Fertilization in Vitro / adverse effects

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. DACARBAZINE .
  • Hazardous Substances Data Bank. VINCRISTINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentIn] J Neurosurg. 2007 May;106(5 Suppl):418; author reply 418-9 [17566216.001]
  • (PMID = 16302619.001).
  • [ISSN] 0022-3085
  • [Journal-full-title] Journal of neurosurgery
  • [ISO-abbreviation] J. Neurosurg.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 5J49Q6B70F / Vincristine; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide
  •  go-up   go-down


77. Gururangan S, Frankel W, Broaddus R, Clendenning M, Senter L, McDonald M, Eastwood J, Reardon D, Vredenburgh J, Quinn J, Friedman HS: Multifocal anaplastic astrocytoma in a patient with hereditary colorectal cancer, transcobalamin II deficiency, agenesis of the corpus callosum, mental retardation, and inherited PMS2 mutation. Neuro Oncol; 2008 Feb;10(1):93-7
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Multifocal anaplastic astrocytoma in a patient with hereditary colorectal cancer, transcobalamin II deficiency, agenesis of the corpus callosum, mental retardation, and inherited PMS2 mutation.
  • We describe the case of a patient with transcobalamin II deficiency, hypogammaglobulinemia, absent corpus callosum, and mental retardation who presented at an early age with colorectal cancer and multifocal anaplastic astrocytoma.
  • He was found to have a possible germline mutation of the PMS2 gene, as evidenced by absent protein expression in both normal and tumor tissues.
  • [MeSH-major] Abnormalities, Multiple / genetics. Adenosine Triphosphatases / genetics. Astrocytoma / genetics. Colorectal Neoplasms, Hereditary Nonpolyposis / genetics. DNA Repair Enzymes / genetics. DNA-Binding Proteins / genetics


78. Roselli F, Pisciotta NM, Aniello MS, Niccoli-Asabella A, Defazio G, Livrea P, Rubini G: Brain F-18 Fluorocholine PET/CT for the assessment of optic pathway glioma in neurofibromatosis-1. Clin Nucl Med; 2010 Oct;35(10):838-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Magnetic resonance imaging, magnetic resonance spectroscopy (MRS), and F-18 fluorocholine revealed a splenial mass with imaging features compatible with malignant astrocytoma.


79. Arslantas A, Artan S, Oner U, Müslümanoglu MH, Ozdemir M, Durmaz R, Arslantas D, Vural M, Cosan E, Atasoy MA: Genomic alterations in low-grade, anaplastic astrocytomas and glioblastomas. Pathol Oncol Res; 2007;13(1):39-46
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Genomic alterations in low-grade, anaplastic astrocytomas and glioblastomas.
  • To extend our understanding of potential stepwise genetic alterations that may underlie tumor progression from low-grade astrocytomas to glioblastomas, histopathologic and comparative genomic hybridization analyses were performed on tumor specimens from 68 primary lesions, including 40 glioblastomas, 10 anaplastic and 18 low-grade astrocytomas.
  • The number of aberrations per case increased towards the higher grade tumors (grade II: 1.66+/-1.49; grade III: 2.80+/-1.68; grade IV: 3.02+/-1.07; F=6.955, p=0.002).
  • A gain of 7/7q was common and the most frequently seen aberration in low-grade astrocytomas, whereas loss of 10q was the most frequently seen anomaly in anaplastic astrocytomas and glioblastomas.
  • Chromosome 10/10q deletion and combination of 1p, 19q and 17p deletions were specific to high-grade astrocytic tumors.
  • The genomic copy deletions of chromosomes 1p and 19q might provide an alternative mechanism in the genesis of astrocytomas.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Chromosome Aberrations. Chromosome Deletion. Glioblastoma / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Acta Neurol Belg. 2002 Jun;102(2):53-62 [12161900.001]
  • [Cites] Am J Pathol. 1999 Aug;155(2):375-86 [10433931.001]
  • [Cites] Cancer Res. 1994 Mar 15;54(6):1397-401 [8137236.001]
  • [Cites] Neurol Med Chir (Tokyo). 2003 Jan;43(1):12-8; discussion 19 [12568317.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Apr;61(4):321-8 [11939587.001]
  • [Cites] Mol Carcinog. 2003 Jan;36(1):6-14 [12503074.001]
  • [Cites] Hum Genet. 1993 Sep;92(2):169-74 [8370584.001]
  • [Cites] Front Biosci. 2003 May 01;8:e281-8 [12700122.001]
  • [Cites] Genes Chromosomes Cancer. 1998 Apr;21(4):340-6 [9559346.001]
  • [Cites] Cancer Genet Cytogenet. 2003 Apr 1;142(1):1-7 [12660025.001]
  • [Cites] Nat Genet. 1997 Sep;17(1):32-9 [9288095.001]
  • [Cites] Anticancer Res. 1994 Mar-Apr;14(2A):577-9 [8017863.001]
  • [Cites] J Natl Cancer Inst. 1998 Oct 7;90(19):1473-9 [9776413.001]
  • [Cites] Cancer Res. 2004 Oct 1;64(19):6892-9 [15466178.001]
  • [Cites] Cancer Res. 2001 Oct 15;61(20):7683-8 [11606412.001]
  • [Cites] Genes Chromosomes Cancer. 2005 Jan;42(1):68-77 [15472895.001]
  • [Cites] Cancer Res. 1999 Apr 15;59(8):1820-4 [10213484.001]
  • [Cites] Clin Neurol Neurosurg. 1997 May;99(2):117-23 [9213056.001]
  • [Cites] Neurosurg Rev. 2004 Jan;27(1):58-64 [12845540.001]
  • [Cites] Am J Pathol. 1994 Jun;144(6):1203-18 [8203461.001]
  • [Cites] Oncogene. 1997 Jun 19;14(24):2927-33 [9205099.001]
  • [Cites] Cancer Lett. 1999 Jan 8;135(1):61-6 [10077222.001]
  • [Cites] Br J Cancer. 1996 Feb;73(4):424-8 [8595154.001]
  • [Cites] Int J Cancer. 1999 Apr 20;84(2):150-4 [10096247.001]
  • [Cites] Int J Oncol. 2002 Nov;21(5):1141-50 [12370766.001]
  • [Cites] Br J Cancer. 2005 Jul 11;93(1):124-30 [15970925.001]
  • [Cites] Hum Pathol. 2000 May;31(5):608-14 [10836301.001]
  • [Cites] Virchows Arch. 1995;427(2):113-8 [7582239.001]
  • [Cites] Cancer Res. 1994 Dec 15;54(24):6353-8 [7987828.001]
  • (PMID = 17387387.001).
  • [ISSN] 1219-4956
  • [Journal-full-title] Pathology oncology research : POR
  • [ISO-abbreviation] Pathol. Oncol. Res.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  •  go-up   go-down


80. Terasaki M, Bouffet E, Katsuki H, Fukushima S, Shigemori M: Pilot trial of the rate of response, safety, and tolerability of temozolomide and oral VP-16 in patients with recurrent or treatment-induced malignant central nervous system tumors. Surg Neurol; 2008 Jan;69(1):46-50
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Pilot trial of the rate of response, safety, and tolerability of temozolomide and oral VP-16 in patients with recurrent or treatment-induced malignant central nervous system tumors.
  • METHODS: Eleven patients with recurrent or treatment-induced malignant CNS tumors, including treatment-induced PNET (in 1 patient), brainstem glioma (in 3 patients; 1 with treatment-induced, 2 with recurrence), recurrent anaplastic astrocytoma (in 3 patients), and recurrent glioblastoma (in 4 patients) were evaluated in a pilot study of TMZ and oral VP-16 chemotherapy.
  • The histologic subtype of the tumor, its location, and its maximum response to chemotherapy did not have an impact on the duration of disease control.
  • CONCLUSION: This limited pilot study confirms the innocuousness and the activity of the combination of TMZ and oral VP-16 in recurrent malignant brain tumors.
  • This promising activity warrants further investigation of this combination in larger phase II or III studies.
  • [MeSH-major] Antineoplastic Agents / administration & dosage. Brain Neoplasms / drug therapy. Dacarbazine / analogs & derivatives. Etoposide / administration & dosage. Neoplasm Recurrence, Local / drug therapy. Neoplasms, Neuroepithelial / drug therapy. Neoplasms, Second Primary / drug therapy

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. ETOPOSIDE .
  • Hazardous Substances Data Bank. DACARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18054615.001).
  • [ISSN] 0090-3019
  • [Journal-full-title] Surgical neurology
  • [ISO-abbreviation] Surg Neurol
  • [Language] eng
  • [Publication-type] Clinical Trial; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 6PLQ3CP4P3 / Etoposide; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide
  •  go-up   go-down


81. Zarkovic K, Juric G, Waeg G, Kolenc D, Zarkovic N: Immunohistochemical appearance of HNE-protein conjugates in human astrocytomas. Biofactors; 2005;24(1-4):33-40
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Immunohistochemical appearance of HNE-protein conjugates in human astrocytomas.
  • Those of astrocytic origin are the most widespread of primary brain tumors and account for more then 60% of all CNS neoplasms.
  • The current state of knowledge on the associations between tumor etiology and oxidative stress suggests that environmental factors that cause oxidative stress could also induce and promote cancer, especially in case of hereditary predisposition.
  • The aim of present study was to investigate by immunohistochemistry the presence of HNE-modified proteins in different types of astrocytoma.
  • Our study comprised 45 astrocytic tumors.
  • These tumors were graded in accordance with the WHO classification as diffuse astrocytomas (DA), anaplastic astrocytomas (AA) and glioblastomas (GB), while each group comprised 15 tumors.
  • Slides of paraffin-embedded tumor tissue were stained with hematoxylin-eosin or were prepared for immunohistochemistry with monoclonal antibodies to HNE-histidine conjugate.
  • HNE positivity was proportional with malignancy of astrocytomas.
  • Lowest intensity of HNE immunopositivity was present in tumor cells of almost all DA, predominantly around blood vessels.
  • In malignant variants of astrocytoma, AA and GB, HNE positivity was moderate to strong, and diffusely distributed in all tumors.
  • [MeSH-major] Aldehydes / analysis. Aldehydes / metabolism. Astrocytoma / chemistry. Immunohistochemistry. Proteins / analysis. Proteins / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16403961.001).
  • [ISSN] 0951-6433
  • [Journal-full-title] BioFactors (Oxford, England)
  • [ISO-abbreviation] Biofactors
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Aldehydes; 0 / Antibodies, Monoclonal; 0 / Proteins; 29343-52-0 / 4-hydroxy-2-nonenal
  •  go-up   go-down


82. Shirahata M, Oba S, Iwao-Koizumi K, Saito S, Ueno N, Oda M, Hashimoto N, Ishii S, Takahashi JA, Kato K: Using gene expression profiling to identify a prognostic molecular spectrum in gliomas. Cancer Sci; 2009 Jan;100(1):165-72
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The expression levels of these genes in 152 gliomas (100 glioblastomas, 21 anaplastic astrocytomas, 19 diffuse astrocytomas, and 12 anaplastic oligodendrogliomas) were measured using adapter-tagged competitive polymerase chain reaction, a high-throughput reverse transcription-polymerase chain reaction technique.
  • The gene expression profiling identified clinically informative prognostic molecular features in astrocytic and oligodendroglial tumors that were more reliable than the traditional histological classification scheme.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19038000.001).
  • [ISSN] 1349-7006
  • [Journal-full-title] Cancer science
  • [ISO-abbreviation] Cancer Sci.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  •  go-up   go-down


83. Ishihara H, Kubota H, Lindberg RL, Leppert D, Gloor SM, Errede M, Virgintino D, Fontana A, Yonekawa Y, Frei K: Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor beta2 involves matrix metalloproteinases and tight junction proteins. J Neuropathol Exp Neurol; 2008 May;67(5):435-48
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Occludin, claudin 1, and claudin 5 were expressed in microvascular endothelial cells in nonneoplastic brain samples but were significantly reduced in anaplastic astrocytoma and glioblastoma samples.
  • [MeSH-minor] Brain / blood supply. Brain / pathology. Brain / physiopathology. Brain Edema / metabolism. Brain Edema / pathology. Brain Edema / physiopathology. Cells, Cultured. Cerebral Arteries / metabolism. Cerebral Arteries / pathology. Cerebral Arteries / physiopathology. Claudin-1. Claudin-5. Coculture Techniques. Down-Regulation / physiology. Extracellular Matrix / metabolism. Extracellular Matrix / pathology. Humans. Infant, Newborn. Membrane Proteins / metabolism. Occludin. Tumor Cells, Cultured

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Gene Ontology. gene/protein/disease-specific - Gene Ontology annotations from this paper .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18431253.001).
  • [ISSN] 0022-3069
  • [Journal-full-title] Journal of neuropathology and experimental neurology
  • [ISO-abbreviation] J. Neuropathol. Exp. Neurol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / CLDN1 protein, human; 0 / CLDN5 protein, human; 0 / Claudin-1; 0 / Claudin-5; 0 / Membrane Proteins; 0 / OCLN protein, human; 0 / Occludin; 0 / Transforming Growth Factor beta2; EC 3.4.24.- / Matrix Metalloproteinases
  •  go-up   go-down


84. Ohgaki H, Kleihues P: Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci; 2009 Dec;100(12):2235-41
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Most frequent and malignant are glioblastomas.
  • The vast majority (>90%) develops rapidly after a short clinical history and without evidence of a less malignant precursor lesion (primary or de novo glioblastoma).
  • Secondary glioblastomas develop more slowly through progression from low-grade or anaplastic astrocytoma.
  • Recently, isocitrate dehydrogenase 1 (IDH1) mutations have been identified as a very early and frequent genetic alteration in the pathway to secondary glioblastomas as well as that in oligodendroglial tumors, providing the first evidence that low-grade astrocytomas and oligodendrogliomas may share common cells of origin.
  • In this review, we summarize the current status of genetic alterations and signaling pathways operative in the evolution of astrocytic and oligodendroglial tumors.
  • [MeSH-minor] Animals. Cyclin-Dependent Kinase Inhibitor p16 / physiology. Gene Expression Profiling. Humans. Isocitrate Dehydrogenase / physiology. Loss of Heterozygosity. PTEN Phosphohydrolase / physiology. Phosphatidylinositol 3-Kinases / physiology. Tumor Suppressor Protein p14ARF / physiology. Tumor Suppressor Protein p53 / physiology

  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19737147.001).
  • [ISSN] 1349-7006
  • [Journal-full-title] Cancer science
  • [ISO-abbreviation] Cancer Sci.
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Cyclin-Dependent Kinase Inhibitor p16; 0 / Tumor Suppressor Protein p14ARF; 0 / Tumor Suppressor Protein p53; EC 1.1.1.41 / Isocitrate Dehydrogenase; EC 1.1.1.42. / IDH1 protein, human; EC 2.7.1.- / Phosphatidylinositol 3-Kinases; EC 3.1.3.67 / PTEN Phosphohydrolase
  • [Number-of-references] 92
  •  go-up   go-down


85. Fernandez C, Maues de Paula A, Colin C, Quilichini B, Bouvier-Labit C, Girard N, Scavarda D, Lena G, Figarella-Branger D: Thalamic gliomas in children: an extensive clinical, neuroradiological and pathological study of 14 cases. Childs Nerv Syst; 2006 Dec;22(12):1603-10
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • RESULTS: Our series included five pilocytic astrocytomas, seven oligodendrogliomas, and two glioblastomas.
  • Pilocytic astrocytomas were characterized by strong contrast enhancement, lack of p53 expression, and excellent prognosis.
  • Anaplastic oligodendrogliomas and glioblastomas displayed a poor outcome, with a mean survival of 8 months after surgery.
  • CONCLUSION: Our series of pediatric thalamic gliomas clearly distinguishes pilocytic astrocytomas from anaplastic oligodendrogliomas regarding neuroimaging, pathology, and prognosis.
  • [MeSH-minor] Adolescent. Astrocytoma / diagnostic imaging. Astrocytoma / pathology. Astrocytoma / therapy. Child. Child, Preschool. Female. Glioblastoma / diagnostic imaging. Glioblastoma / pathology. Glioblastoma / therapy. Humans. Male. Oligodendroglioma / diagnostic imaging. Oligodendroglioma / pathology. Oligodendroglioma / therapy. Prognosis. Radiography. Survival Rate. Treatment Outcome

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer. 1985 Jun 15;55(12):2789-93 [3995487.001]
  • [Cites] Childs Nerv Syst. 1997 Oct;13(10):514-20; discussion 521 [9403198.001]
  • [Cites] J Neurosurg. 1966 Feb;24(2):505-13 [5295916.001]
  • [Cites] J Neurosurg. 2004 May;100(5 Suppl Pediatrics):468-72 [15287457.001]
  • [Cites] J Neuropathol Exp Neurol. 2003 May;62(5):530-7 [12769192.001]
  • [Cites] Childs Nerv Syst. 2002 Aug;18(8):426-39 [12192502.001]
  • [Cites] Neurosurgery. 1989 Aug;25(2):185-94; discussion 194-5 [2549442.001]
  • [Cites] Acta Neurochir (Wien). 1997;139(4):336-42 [9202774.001]
  • [Cites] Neurosurgery. 2003 Sep;53(3):544-53; discussion 554-5 [12943571.001]
  • [Cites] Acta Neurochir (Wien). 2000;142(12):1327-36; discussion 1336-7 [11214625.001]
  • [Cites] J Neuropathol Exp Neurol. 1999 Oct;58(10):1061-8 [10515229.001]
  • [Cites] Neurosurgery. 2004 Dec;55(6):1377-91: discussion 1391-2 [15574220.001]
  • [Cites] Pediatr Blood Cancer. 2004 Sep;43(3):250-6 [15266409.001]
  • [Cites] J Neuroradiol. 1988;15(1):23-30 [3397772.001]
  • [Cites] Arch Neurol. 1975 Nov;32(11):740-4 [1180743.001]
  • [Cites] Pediatr Neurosurg. 1998 Jul;29(1):29-35 [9867348.001]
  • [Cites] J Neurosurg. 1984 Oct;61(4):649-56 [6088730.001]
  • [Cites] Acta Neuropathol. 2005 Apr;109(4):387-92 [15739101.001]
  • [Cites] Brain Pathol. 2000 Apr;10 (2):249-59 [10764044.001]
  • [Cites] Childs Nerv Syst. 2002 Aug;18(8):450-6 [12192505.001]
  • [Cites] N Engl J Med. 2002 Feb 7;346(6):420-7 [11832530.001]
  • [Cites] Childs Nerv Syst. 2002 Aug;18(8):440-4 [12192503.001]
  • [Cites] Arch Fr Pediatr. 1982 Feb;39(2):91-5 [7073439.001]
  • (PMID = 16951965.001).
  • [ISSN] 0256-7040
  • [Journal-full-title] Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
  • [ISO-abbreviation] Childs Nerv Syst
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  •  go-up   go-down


86. Benesch M, Wagner S, Berthold F, Wolff JE: Primary dissemination of high-grade gliomas in children: experiences from four studies of the Pediatric Oncology and Hematology Society of the German Language Group (GPOH). J Neurooncol; 2005 Apr;72(2):179-83
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Primary dissemination of high-grade gliomas in children: experiences from four studies of the Pediatric Oncology and Hematology Society of the German Language Group (GPOH).
  • PURPOSE: Clinical data on central nervous system (CNS) dissemination of high-grade gliomas (HGG) at initial presentation in children are rare.
  • Data concerning tumor dissemination are available from 324 patients.
  • RESULTS: A total of 10 patients (3.1%) (anaplastic astrocytoma: n=3, glioblastoma multiforme: n=6, diffuse intrinsic pontine glioma: n=1) had primary tumor dissemination.
  • The most frequent primary tumor sites were the cortex (n=4), followed by the ventricles (n=2), cerebellum (n=1), spinal cord (n=1), and pons (n=1).
  • Median progression-free and overall survival was 0.8 years (95% CI 0.2-1.4) and 1.5 years (95% CI 0.67-2.29) for patients with primary tumor dissemination, respectively, with no statistically significant differences between the group with and the group without primary tumor dissemination.
  • [MeSH-minor] Adolescent. Adult. Child. Child, Preschool. Combined Modality Therapy. Cyclophosphamide / administration & dosage. Cyclophosphamide / analogs & derivatives. Disease-Free Survival. Etoposide / administration & dosage. Female. Humans. Male. Neoplasm Invasiveness. Radiotherapy. Retrospective Studies. Treatment Outcome. Vincristine / administration & dosage

  • Hazardous Substances Data Bank. ETOPOSIDE .
  • Hazardous Substances Data Bank. CYCLOPHOSPHAMIDE .
  • Hazardous Substances Data Bank. VINCRISTINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Neurosurgery. 1986 Aug;19(2):247-51 [3748352.001]
  • [Cites] Ann Neurol. 1987 Sep;22(3):355-64 [2823687.001]
  • [Cites] Anticancer Res. 2002 Nov-Dec;22(6B):3569-72 [12552957.001]
  • [Cites] Neurology. 1991 Jan;41(1):46-50 [1985295.001]
  • [Cites] J Clin Oncol. 1987 Aug;5(8):1221-31 [3040919.001]
  • [Cites] Neurosurgery. 1992 Jan;30(1):64-71 [1738457.001]
  • [Cites] J Neurooncol. 1989 Jul;7(2):165-77 [2550594.001]
  • [Cites] J Clin Oncol. 1995 Jan;13(1):112-23 [7799011.001]
  • [Cites] Ann Neurol. 1985 Aug;18(2):217-21 [4037762.001]
  • [Cites] Cancer. 1990 Jun 15;65(12):2771-8 [2160318.001]
  • [Cites] Ann Neurol. 1983 Aug;14(2):177-82 [6625534.001]
  • [Cites] Cancer. 1997 Aug 1;80(3):497-504 [9241084.001]
  • [Cites] Lancet. 2002 Mar 23;359(9311):1011-8 [11937180.001]
  • [Cites] Acta Neurochir (Wien). 1994;126(2-4):84-92 [8042560.001]
  • [Cites] Br J Cancer. 2002 Oct 21;87(9):945-9 [12434281.001]
  • [Cites] N Engl J Med. 1993 Jun 17;328(24):1725-31 [8388548.001]
  • [Cites] N Engl J Med. 1994 Dec 1;331(22):1500-7 [7969301.001]
  • [Cites] Cancer. 2002 Jan 1;94(1):264-71 [11815986.001]
  • [Cites] Cancer. 2000 Nov 15;89(10):2131-7 [11066055.001]
  • [Cites] Neurosurgery. 1990 Oct;27(4):516-21; discussion 521-2 [2172859.001]
  • [Cites] Cancer. 1999 Oct 1;86(7):1347-53 [10506724.001]
  • [Cites] J Neurooncol. 2003 Sep;64(3):239-47 [14558599.001]
  • (PMID = 15925999.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Clinical Trial; Journal Article; Multicenter Study
  • [Publication-country] United States
  • [Chemical-registry-number] 5J49Q6B70F / Vincristine; 6PLQ3CP4P3 / Etoposide; 8N3DW7272P / Cyclophosphamide; H64JRU6GJ0 / trofosfamide
  •  go-up   go-down


87. Reardon DA, Quinn JA, Vredenburgh J, Rich JN, Gururangan S, Badruddoja M, Herndon JE 2nd, Dowell JM, Friedman AH, Friedman HS: Phase II trial of irinotecan plus celecoxib in adults with recurrent malignant glioma. Cancer; 2005 Jan 15;103(2):329-38
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Phase II trial of irinotecan plus celecoxib in adults with recurrent malignant glioma.
  • BACKGROUND: In the current study, the authors report a Phase II trial of irinotecan (CPT-11), a topoisomerase I inhibitor active against malignant glioma (MG), with celecoxib, a selective COX-2 inhibitor, among MG patients with recurrent disease.
  • METHODS: Patients with MG at any type of recurrence received CPT-11, administered as a 90-minute intravenous infusion on Weeks 1, 2, 4, and 5 of each 6-week cycle plus celecoxib, which was administered continuously at a dose of 400 mg twice a day.
  • RESULTS: Thirty-four of the 37 patients enrolled in the current study (92%) were diagnosed with recurrent GBM and 3 patients (8%) were diagnosed with recurrent anaplastic astrocytoma (AA).
  • Hematologic toxicities of >/= Grade 3 (according the second version of the Common Toxicity Criteria of the National Cancer Institute) reportedly complicated 8.6% of treatment courses.
  • Grade 3 diarrhea, the most commonly reported nonhematologic toxicity, occurred with equal frequency (8%), regardless of whether the patient was receiving EIAED.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / administration & dosage. Brain Neoplasms / drug therapy. Camptothecin / administration & dosage. Camptothecin / analogs & derivatives. Glioma / drug therapy. Neoplasm Recurrence, Local / drug therapy. Pyrazoles / administration & dosage. Sulfonamides / administration & dosage
  • [MeSH-minor] Adult. Aged. Biological Availability. Celecoxib. Confidence Intervals. Dose-Response Relationship, Drug. Drug Administration Schedule. Female. Follow-Up Studies. Humans. Infusions, Intravenous. Magnetic Resonance Imaging. Male. Maximum Tolerated Dose. Middle Aged. Neoplasm Staging. Probability. Risk Assessment. Statistics, Nonparametric. Survival Analysis. Treatment Outcome

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. CELECOXIB .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2005 American Cancer Society.
  • (PMID = 15558802.001).
  • [ISSN] 0008-543X
  • [Journal-full-title] Cancer
  • [ISO-abbreviation] Cancer
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / 1 P20 CA096890; United States / NCI NIH HHS / CA / CA11898; United States / NCRR NIH HHS / RR / M01 RR 30; United States / NINDS NIH HHS / NS / NS20023
  • [Publication-type] Clinical Trial; Clinical Trial, Phase II; Comparative Study; Journal Article; Research Support, U.S. Gov't, P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Pyrazoles; 0 / Sulfonamides; 7673326042 / irinotecan; JCX84Q7J1L / Celecoxib; XT3Z54Z28A / Camptothecin
  •  go-up   go-down


88. Kawarabuki K, Ohta T, Hashimoto N, Wada K, Maruno M, Yamaki T, Ueda S: Cerebellar glioblastoma genetically defined as a secondary one. Clin Neuropathol; 2005 Mar-Apr;24(2):64-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • In the present case, tumor lesions were observed in each cerebellar hemisphere.
  • The left-side lesion was diagnosed as glioblastoma, and the right-side lesion as malignant astrocytoma by histopathology.
  • Immunohistochemistry revealed that the tumor cells of the left-side lesion was positive for p53, whereas epidermal growth factor receptors (EGFR) were negative in tumor cells from both sides.
  • Genetic alterations were investigated using a genome DNA microarray (GenoSensor Array 300), which has led us to define this tumor as a secondary glioblastoma.


89. Choi K, Ryu SW, Song S, Choi H, Kang SW, Choi C: Caspase-dependent generation of reactive oxygen species in human astrocytoma cells contributes to resistance to TRAIL-mediated apoptosis. Cell Death Differ; 2010 May;17(5):833-45
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Caspase-dependent generation of reactive oxygen species in human astrocytoma cells contributes to resistance to TRAIL-mediated apoptosis.
  • Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF family of cytokines, causes apoptosis by caspase activation in various cell types, particularly in transformed cells.
  • We report here a new signal transduction pathway involving protein kinase Cdelta (PKCdelta), NADPH oxidase 4 (NOX4) and reactive oxygen species (ROS), that inhibits caspase-dependent cell death induced by TRAIL ligation in human malignant astrocytoma cells.
  • [MeSH-major] Apoptosis / physiology. Astrocytoma / metabolism. Caspase 3 / metabolism. Reactive Oxygen Species / metabolism. TNF-Related Apoptosis-Inducing Ligand / metabolism
  • [MeSH-minor] Cell Line, Tumor. Electrophoresis, Gel, Two-Dimensional. Humans. Immunoblotting. NADPH Oxidase / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19876066.001).
  • [ISSN] 1476-5403
  • [Journal-full-title] Cell death and differentiation
  • [ISO-abbreviation] Cell Death Differ.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Reactive Oxygen Species; 0 / TNF-Related Apoptosis-Inducing Ligand; EC 1.6.3.- / NOX4 protein, human; EC 1.6.3.1 / NADPH Oxidase; EC 3.4.22.- / Caspase 3
  •  go-up   go-down


90. Opstad KS, Ladroue C, Bell BA, Griffiths JR, Howe FA: Linear discriminant analysis of brain tumour (1)H MR spectra: a comparison of classification using whole spectra versus metabolite quantification. NMR Biomed; 2007 Dec;20(8):763-70
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • A total of 145 histologically diagnosed brain tumour spectra were acquired [14 astrocytoma grade II (AS2), 15 astrocytoma grade III (AS3), 42 glioblastoma (GBM), 41 metastases (MET) and 33 meningioma (MNG)], and linear discriminant analyses (LDA) were performed on the LCModel analysis of the spectra and the original spectra.
  • LDA of AS2, MNG and high-grade tumours (HG, comprising GBM and MET) correctly classified 94% using the LCModel dataset compared with 93% using the spectral dataset.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17326043.001).
  • [ISSN] 0952-3480
  • [Journal-full-title] NMR in biomedicine
  • [ISO-abbreviation] NMR Biomed
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  •  go-up   go-down


91. Dmytrenko VV, Boĭko OI, Shostak KO, Bilets'kyĭ AV, Malysheva TA, Shamaiev MI, Kliuchka VM, Rozumenko VD, Zozulia IuP, Kavsan VM: [Expression of myelin basic protein and glial fibrillary acidic protein genes in human glial brain tumors]. Tsitol Genet; 2009 Jan-Feb;43(1):28-35
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Analysis of the expression of genes encoding myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) genes in human glial tumors was carried out for determination of the expression specificity of these genes according to tumor types and their malignancy.
  • Low levels of MBP mRNA in astrocytoma specimens of malignancy grades II-IV and significantly higher levels in perifocal zone adjacent to them have been determined by Northern hybridization.
  • Diffuse astrocytomas and anaplastic astrocytomas are characterized mostly by low level of MBP gene expression and high level of GFAP gene expression, but distinct subtypes of diffuse and anaplastic astrocytomas with high level of MBP gene and low level of GFAP gene expression can be also detected that may be the reflection of different oncogenic pathways.
  • [MeSH-major] Biomarkers, Tumor / genetics. Brain Neoplasms / genetics. Gene Expression. Glial Fibrillary Acidic Protein / genetics. Glioma / genetics. Myelin Basic Protein / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19663312.001).
  • [ISSN] 0564-3783
  • [Journal-full-title] T︠S︡itologii︠a︡ i genetika
  • [ISO-abbreviation] Tsitol. Genet.
  • [Language] ukr
  • [Publication-type] English Abstract; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Ukraine
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Genetic Markers; 0 / Glial Fibrillary Acidic Protein; 0 / Myelin Basic Protein; 0 / RNA, Messenger
  •  go-up   go-down


92. Henriksson R, Malmström A, Bergström P, Bergh G, Trojanowski T, Andreasson L, Blomquist E, Jonsborg S, Edekling T, Salander P, Brännström T, Bergenheim AT: High-grade astrocytoma treated concomitantly with estramustine and radiotherapy. J Neurooncol; 2006 Jul;78(3):321-6
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] High-grade astrocytoma treated concomitantly with estramustine and radiotherapy.
  • Experimental and early clinical investigations have demonstrated encouraging results for estramustine in the treatment of malignant glioma.
  • The present study is an open randomized clinical trial comparing estramustine phosphate (Estracyt) in addition to radiotherapy with radiotherapy alone as first line treatment of astrocytoma grade III and IV.
  • For astrocytoma grade III the median survival time was 10.6 (1.3-92.7) months for the radiotherapy only group and 17.3 (0.4-96.9+) months for the estramustine + radiotherapy group.
  • In grade IV the corresponding median survival time was 12.3 (2.1-89.2) and 10.3 (0.3-91.7+) months, respectively.
  • Median time to progress for radiotherapy only and radiotherapy and estramustin group in grade III tumours was 6.5 and 10.1 months, respectively.
  • In grade IV tumours the corresponding figures were 5.1 and 3.3 months, respectively.
  • Although there was a tendency for improved survival in grade III, no statistical significant differences were found between the treatment groups.
  • In conclusion, this first randomized study did not demonstrate any significant improvement of using estramustine in addition to conventional radiotherapy, however, a trend for a positive response for the estramustine group was found in patients with grade III glioma.
  • [MeSH-major] Antineoplastic Agents, Alkylating / administration & dosage. Astrocytoma / drug therapy. Astrocytoma / radiotherapy. Brain Neoplasms / drug therapy. Brain Neoplasms / radiotherapy. Estramustine / administration & dosage

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Anticancer Res. 1989 Nov-Dec;9(6):1713-6 [2697186.001]
  • [Cites] Neurosurgery. 1996 Aug;39(2):360-6 [8832674.001]
  • [Cites] Br J Cancer. 1988 Sep;58(3):326-9 [3052561.001]
  • [Cites] Cancer. 1991 Sep 15;68(6):1394-400 [1873791.001]
  • [Cites] Cancer. 2000 Aug 1;89(3):640-6 [10931464.001]
  • [Cites] Prostate. 1989;14(1):27-43 [2648345.001]
  • [Cites] Anticancer Res. 1990 May-Jun;10(3):693-6 [2369085.001]
  • [Cites] J Neurooncol. 2004 Mar-Apr;67(1-2):215-20 [15072470.001]
  • [Cites] J Clin Oncol. 2001 Feb 15;19(4):1111-7 [11181676.001]
  • [Cites] J Neurosurg. 1991 Jun;74(6):962-4 [1709687.001]
  • [Cites] Br J Cancer. 1993 Feb;67(2):358-61 [8431366.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1999 Jun 1;44(3):535-43 [10348282.001]
  • [Cites] J Natl Cancer Inst. 1993 Mar 3;85(5):365-76 [8433390.001]
  • [Cites] Br J Cancer. 1999 Apr;80(1-2):142-8 [10389990.001]
  • [Cites] J Clin Oncol. 2000 Mar;18(6):1254-9 [10715295.001]
  • [Cites] J Neurooncol. 1994;22(2):111-26 [7745464.001]
  • [Cites] Br J Cancer. 1995 Apr;71(4):717-20 [7710934.001]
  • [Cites] Clin Cancer Res. 1998 Jan;4(1):87-91 [9516956.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1994 Jun 15;29(3):555-7 [8005815.001]
  • [Cites] Clin Pharmacokinet. 1998 Feb;34(2):163-72 [9515186.001]
  • [Cites] Cancer Res. 1994 Mar 15;54(6):1415-7 [8137240.001]
  • [Cites] Neurosurgery. 1993 Mar;32(3):422-30; discussion 430-1 [8384327.001]
  • [Cites] Clin Cancer Res. 1998 Sep;4(9):2079-84 [9748122.001]
  • [Cites] J Neurooncol. 1995;23(3):191-200 [7673981.001]
  • [Cites] Cancer Res. 1994 Sep 15;54(18):4974-9 [8069865.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10 ):987-96 [15758009.001]
  • [Cites] J Neurol. 1975 Jul 2;209(3):217-24 [51062.001]
  • (PMID = 16598426.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Randomized Controlled Trial; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 35LT29625A / Estramustine
  •  go-up   go-down


93. Morgan RJ, Synold T, Mamelak A, Lim D, Al-Kadhimi Z, Twardowski P, Leong L, Chow W, Margolin K, Shibata S, Somlo G, Yen Y, Frankel P, Doroshow JH: Plasma and cerebrospinal fluid pharmacokinetics of topotecan in a phase I trial of topotecan, tamoxifen, and carboplatin, in the treatment of recurrent or refractory brain or spinal cord tumors. Cancer Chemother Pharmacol; 2010 Oct;66(5):927-33
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The tumors included glioblastoma (6), anaplastic astrocytoma (2), metastatic non-small cell (3), small cell lung (2), and one each with medulloblastoma, ependymoma, and metastatic breast or colon carcinoma.
  • 4/8 pts with high-grade gliomas had stable disease (median: 3 cycles (range 2-5)).

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. TAMOXIFEN .
  • Hazardous Substances Data Bank. Topotecan .
  • Hazardous Substances Data Bank. CARBOPLATIN .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Clin Oncol. 1999 Aug;17(8):2572-8 [10561324.001]
  • [Cites] Anticancer Drugs. 1998 Aug;9(7):581-6 [9773800.001]
  • [Cites] J Neurooncol. 1999 Feb;41(3):285-9 [10359149.001]
  • [Cites] Neuro Oncol. 2008 Apr;10(2):208-15 [18316473.001]
  • [Cites] Eur J Pharmacol. 2001 Jan 19;412(1):21-5 [11166732.001]
  • [Cites] Cancer Invest. 2002;20(3):293-302 [12025223.001]
  • [Cites] Cancer. 2003 May 1;97(9 Suppl):2381-6 [12712460.001]
  • [Cites] Cancer. 1982 Jan 1;49(1):12-8 [6274499.001]
  • [Cites] Onkologie. 1983 Apr;6(2):58-61 [6223253.001]
  • [Cites] J Neurooncol. 1983;1(2):139-44 [6678966.001]
  • [Cites] Int J Cancer. 1988 Sep 15;42(3):382-8 [3417367.001]
  • [Cites] Cancer Chemother Pharmacol. 1990;25(5):382-3 [2407368.001]
  • [Cites] Br J Cancer. 1991 Apr;63(4):641-5 [2021551.001]
  • [Cites] Cancer Res. 1991 Sep 15;51(18):4837-44 [1893376.001]
  • [Cites] J Neurooncol. 1991 Apr;10(2):173-7 [1716670.001]
  • [Cites] Cancer. 1992 Feb 15;69(4):972-80 [1735089.001]
  • [Cites] Cancer Metastasis Rev. 1991 Dec;10(4):335-41 [1786634.001]
  • [Cites] Neurosurgery. 1992 Jun;30(6):897-902; discussion 902-3 [1377370.001]
  • [Cites] Cancer Chemother Pharmacol. 1992;30(4):251-60 [1643692.001]
  • [Cites] Invest New Drugs. 1992 Nov;10(4):239-53 [1487397.001]
  • [Cites] Neurosurgery. 1993 Mar;32(3):485-9; discussion 489-90 [8384328.001]
  • [Cites] Eur J Cancer. 1993;29A(12):1696-9 [7691116.001]
  • [Cites] Cancer Res. 1994 Oct 1;54(19):5118-22 [7923128.001]
  • [Cites] Cancer Chemother Pharmacol. 1996;37(3):195-202 [8529278.001]
  • [Cites] J Natl Cancer Inst. 1996 Jun 5;88(11):734-41 [8637027.001]
  • [Cites] Acta Neurochir (Wien). 1996;138(2):215-20 [8686548.001]
  • [Cites] Cancer. 1996 Aug 1;78(3):527-31 [8697400.001]
  • [Cites] J Chromatogr B Biomed Appl. 1996 Apr 12;678(2):309-15 [8738036.001]
  • [Cites] Neurosurgery. 1996 Mar;38(3):587-90; discussion 590-1 [8837815.001]
  • [Cites] J Clin Oncol. 1996 Dec;14(12):3074-84 [8955652.001]
  • [Cites] Am J Clin Oncol. 1997 Jun;20(3):303-7 [9167759.001]
  • [Cites] J Neurooncol. 1997 Nov;35(2):161-7 [9266454.001]
  • [Cites] J Clin Oncol. 1997 Sep;15(9):3121-8 [9294475.001]
  • [Cites] Semin Oncol. 1997 Aug;24(4 Suppl 12):S12-52-S12-55 [9331122.001]
  • [Cites] Semin Oncol. 1997 Dec;24(6 Suppl 20):S20-11-S20-26 [9425957.001]
  • [Cites] Cancer Chemother Pharmacol. 1998;41(4):307-16 [9488600.001]
  • [Cites] Cancer Chemother Pharmacol. 1998;41(5):385-90 [9523734.001]
  • [Cites] J Neurooncol. 1998 May;38(1):59-68 [9540058.001]
  • [Cites] Eur J Obstet Gynecol Reprod Biol. 1998 May;78(1):91-3 [9605456.001]
  • [Cites] Clin Cancer Res. 1996 Apr;2(4):619-22 [9816211.001]
  • (PMID = 20107803.001).
  • [ISSN] 1432-0843
  • [Journal-full-title] Cancer chemotherapy and pharmacology
  • [ISO-abbreviation] Cancer Chemother. Pharmacol.
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / P30 CA033572; United States / NCI NIH HHS / CA / P30 CA033572-26; United States / NCI NIH HHS / CA / CA 33572
  • [Publication-type] Clinical Trial, Phase I; Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] Germany
  • [Chemical-registry-number] 094ZI81Y45 / Tamoxifen; 7M7YKX2N15 / Topotecan; BG3F62OND5 / Carboplatin
  • [Other-IDs] NLM/ NIHMS335377; NLM/ PMC3265324
  •  go-up   go-down


94. Meije Y, Lizasoain M, García-Reyne A, Martínez P, Rodríguez V, López-Medrano F, Juan RS, Lalueza A, Aguado JM: Emergence of cytomegalovirus disease in patients receiving temozolomide: report of two cases and literature review. Clin Infect Dis; 2010 Jun 15;50(12):e73-6
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Temozolomide chemotherapy has become part of the therapy used to treat glioblastoma multiforme and refractory anaplastic astrocytoma.

  • MedlinePlus Health Information. consumer health - Cytomegalovirus Infections.
  • Hazardous Substances Data Bank. DACARBAZINE .
  • SciCrunch. DrugBank: Data: Chemical .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20455691.001).
  • [ISSN] 1537-6591
  • [Journal-full-title] Clinical infectious diseases : an official publication of the Infectious Diseases Society of America
  • [ISO-abbreviation] Clin. Infect. Dis.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide
  • [Number-of-references] 16
  •  go-up   go-down


95. Higgins SC, Pilkington GJ: The in vitro effects of tricyclic drugs and dexamethasone on cellular respiration of malignant glioma. Anticancer Res; 2010 Feb;30(2):391-7
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The in vitro effects of tricyclic drugs and dexamethasone on cellular respiration of malignant glioma.
  • BACKGROUND: In this investigation the effects of tricyclic drugs on cellular respiration were studied using the anaplastic astrocytoma cell line IPSB-18 by use of a Clark-type oxygen electrode which measured changes in cellular respiration rate (oxygen consumption), in a dose-response assay.
  • [MeSH-major] Antidepressive Agents, Tricyclic / pharmacology. Antineoplastic Agents, Hormonal / pharmacology. Astrocytoma / metabolism. Brain Neoplasms / metabolism. Cell Respiration / drug effects. Dexamethasone / pharmacology
  • [MeSH-minor] Amitriptyline / pharmacology. Antineoplastic Combined Chemotherapy Protocols. Clomipramine / pharmacology. Doxepin / pharmacology. Humans. Oxygen Consumption / drug effects. Respiratory Rate. Tumor Cells, Cultured

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. DOXEPIN .
  • Hazardous Substances Data Bank. Clomipramine .
  • Hazardous Substances Data Bank. DEXAMETHASONE .
  • Hazardous Substances Data Bank. AMITRIPTYLINE HYDROCHLORIDE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20332444.001).
  • [ISSN] 1791-7530
  • [Journal-full-title] Anticancer research
  • [ISO-abbreviation] Anticancer Res.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / Antidepressive Agents, Tricyclic; 0 / Antineoplastic Agents, Hormonal; 1668-19-5 / Doxepin; 1806D8D52K / Amitriptyline; 7S5I7G3JQL / Dexamethasone; NUV44L116D / Clomipramine
  •  go-up   go-down


96. Jin M, Komohara Y, Shichijo S, Yamanaka R, Nikawa J, Itoh K, Yamada A: Erythropoietin-producing hepatocyte B6 variant-derived peptides with the ability to induce glioma-reactive cytotoxic T lymphocytes in human leukocyte antigen-A2+ glioma patients. Cancer Sci; 2008 Aug;99(8):1656-62
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • In the present study, we examined the expression of the EphB6 variant (EphB6v) in a panel of brain tumor cell lines and glioblastoma tissues and we found that EphB6v was preferentially expressed in malignant brain tumors, such as glioblastomas and anaplastic astrocytomas.
  • [MeSH-minor] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Case-Control Studies. Cell Line, Tumor. Gene Expression. Glioblastoma / metabolism. HLA-A Antigens. HLA-A2 Antigen. Hepatocytes. Humans

  • Genetic Alliance. consumer health - Glioma.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18754880.001).
  • [ISSN] 1349-7006
  • [Journal-full-title] Cancer science
  • [ISO-abbreviation] Cancer Sci.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / HLA-A Antigens; 0 / HLA-A*02:01 antigen; 0 / HLA-A2 Antigen; EC 2.7.1.- / EPHB6 protein, human; EC 2.7.10.1 / Receptor Protein-Tyrosine Kinases
  •  go-up   go-down


97. Quant EC, Drappatz J, Wen PY, Norden AD: Recurrent high-grade glioma. Curr Treat Options Neurol; 2010 Jul;12(4):321-33
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Recurrent high-grade glioma.
  • OPINION STATEMENT: Opinions vary on the best treatment options for recurrent high-grade glioma.
  • Age, performance status, histology, tumor size and location, O6-methylguanine-DNA methyltransferase (MGMT) methylation status for glioblastoma, 1p/19q status for oligodendroglial tumors, and the number and types of prior therapies are important considerations.
  • Enrollment in a clinical trial is the optimal choice for most patients with recurrent high-grade glioma after failure of radiation therapy and temozolomide.
  • Involved-field external beam radiation should be considered for patients with anaplastic gliomas who have not received radiation.
  • For patients with anaplastic astrocytoma who progress after radiotherapy, temozolomide may be used.
  • For patients with anaplastic oligodendroglioma who progress after radiotherapy, PCV chemotherapy and temozolomide are options.
  • In the past, carmustine was commonly used to treat recurrent high-grade glioma, but the utility of carmustine in the modern era is unknown because most studies were performed prior to the widespread use of temozolomide.
  • High-precision re-irradiation such as stereotactic radiosurgery is another option in high-grade glioma, especially for patients with poor bone marrow reserve or inability to tolerate chemotherapy, but there is a paucity of studies with adequate controls.

  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Clin Oncol. 2005 Aug 10;23 (23 ):5294-304 [15998902.001]
  • [Cites] Neuro Oncol. 2009 Oct;11(5):550-5 [19332770.001]
  • [Cites] Neurology. 2004 Oct 12;63(7):1281-4 [15477552.001]
  • [Cites] Surg Neurol. 2008 May;69(5):506-9; discussion 509 [18262245.001]
  • [Cites] J Clin Oncol. 2009 Feb 10;27(5):740-5 [19114704.001]
  • [Cites] BMC Cancer. 2007 Aug 30;7:167 [17760992.001]
  • [Cites] J Neurooncol. 1993 Aug;17(2):167-73 [8145061.001]
  • [Cites] J Clin Oncol. 2009 Jun 20;27(18):2905-8 [19451418.001]
  • [Cites] Ther Clin Risk Manag. 2007 Oct;3(5):707-15 [18472995.001]
  • [Cites] J Clin Oncol. 2009 Mar 10;27(8):1268-74 [19204207.001]
  • [Cites] Mol Cells. 2009 Jul 31;28(1):7-12 [19655094.001]
  • [Cites] J Clin Oncol. 2007 Oct 20;25(30):4722-9 [17947719.001]
  • [Cites] J Clin Oncol. 1990 Jul;8(7):1277-80 [2358840.001]
  • [Cites] J Clin Oncol. 2001 May 1;19(9):2449-55 [11331324.001]
  • [Cites] N Engl J Med. 2008 Jul 31;359(5):492-507 [18669428.001]
  • [Cites] J Neurooncol. 2007 Mar;82(1):81-3 [16944309.001]
  • [Cites] J Clin Oncol. 2004 Jan 1;22(1):133-42 [14638850.001]
  • [Cites] J Clin Oncol. 2010 Apr 10;28(11):1963-72 [20231676.001]
  • [Cites] J Clin Oncol. 1999 Sep;17 (9):2762-71 [10561351.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2009 Sep 1;75(1):156-63 [19167838.001]
  • [Cites] Cancer Chemother Pharmacol. 2009 Sep;64(4):647-55 [19543728.001]
  • [Cites] J Clin Oncol. 2003 Jul 1;21(13):2525-8 [12829671.001]
  • [Cites] Nat Clin Pract Oncol. 2008 Nov;5(11):634-44 [18711427.001]
  • [Cites] J Clin Oncol. 2009 Oct 1;27(28):4733-40 [19720927.001]
  • [Cites] Clin Cancer Res. 2008 Nov 1;14 (21):7068-73 [18981004.001]
  • [Cites] Cancer Cell. 2007 Jan;11(1):83-95 [17222792.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2008 Apr 1;70(5):1350-60 [18037587.001]
  • [Cites] Am J Clin Oncol. 2008 Jun;31(3):300-5 [18525311.001]
  • [Cites] J Clin Oncol. 1999 Aug;17(8):2572-8 [10561324.001]
  • [Cites] Neuro Oncol. 2008 Apr;10(2):162-70 [18356283.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1999 Dec 1;45(5):1133-41 [10613305.001]
  • [Cites] J Clin Oncol. 2009 Dec 10;27(35):5874-80 [19901110.001]
  • [Cites] Neurosurgery. 1998 Nov;43(5):1066-73 [9802850.001]
  • [Cites] Invest New Drugs. 2005 Aug;23(4):357-61 [16012795.001]
  • [Cites] Ann Oncol. 2003 Apr;14 (4):599-602 [12649108.001]
  • [Cites] Clin Cancer Res. 2007 Feb 15;13(4):1253-9 [17317837.001]
  • [Cites] Lancet Neurol. 2008 Dec;7(12):1152-60 [19007739.001]
  • [Cites] J Clin Oncol. 2006 Mar 10;24(8):1273-80 [16525182.001]
  • [Cites] AJNR Am J Neuroradiol. 2008 Mar;29(3):419-24 [18272557.001]
  • [Cites] J Clin Oncol. 1994 Oct;12(10):2013-21 [7931469.001]
  • [Cites] Neurol Clin. 2007 Nov;25(4):1141-71, x [17964029.001]
  • [Cites] Lancet. 1995 Apr 22;345(8956):1008-12 [7723496.001]
  • (PMID = 20842591.001).
  • [ISSN] 1534-3138
  • [Journal-full-title] Current treatment options in neurology
  • [ISO-abbreviation] Curr Treat Options Neurol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


98. Server A, Josefsen R, Kulle B, Maehlen J, Schellhorn T, Gadmar Ø, Kumar T, Haakonsen M, Langberg CW, Nakstad PH: Proton magnetic resonance spectroscopy in the distinction of high-grade cerebral gliomas from single metastatic brain tumors. Acta Radiol; 2010 Apr;51(3):316-25
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Proton magnetic resonance spectroscopy in the distinction of high-grade cerebral gliomas from single metastatic brain tumors.
  • BACKGROUND: Brain metastases and primary high-grade gliomas, including glioblastomas multiforme (GBM) and anaplastic astrocytomas (AA), may be indistinguishable by conventional magnetic resonance (MR) imaging.
  • PURPOSE: To assess the value of MR spectroscopy (MRS) using short and intermediate echo time (TE) in differentiating solitary brain metastases and high-grade gliomas on the basis of differences in metabolite ratios in the intratumoral and peritumoral region.
  • MATERIAL AND METHODS: We performed MR imaging and MRS in 73 patients with histologically verified intraaxial brain tumors: 53 patients with high-grade gliomas (34 GBM and 19 AA) and 20 patients with metastatic brain tumors.
  • The differences in the metabolite ratios between high-grade gliomas/GBM/AA and metastases were analyzed statistically.
  • Cutoff values of Cho/Cr, Cho/NAA, and NAA/Cr ratios in the peritumoral edema, as well as Cho/Cr and NAA/Cr ratios in the tumoral core for distinguishing high-grade gliomas/GBM/AA from metastases were determined by receiver operating characteristic (ROC) curve analysis.
  • RESULTS: Significant differences were noted in the peritumoral Cho/Cr, Cho/NAA, and NAA/ Cr ratios between high-grade gliomas/GBM/AA and metastases.
  • ROC analysis demonstrated a cutoff value of 1.24 for peritumoral Cho/Cr ratio to provide sensitivity, specificity, positive (PPV), and negative predictive values (NPV) of 100%, 88.9%, 80.0%, and 100%, respectively, for discrimination between high-grade gliomas and metastases.
  • CONCLUSION: The results of this study demonstrate that MRS can differentiate high-grade gliomas from metastases, especially with peritumoral measurements, supporting the hypothesis that MRS can detect infiltration of tumor cells in the peritumoral edema.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. (L)-ASPARTIC ACID .
  • Hazardous Substances Data Bank. CREATINE .
  • Hazardous Substances Data Bank. CHOLINE CHLORIDE .
  • Hazardous Substances Data Bank. GADOPENTETATE DIMEGLUMINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentIn] Acta Radiol. 2010 Apr;51(3):326-8 [20192894.001]
  • (PMID = 20092374.001).
  • [ISSN] 1600-0455
  • [Journal-full-title] Acta radiologica (Stockholm, Sweden : 1987)
  • [ISO-abbreviation] Acta Radiol
  • [Language] eng
  • [Publication-type] Evaluation Studies; Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Biomarkers; 0 / Contrast Media; 30KYC7MIAI / Aspartic Acid; 997-55-7 / N-acetylaspartate; K2I13DR72L / Gadolinium DTPA; MU72812GK0 / Creatine; N91BDP6H0X / Choline
  •  go-up   go-down


99. Jung CS, Foerch C, Schänzer A, Heck A, Plate KH, Seifert V, Steinmetz H, Raabe A, Sitzer M: Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain; 2007 Dec;130(Pt 12):3336-41
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • A serum marker for malignant cerebral astrocytomas could improve both differential diagnosis and clinical management of brain tumour patients.
  • To evaluate whether the serum concentration of glial fibrillary acidic protein (GFAP) may indicate glioblastoma multiforme (GBM) in patients with single supratentorial space-occupying lesions, we prospectively examined 50 consecutive patients with histologically proven GBM, World Health Organization (WHO) grade IV, 14 patients with anaplastic astrocytoma (WHO grade III), 4 patients with anaplastic oligodendroglioma, 13 patients with diffuse astrocytoma (WHO grade II), 17 patients with a single cerebral metastasis and 50 healthy controls.
  • [MeSH-major] Biomarkers, Tumor / blood. Brain Neoplasms / diagnosis. Glial Fibrillary Acidic Protein / blood. Glioblastoma / diagnosis
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Female. Humans. Male. Middle Aged. Necrosis. Neoplasm Proteins / blood. Prospective Studies. Sensitivity and Specificity

  • Genetic Alliance. consumer health - Glioblastoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17998256.001).
  • [ISSN] 1460-2156
  • [Journal-full-title] Brain : a journal of neurology
  • [ISO-abbreviation] Brain
  • [Language] eng
  • [Publication-type] Evaluation Studies; Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Glial Fibrillary Acidic Protein; 0 / Neoplasm Proteins
  •  go-up   go-down


100. Kim SJ, Park TS, Lee ST, Song J, Suh B, Kim SH, Jang SJ, Lee CH, Choi JR: Therapy-related myelodysplastic syndrome/acute myeloid leukemia after treatment with temozolomide in a patient with glioblastoma multiforme. Ann Clin Lab Sci; 2009;39(4):392-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The cases included anaplastic astrocytoma (4 cases), anaplastic oligodendroglioma (2 cases), low grade astrocytoma (2 cases), low grade oligodendroglioma (1 case), and one case of secondary Philadelphia-positive acute lymphoblastic leukemia in a patient with glioblastoma multiforme.






Advertisement