[X] Close
You are about to erase all the values you have customized, search history, page format, etc.
Click here to RESET all values       Click here to GO BACK without resetting any value
Items 1 to 97 of about 97
1. Arslantas A, Artan S, Oner U, Müslümanoglu MH, Ozdemir M, Durmaz R, Arslantas D, Vural M, Cosan E, Atasoy MA: Genomic alterations in low-grade, anaplastic astrocytomas and glioblastomas. Pathol Oncol Res; 2007;13(1):39-46
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Genomic alterations in low-grade, anaplastic astrocytomas and glioblastomas.
  • To extend our understanding of potential stepwise genetic alterations that may underlie tumor progression from low-grade astrocytomas to glioblastomas, histopathologic and comparative genomic hybridization analyses were performed on tumor specimens from 68 primary lesions, including 40 glioblastomas, 10 anaplastic and 18 low-grade astrocytomas.
  • The number of aberrations per case increased towards the higher grade tumors (grade II: 1.66+/-1.49; grade III: 2.80+/-1.68; grade IV: 3.02+/-1.07; F=6.955, p=0.002).
  • A gain of 7/7q was common and the most frequently seen aberration in low-grade astrocytomas, whereas loss of 10q was the most frequently seen anomaly in anaplastic astrocytomas and glioblastomas.
  • Chromosome 10/10q deletion and combination of 1p, 19q and 17p deletions were specific to high-grade astrocytic tumors.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Chromosome Aberrations. Chromosome Deletion. Glioblastoma / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Acta Neurol Belg. 2002 Jun;102(2):53-62 [12161900.001]
  • [Cites] Am J Pathol. 1999 Aug;155(2):375-86 [10433931.001]
  • [Cites] Cancer Res. 1994 Mar 15;54(6):1397-401 [8137236.001]
  • [Cites] Neurol Med Chir (Tokyo). 2003 Jan;43(1):12-8; discussion 19 [12568317.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Apr;61(4):321-8 [11939587.001]
  • [Cites] Mol Carcinog. 2003 Jan;36(1):6-14 [12503074.001]
  • [Cites] Hum Genet. 1993 Sep;92(2):169-74 [8370584.001]
  • [Cites] Front Biosci. 2003 May 01;8:e281-8 [12700122.001]
  • [Cites] Genes Chromosomes Cancer. 1998 Apr;21(4):340-6 [9559346.001]
  • [Cites] Cancer Genet Cytogenet. 2003 Apr 1;142(1):1-7 [12660025.001]
  • [Cites] Nat Genet. 1997 Sep;17(1):32-9 [9288095.001]
  • [Cites] Anticancer Res. 1994 Mar-Apr;14(2A):577-9 [8017863.001]
  • [Cites] J Natl Cancer Inst. 1998 Oct 7;90(19):1473-9 [9776413.001]
  • [Cites] Cancer Res. 2004 Oct 1;64(19):6892-9 [15466178.001]
  • [Cites] Cancer Res. 2001 Oct 15;61(20):7683-8 [11606412.001]
  • [Cites] Genes Chromosomes Cancer. 2005 Jan;42(1):68-77 [15472895.001]
  • [Cites] Cancer Res. 1999 Apr 15;59(8):1820-4 [10213484.001]
  • [Cites] Clin Neurol Neurosurg. 1997 May;99(2):117-23 [9213056.001]
  • [Cites] Neurosurg Rev. 2004 Jan;27(1):58-64 [12845540.001]
  • [Cites] Am J Pathol. 1994 Jun;144(6):1203-18 [8203461.001]
  • [Cites] Oncogene. 1997 Jun 19;14(24):2927-33 [9205099.001]
  • [Cites] Cancer Lett. 1999 Jan 8;135(1):61-6 [10077222.001]
  • [Cites] Br J Cancer. 1996 Feb;73(4):424-8 [8595154.001]
  • [Cites] Int J Cancer. 1999 Apr 20;84(2):150-4 [10096247.001]
  • [Cites] Int J Oncol. 2002 Nov;21(5):1141-50 [12370766.001]
  • [Cites] Br J Cancer. 2005 Jul 11;93(1):124-30 [15970925.001]
  • [Cites] Hum Pathol. 2000 May;31(5):608-14 [10836301.001]
  • [Cites] Virchows Arch. 1995;427(2):113-8 [7582239.001]
  • [Cites] Cancer Res. 1994 Dec 15;54(24):6353-8 [7987828.001]
  • (PMID = 17387387.001).
  • [ISSN] 1219-4956
  • [Journal-full-title] Pathology oncology research : POR
  • [ISO-abbreviation] Pathol. Oncol. Res.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  •  go-up   go-down


2. Nagy M, Schulz-Ertner D, Bischof M, Welzel T, Hof H, Debus J, Combs SE: Long-term outcome of postoperative irradiation in patients with newly diagnosed WHO grade III anaplastic gliomas. Tumori; 2009 May-Jun;95(3):317-24
MedlinePlus Health Information. consumer health - Childhood Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Long-term outcome of postoperative irradiation in patients with newly diagnosed WHO grade III anaplastic gliomas.
  • PURPOSE: Patients with anaplastic gliomas have a more favorable overall survival than patients with glioblastomas.
  • In most analyses, WHO grade III and 1V tumors are not analyzed separately.
  • The present analysis reports outcome after postoperative radiotherapy in patients with WHO grade III gliomas.
  • PATIENTS AND METHODS: Between January 1988 and January 2007, 127 patients with WHO grade III tumors were treated with radiotherapy; the histological classification was pure astrocytoma in 104 patients, oligoastrocytoma in 12 and pure oligodendroglioma in 11 patients.
  • After the primary diagnosis, a biopsy had been performed in 72 patients; subtotal and total resections were performed in 37 and 18 patients, respectively.
  • Median overall survival was 7 months for patients with anaplastic astrocytomas, 44 months for patients with mixed tumors, and 47 months for those with pure oligodendrogliomas.
  • CONCLUSION: Patients with WHO grade III anaplastic astrocytomas, oligodendrogliomas and oligoastrocytomas show favorable overall survival after postoperative radiotherapy compared with glioblastoma patients and should therefore be analyzed separately.
  • [MeSH-major] Brain Neoplasms / pathology. Brain Neoplasms / radiotherapy. Glioma / pathology. Glioma / radiotherapy
  • [MeSH-minor] Adolescent. Adult. Aged. Astrocytoma / pathology. Astrocytoma / radiotherapy. Child. Child, Preschool. Disease-Free Survival. Female. Humans. Infant. Male. Middle Aged. Oligodendroglioma / pathology. Oligodendroglioma / radiotherapy. Radiotherapy, Adjuvant. Retrospective Studies. Survival Analysis. Time Factors. Treatment Outcome. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19688970.001).
  • [ISSN] 0300-8916
  • [Journal-full-title] Tumori
  • [ISO-abbreviation] Tumori
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Italy
  •  go-up   go-down


3. Anselmo NP, Rey JA, Almeida LO, Custódio AC, Almeida JR, Clara CA, Santos MJ, Casartelli C: Concurrent sequence variation of TP53 and TP73 genes in anaplastic astrocytoma. Genet Mol Res; 2009;8(4):1257-63
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Concurrent sequence variation of TP53 and TP73 genes in anaplastic astrocytoma.
  • Using PCR-SSCP and gene sequencing, we analyzed the TP53 and TP73 genes in a case of a grade III anaplastic astrocytoma that progressed to glioblastoma.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. DNA-Binding Proteins / genetics. Nuclear Proteins / genetics. Tumor Suppressor Protein p53 / genetics. Tumor Suppressor Proteins / genetics

  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19876867.001).
  • [ISSN] 1676-5680
  • [Journal-full-title] Genetics and molecular research : GMR
  • [ISO-abbreviation] Genet. Mol. Res.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Brazil
  • [Chemical-registry-number] 0 / DNA Primers; 0 / DNA-Binding Proteins; 0 / Nuclear Proteins; 0 / Tumor Suppressor Protein p53; 0 / Tumor Suppressor Proteins; 0 / tumor suppressor protein p73
  •  go-up   go-down


Advertisement
4. Kouwenhoven MC, Gorlia T, Kros JM, Ibdaih A, Brandes AA, Bromberg JE, Mokhtari K, van Duinen SG, Teepen JL, Wesseling P, Vandenbos F, Grisold W, Sipos L, Mirimanoff R, Vecht CJ, Allgeier A, Lacombe D, van den Bent MJ: Molecular analysis of anaplastic oligodendroglial tumors in a prospective randomized study: A report from EORTC study 26951. Neuro Oncol; 2009 Dec;11(6):737-46
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Molecular analysis of anaplastic oligodendroglial tumors in a prospective randomized study: A report from EORTC study 26951.
  • Recent studies have shown that the clinical outcome of anaplastic oligodendroglial tumors is variable, but also that the histological diagnosis is subject to interobserver variation.
  • We investigated whether the assessment of 1p/19q codeletion, polysomy of chromosome 7, epidermal growth factor receptor (EGFR) gene amplification (EGFR(amp)), and loss of chromosome 10 or 10q offers additional prognostic information to the histological diagnosis and would allow molecular subtyping.
  • For this study, we used the clinical data and tumor samples of the patients included in multicenter prospective phase III European Organisation for Research and Treatment of Cancer (EORTC) study 26951 on the effects of adjuvant procarbazine, chloroethyl cyclohexylnitrosourea (lomustine), and vincristine chemotherapy in anaplastic oligodendroglial tumors.
  • Three different analyses were performed: on all included patients based on local pathology diagnosis, on the patients with confirmed anaplastic oligodendroglial tumors on central pathology review, and on this latter group but after excluding anaplastic oligoastrocytoma (AOA) with necrosis.
  • As a reference set for glioblastoma multiforme (GBM), patients from the prospective randomized phase III study on GBM (EORTC 26981) were used as a benchmark.
  • In 257 of 368 patients, central pathology review confirmed the presence of an anaplastic oligodendroglial tumor.
  • Tumors with combined 1p and 19q loss (1p(loss)19q(loss)) were histopathologically diagnosed as anaplastic oligodendroglioma, were more frequently located in the frontal lobe, and had a better outcome.
  • Anaplastic oligodendroglial tumors with EGFR(amp) were more frequently AOA, were more often localized outside the frontal lobe, and had a survival similar to that for GBM.
  • In univariate analyses, all molecular factors except loss of 10q were of prognostic significance, but on multivariate analysis a histopathological diagnosis of AOA, necrosis, and 1p(loss)19q(loss) remained independent prognostic factors.
  • AOA tumors with necrosis are to be considered WHO grade IV tumors (GBM).

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • ClinicalTrials.gov. clinical trials - ClinicalTrials.gov .
  • Hazardous Substances Data Bank. LOMUSTINE .
  • Hazardous Substances Data Bank. VINCRISTINE .
  • Hazardous Substances Data Bank. PROCARBAZINE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer Genet Cytogenet. 2000 May;119(1):42-7 [10812170.001]
  • [Cites] Neuropathology. 2008 Aug;28(4):440-3 [18312547.001]
  • [Cites] J Pathol. 2001 May;194(1):81-7 [11329145.001]
  • [Cites] J Neuropathol Exp Neurol. 2001 Sep;60(9):863-71 [11556543.001]
  • [Cites] Cancer Res. 2001 Sep 15;61(18):6713-5 [11559541.001]
  • [Cites] J Neuropathol Exp Neurol. 2001 Nov;60(11):1099-104 [11706939.001]
  • [Cites] Am J Pathol. 2002 Jul;161(1):313-9 [12107116.001]
  • [Cites] Cancer. 2003 Mar 1;97(5):1276-84 [12599236.001]
  • [Cites] J Clin Oncol. 1994 Oct;12(10):2013-21 [7931469.001]
  • [Cites] Am J Pathol. 1994 Nov;145(5):1175-90 [7977648.001]
  • [Cites] J Natl Cancer Inst. 1998 Oct 7;90(19):1473-9 [9776413.001]
  • [Cites] Neurology. 1998 Oct;51(4):1140-5 [9781544.001]
  • [Cites] J Neuropathol Exp Neurol. 1999 Jun;58(6):606-12 [10374751.001]
  • [Cites] Cancer. 2004 Nov 15;101(10):2318-26 [15470710.001]
  • [Cites] Neurology. 2004 Dec 28;63(12):2360-2 [15623700.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):987-96 [15758009.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):997-1003 [15758010.001]
  • [Cites] Ann Neurol. 2005 Sep;58(3):483-7 [16130103.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2005 Nov 1;63(3):695-703 [15936158.001]
  • [Cites] J Clin Oncol. 2006 Jun 1;24(16):2563-9 [16735709.001]
  • [Cites] J Clin Oncol. 2006 Jun 20;24(18):2707-14 [16782910.001]
  • [Cites] J Clin Oncol. 2006 Jun 20;24(18):2715-22 [16782911.001]
  • [Cites] J Neurooncol. 2006 Oct;80(1):75-82 [16794749.001]
  • [Cites] Eur J Cancer. 2006 Oct;42(15):2499-503 [16914310.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 Oct;65(10):988-94 [17021403.001]
  • [Cites] Cancer Res. 2006 Oct 15;66(20):9852-61 [17047046.001]
  • [Cites] J Clin Oncol. 2006 Dec 1;24(34):5419-26 [17135643.001]
  • [Cites] J Neuropathol Exp Neurol. 2007 Jun;66(6):545-51 [17549014.001]
  • [Cites] J Neurooncol. 2007 Sep;84(3):279-86 [17431544.001]
  • [Cites] Oncogene. 2008 Mar 27;27(14):2097-108 [17934521.001]
  • [Cites] Brain Pathol. 2008 Jul;18(3):360-9 [18371182.001]
  • [Cites] Neuro Oncol. 2000 Jul;2(3):164-73 [11302337.001]
  • (PMID = 19224764.001).
  • [ISSN] 1523-5866
  • [Journal-full-title] Neuro-oncology
  • [ISO-abbreviation] Neuro-oncology
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / U10 CA011488; United States / NCI NIH HHS / CA / 2U10CA11488-25; United States / NCI NIH HHS / CA / 2U10CA11488-35
  • [Publication-type] Journal Article; Multicenter Study; Randomized Controlled Trial; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 35S93Y190K / Procarbazine; 5J49Q6B70F / Vincristine; 7BRF0Z81KG / Lomustine
  • [Other-IDs] NLM/ PMC2802394
  •  go-up   go-down


5. Yoshida T, Niwa F, Kimura S, Nakagawa M: Anaplastic astrocytoma presenting as reversible posterior leukoencephalopathy syndrome. Neurologist; 2006 Nov;12(6):311-3
MedlinePlus Health Information. consumer health - Brain Diseases.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Anaplastic astrocytoma presenting as reversible posterior leukoencephalopathy syndrome.
  • We report a 60-year-old man with grade III astrocytoma, who presented with status epilepticus.
  • The initial MRI did not demonstrate typical findings of an astrocytoma but rather showed reversible posterior leukoencephalopathy syndrome (RPLS).
  • A brain tumor should be considered and the patient carefully followed by MRI, even if the MRI white matter lesion pattern suggests RPLS.
  • [MeSH-major] Astrocytoma / diagnosis. Brain Diseases / diagnosis. Occipital Lobe / pathology

  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17122727.001).
  • [ISSN] 1074-7931
  • [Journal-full-title] The neurologist
  • [ISO-abbreviation] Neurologist
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


6. Park CK, Lee SH, Han JH, Kim CY, Kim DW, Paek SH, Kim DG, Heo DS, Kim IH, Jung HW: Recursive partitioning analysis of prognostic factors in WHO grade III glioma patients treated with radiotherapy or radiotherapy plus chemotherapy. BMC Cancer; 2009;9:450
Hazardous Substances Data Bank. VINDESINE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Recursive partitioning analysis of prognostic factors in WHO grade III glioma patients treated with radiotherapy or radiotherapy plus chemotherapy.
  • BACKGROUND: We evaluated the hierarchical risk groups for the estimated survival of WHO grade III glioma patients using recursive partitioning analysis (RPA).
  • To our knowledge, this is the first study to address the results of RPA specifically for WHO grade III gliomas.
  • METHODS: A total of 133 patients with anaplastic astrocytoma (AA, n = 56), anaplastic oligodendroglioma (AO, n = 67), or anaplastic oligoastrocytoma (AOA, n = 10) were included in the study.
  • CONCLUSION: The present study shows that RPA grouping with clinical prognostic factors can successfully predict the survival of patients with WHO grade III glioma.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Brain Neoplasms / diagnosis. Brain Neoplasms / therapy. Classification / methods. Glioma / diagnosis. Glioma / therapy. Neoplasm Staging / methods. Radiotherapy

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Radiation Therapy.
  • Hazardous Substances Data Bank. CIS-DIAMINEDICHLOROPLATINUM .
  • Hazardous Substances Data Bank. CYCLOPHOSPHAMIDE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Clin Oncol. 1999 Nov;17(11):3389-95 [10550132.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2009 Mar 15;73(4):1169-76 [18938045.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Mar;61(3):215-25; discussion 226-9 [11895036.001]
  • [Cites] Cancer. 2003 Feb 15;97(4):1063-71 [12569607.001]
  • [Cites] J Clin Oncol. 2003 Jul 1;21(13):2525-8 [12829671.001]
  • [Cites] Neuro Oncol. 2004 Jul;6(3):227-35 [15279715.001]
  • [Cites] Am J Clin Oncol. 1982 Dec;5(6):649-55 [7165009.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1990 Feb;18(2):321-4 [2154418.001]
  • [Cites] J Natl Cancer Inst. 1993 May 5;85(9):704-10 [8478956.001]
  • [Cites] Cancer. 1993 Jun 15;71(12):4002-6 [8508366.001]
  • [Cites] Brain Pathol. 1993 Jul;3(3):255-68 [8293185.001]
  • [Cites] Neurology. 1994 Aug;44(8):1479-83 [8058153.001]
  • [Cites] Neurosurgery. 1994 Dec;35(6):1018-34; discussion 1034-5 [7885546.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1997 Mar 1;37(4):745-51 [9128946.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1998 Jan 1;40(1):51-5 [9422557.001]
  • [Cites] Jpn J Clin Oncol. 2006 Apr;36(4):193-6 [16611661.001]
  • [Cites] J Clin Oncol. 2006 Jun 1;24(16):2563-9 [16735709.001]
  • [Cites] J Clin Oncol. 2006 Jun 20;24(18):2707-14 [16782910.001]
  • [Cites] J Clin Oncol. 2006 Jun 20;24(18):2715-22 [16782911.001]
  • [Cites] J Clin Oncol. 2006 Dec 1;24(34):5419-26 [17135643.001]
  • [Cites] J Neurooncol. 2007 Feb;81(3):295-303 [17001519.001]
  • [Cites] J Neurosurg. 2007 Apr;106(4):575-81 [17432706.001]
  • [Cites] Crit Rev Oncol Hematol. 2007 Jul;63(1):72-80 [17478095.001]
  • [Cites] Acta Neuropathol. 2007 Aug;114(2):97-109 [17618441.001]
  • [Cites] Neurol Clin. 2007 Nov;25(4):1089-109, ix-x [17964027.001]
  • [Cites] Brain Pathol. 2008 Jul;18(3):307-16 [18532929.001]
  • [Cites] J Clin Oncol. 2001 Jan 15;19(2):509-18 [11208845.001]
  • (PMID = 20017960.001).
  • [ISSN] 1471-2407
  • [Journal-full-title] BMC cancer
  • [ISO-abbreviation] BMC Cancer
  • [Language] eng
  • [Publication-type] Evaluation Studies; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 8N3DW7272P / Cyclophosphamide; Q20Q21Q62J / Cisplatin; RSA8KO39WH / Vindesine; PCV regimen
  • [Other-IDs] NLM/ PMC2806410
  •  go-up   go-down


7. Rao SA, Santosh V, Somasundaram K: Genome-wide expression profiling identifies deregulated miRNAs in malignant astrocytoma. Mod Pathol; 2010 Oct;23(10):1404-17
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Genome-wide expression profiling identifies deregulated miRNAs in malignant astrocytoma.
  • Malignant astrocytoma includes anaplastic astrocytoma (grade III) and glioblastoma (grade IV).
  • Among them, glioblastoma is the most common primary brain tumor with dismal responses to all therapeutic modalities.
  • We performed a large-scale, genome-wide microRNA (miRNA) (n=756) expression profiling of 26 glioblastoma, 13 anaplastic astrocytoma and 7 normal brain samples with an aim to find deregulated miRNA in malignant astrocytoma.
  • We identified several differentially regulated miRNAs between these groups, which could differentiate glioma grades and normal brain as recognized by PCA.
  • More importantly, we identified a most discriminatory 23-miRNA expression signature, by using PAM, which precisely distinguished glioblastoma from anaplastic astrocytoma with an accuracy of 95%.
  • Thus we have identified the miRNA expression signature for malignant astrocytoma, in particular glioblastoma, and showed the miRNA involvement and their importance in astrocytoma development.
  • [MeSH-major] Astrocytoma / genetics. Biomarkers, Tumor / genetics. Brain Neoplasms / genetics. MicroRNAs / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20711171.001).
  • [ISSN] 1530-0285
  • [Journal-full-title] Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
  • [ISO-abbreviation] Mod. Pathol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / MicroRNAs
  •  go-up   go-down


8. Bäcklund LM, Nilsson BR, Liu L, Ichimura K, Collins VP: Mutations in Rb1 pathway-related genes are associated with poor prognosis in anaplastic astrocytomas. Br J Cancer; 2005 Jul 11;93(1):124-30
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Mutations in Rb1 pathway-related genes are associated with poor prognosis in anaplastic astrocytomas.
  • Anaplastic astrocytoma (AA, WHO grade III) is, second to Glioblastoma, the most common and most malignant type of adult CNS tumour.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Genes, Retinoblastoma. Mutation


9. Yue WY, Chen ZP: Does vasculogenic mimicry exist in astrocytoma? J Histochem Cytochem; 2005 Aug;53(8):997-1002
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Does vasculogenic mimicry exist in astrocytoma?
  • It is unknown whether a similar VM phenomenon exists in astrocytoma.
  • The present study was to examine 45 astrocytomas (including World Health Organization grade II 15 cases, grade III 15 cases, and grade IV 15 cases) by CD34 endothelial marker periodic acid-Schiff (PAS) dual staining to see if VM existing in these tumors.
  • PAS-positive pattern of VM was found in two grade IV astrocytomas.
  • Furthermore, in astrocytoma, especially glioblastoma, focus of anaplastic tumor cells appeared with CD34 expression, whereas some tumor cells lost glial fibrillary acid protein expression.
  • It is assumed that genetically deregulated tumor cells in astrocytoma could lose the astrocyte-specific protein and express inappropriate markers not expected in cells of astrocyte lineage.
  • The present results suggest that VM phenomenon exists in some malignant astrocytoma.
  • [MeSH-major] Astrocytoma / blood supply. Brain Neoplasms / blood supply

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15923371.001).
  • [ISSN] 0022-1554
  • [Journal-full-title] The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society
  • [ISO-abbreviation] J. Histochem. Cytochem.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, CD34; 0 / Biomarkers; 0 / Coloring Agents; 0 / Schiff Bases; 10450-60-9 / Periodic Acid
  •  go-up   go-down


10. Jayawardena S, Sooriabalan D, Indulkar S, Kim HH, Matin A, Maini A: Regression of grade III astrocytoma during the treatment of CML with imatinib mesylate. Am J Ther; 2006 Sep-Oct;13(5):458-9
Hazardous Substances Data Bank. IMATINIB MESYLATE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Regression of grade III astrocytoma during the treatment of CML with imatinib mesylate.
  • The cells that demonstrate the greatest degree of anaplasia are used to determine the histologic grade of the tumor.
  • The mean age of survival are approximately 10 years from the time of diagnosis for pilocystic astrocytomas (World Health Organization grade I), more than 5 years for patients with low-grade diffuse astrocytomas (WHO grade II), 2 to 5 years for those with anaplastic astrocytomas (WHO grade III), and less than 1 year for patients with glioblastoma (WHO grade IV).
  • The treatment is a combination of surgery, radiation, and chemotherapy depending of the grade of astrocytoma.
  • We present a case of 31-year-old man with grade III astrocytoma with subsequent chronic myelogenous leukemia treated with imatinib mesylate as part of his chronic myelogenous leukemia treatment failing to show recurrence of the astrocytoma 10 years after standard treatment for astrocytoma.
  • [MeSH-major] Antineoplastic Agents / therapeutic use. Astrocytoma / drug therapy. Brain Neoplasms / drug therapy. Leukemia, Myeloid, Acute / drug therapy. Piperazines / therapeutic use. Pyrimidines / therapeutic use

  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Cancer Chemotherapy.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16988542.001).
  • [ISSN] 1075-2765
  • [Journal-full-title] American journal of therapeutics
  • [ISO-abbreviation] Am J Ther
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Benzamides; 0 / Piperazines; 0 / Pyrimidines; 8A1O1M485B / Imatinib Mesylate
  •  go-up   go-down


11. Wacker A, Will BE, Schöning M, Neunhoeffer F: [Intracerebral bleeding as the first symptom of a congenital anaplastic astrocytoma]. Z Geburtshilfe Neonatol; 2008 Oct;212(5):194-6
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Intracerebral bleeding as the first symptom of a congenital anaplastic astrocytoma].
  • BACKGROUND: Anaplastic astrocytomas in neonates are extremely rare.
  • An ultrasound scan of the brain showed an intracerebral bleeding.
  • No tumour was found, but an anaplastic astrocytoma (WHO Grade III) was diagnosed histologically.
  • Serial ultrasound investigations of the brain showed a normal midline and a redevelopment of the left-sided ventricle.
  • CONCLUSION: Congenital anaplastic astrocytomas have a variable outcome, with different survival rates as compared to adults.
  • [MeSH-major] Astrocytoma / congenital. Brain Neoplasms / congenital. Cerebral Hemorrhage / congenital
  • [MeSH-minor] Diagnosis, Differential. Echoencephalography. Fatal Outcome. Female. Humans. Infant, Newborn. Magnetic Resonance Imaging. Occipital Lobe / pathology. Temporal Lobe / pathology. Tomography, X-Ray Computed. Trephining

  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18956278.001).
  • [ISSN] 0948-2393
  • [Journal-full-title] Zeitschrift für Geburtshilfe und Neonatologie
  • [ISO-abbreviation] Z Geburtshilfe Neonatol
  • [Language] ger
  • [Publication-type] Case Reports; English Abstract; Journal Article
  • [Publication-country] Germany
  •  go-up   go-down


12. Korshunov A, Meyer J, Capper D, Christians A, Remke M, Witt H, Pfister S, von Deimling A, Hartmann C: Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol; 2009 Sep;118(3):401-5
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma.
  • Separation of pilocytic astrocytoma from diffuse astrocytomas frequently poses problems mostly related to small sample size.
  • Precise classification and grading are essential due to different therapeutic strategies prompted by diagnoses of pilocytic astrocytoma WHO grade I, diffuse astrocytomas WHO grade II or anaplastic astrocytoma WHO grade III.
  • We examined a series of 120 astrocytomas including 70 pilocytic astrocytomas WHO grade I and 50 diffuse astrocytomas WHO grade II for both, BRAF-KIAA1549 fusion with a newly developed FISH assay and mutations in IDH1 and IDH2 by direct sequencing.
  • Astrocytomas WHO grade II exhibited IDH1 mutations in 38 cases (76%) but neither IDH2 mutations nor BRAF fusions.
  • Thus, combined molecular analysis of BRAF and IDH1 is a sensitive and highly specific approach to separate pilocytic astrocytoma from diffuse astrocytoma.
  • [MeSH-major] Astrocytoma / diagnosis. Brain Neoplasms / diagnosis. Isocitrate Dehydrogenase / genetics. Proto-Oncogene Proteins B-raf / genetics
  • [MeSH-minor] Adolescent. Adult. Aged. Biomarkers, Tumor. Child. Child, Preschool. Diagnosis, Differential. Female. Humans. In Situ Hybridization, Fluorescence. Male. Middle Aged. Mutation. Tissue Array Analysis


13. Matar E, Cook RJ, Fowler AR, Biggs MT, Little NS, Wheeler HR, Robinson BG, McDonald KL: Post-contrast enhancement as a clinical indicator of prognosis in patients with anaplastic astrocytoma. J Clin Neurosci; 2010 Aug;17(8):993-6
Hazardous Substances Data Bank. GADOLINIUM, ELEMENTAL .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Post-contrast enhancement as a clinical indicator of prognosis in patients with anaplastic astrocytoma.
  • Diagnosis of an anaplastic astrocytoma (World Health Organization grade III) is associated with a highly variable prognosis.
  • In this study, we analysed 48 patients with a histological diagnosis of anaplastic astrocytoma and found peritumoral post-gadolinium contrast enhancement to be a clear prognostic marker of poor prognosis.
  • The survival differences observed in the enhancing and non-enhancing lesions in patients diagnosed with anaplastic astrocytoma supports the existence of a broad anaplastic spectrum of disease, with enhancement being a clinical marker of tumour progression along this spectrum.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Gadolinium. Image Enhancement

  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright 2010 Elsevier Ltd. All rights reserved.
  • (PMID = 20605464.001).
  • [ISSN] 1532-2653
  • [Journal-full-title] Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
  • [ISO-abbreviation] J Clin Neurosci
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Scotland
  • [Chemical-registry-number] AU0V1LM3JT / Gadolinium
  •  go-up   go-down


14. Compostella A, Tosoni A, Blatt V, Franceschi E, Brandes AA: Prognostic factors for anaplastic astrocytomas. J Neurooncol; 2007 Feb;81(3):295-303
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Prognostic factors for anaplastic astrocytomas.
  • Anaplastic astrocytomas (WHO grade III) constitute about 10% of all gliomas.
  • Currently, only few factors have been identified as useful for prognosis of anaplastic astrocytoma: age and Karnofsky Performance Status.
  • [MeSH-major] Astrocytoma / genetics. Astrocytoma / pathology. Biomarkers, Tumor / analysis. Brain Neoplasms / genetics. Brain Neoplasms / pathology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer. 1988 Nov 15;62(10):2152-65 [3179928.001]
  • [Cites] Clin Cancer Res. 2003 Apr;9(4):1461-8 [12684420.001]
  • [Cites] J Clin Oncol. 2004 May 15;22(10):1926-33 [15143086.001]
  • [Cites] J Clin Oncol. 2006 Jan 10;24(2):213-6 [16365177.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Mar;61(3):215-25; discussion 226-9 [11895036.001]
  • [Cites] J Neurooncol. 2005 Jan;71(2):85-9 [15690121.001]
  • [Cites] Cancer. 1996 Mar 15;77(6):1161-6 [8635139.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16759-64 [16267128.001]
  • [Cites] Clin Cancer Res. 2005 Jul 15;11(14):5167-74 [16033832.001]
  • [Cites] Cancer Res. 2004 Sep 15;64(18):6503-10 [15374961.001]
  • [Cites] J Natl Cancer Inst. 1993 May 5;85(9):704-10 [8478956.001]
  • [Cites] Cancer. 1999 Aug 15;86(4):672-83 [10440696.001]
  • [Cites] Clin Cancer Res. 2004 Aug 1;10 (15):4933-8 [15297393.001]
  • [Cites] Neurosurgery. 1991 Apr;28(4):496-501 [1851971.001]
  • [Cites] Cancer Res. 1998 Oct 15;58(20):4694-700 [9788624.001]
  • [Cites] Nat Genet. 1997 Apr;15(4):356-62 [9090379.001]
  • [Cites] N Engl J Med. 2000 Nov 9;343(19):1350-4 [11070098.001]
  • [Cites] Genes Chromosomes Cancer. 1998 Apr;21(4):340-6 [9559346.001]
  • [Cites] Cancer. 2003 Feb 15;97(4):1063-71 [12569607.001]
  • [Cites] Proteomics. 2005 Mar;5(4):1167-77 [15759318.001]
  • [Cites] J Clin Oncol. 2002 Feb 15;20(4):1063-8 [11844831.001]
  • [Cites] Neurosurgery. 1992 Oct;31(4):636-42; discussion 642 [1407448.001]
  • [Cites] J Neurooncol. 2001 Dec;55(3):195-204 [11859975.001]
  • [Cites] CA Cancer J Clin. 1990 Jan-Feb;40(1):9-26 [2104569.001]
  • [Cites] J Neuropathol Exp Neurol. 1996 Jan;55(1):81-7 [8558174.001]
  • [Cites] Am J Hum Genet. 1996 Jun;58(6):1260-7 [8651304.001]
  • [Cites] Science. 1997 Mar 28;275(5308):1943-7 [9072974.001]
  • [Cites] Cancer Res. 2001 Oct 15;61(20):7683-8 [11606412.001]
  • [Cites] J Natl Cancer Inst. 2001 Aug 15;93(16):1246-56 [11504770.001]
  • [Cites] Clin Cancer Res. 2004 Mar 15;10 (6):1871-4 [15041700.001]
  • [Cites] J Pathol. 1994 Dec;174(4):275-82 [7884589.001]
  • [Cites] Neuropathol Appl Neurobiol. 2000 Aug;26(4):319-31 [10931365.001]
  • [Cites] Neuroradiology. 1997 May;39(5):348-50 [9189880.001]
  • [Cites] Neuro Oncol. 2005 Oct;7(4):436-51 [16212809.001]
  • [Cites] Neurosurgery. 2004 Feb;54(2):349-57; discussion 357 [14744281.001]
  • [Cites] Cancer. 1985 Sep 1;56(5):1106-11 [2990664.001]
  • [Cites] Oncogene. 1995 Jun 1;10(11):2243-6 [7784070.001]
  • [Cites] Genes Chromosomes Cancer. 1995 Jun;13(2):86-93 [7542911.001]
  • [Cites] Am J Pathol. 2001 Sep;159(3):779-86 [11549567.001]
  • [Cites] J Natl Cancer Inst. 2005 Jun 1;97(11):823-35 [15928303.001]
  • [Cites] J Neurooncol. 2006 Jul;78(3):233-47 [16612574.001]
  • [Cites] Clin Cancer Res. 2005 Jan 1;11(1):249-58 [15671553.001]
  • [Cites] Cancer Res. 2005 Sep 1;65(17):7674-81 [16140934.001]
  • [Cites] Br J Cancer. 2005 Jul 11;93(1):124-30 [15970925.001]
  • [Cites] Clin Cancer Res. 2003 Sep 15;9(11):4151-8 [14519639.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10 ):997-1003 [15758010.001]
  • [Cites] J Neurooncol. 2002 Jul;58(3):203-15 [12187956.001]
  • [Cites] Genes Chromosomes Cancer. 1998 Mar;21(3):195-206 [9523194.001]
  • [Cites] Oncogene. 1996 Sep 5;13(5):983-94 [8806688.001]
  • [Cites] Neuropathol Appl Neurobiol. 2004 Jun;30(3):267-78 [15175080.001]
  • [Cites] Cancer. 2005 Dec 15;104(12):2775-83 [16284993.001]
  • [Cites] J Neurooncol. 2004 Jul;68(3):275-83 [15332332.001]
  • [Cites] AJNR Am J Neuroradiol. 2005 Nov-Dec;26(10):2466-74 [16286386.001]
  • [Cites] Cancer Res. 2003 Apr 1;63(7):1602-7 [12670911.001]
  • (PMID = 17001519.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor
  • [Number-of-references] 55
  •  go-up   go-down


15. Holland H, Koschny T, Ahnert P, Meixensberger J, Koschny R: WHO grade-specific comparative genomic hybridization pattern of astrocytoma - a meta-analysis. Pathol Res Pract; 2010 Oct 15;206(10):663-8
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] WHO grade-specific comparative genomic hybridization pattern of astrocytoma - a meta-analysis.
  • To identify aberration profiles characteristic of World Health Organization (WHO) grade I, II, III, and IV astrocytoma, we performed a meta-analysis of detailed genome wide CGH data of all 467 cases published so far.
  • Low-grade astrocytoma has already demonstrated one characteristic of glioblastoma multiforme, gain of chromosome 7 with a hot spot at 7q32, but without loss of chromosome 10.
  • In anaplastic astrocytoma, a more complex aberration pattern emerges from diffuse genetic imbalances.
  • To quantify the gradual transition from WHO grade II-IV astrocytoma, we calculated the relative increase and decrease in frequency for each detected aberration of the tumor genome.
  • The most pronounced and diverse changes of genetic material occur at the virtual transition from low-grade to anaplastic astrocytoma.
  • Summing up, the expansion of the CGH results to the 850 GTG-band resolution enabled a meta-analysis to visualize WHO grade-specific aberration profiles in astrocytoma.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Chromosome Aberrations. Comparative Genomic Hybridization. Glioblastoma / genetics. World Health Organization

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2010 Elsevier GmbH. All rights reserved.
  • (PMID = 20570053.001).
  • [ISSN] 1618-0631
  • [Journal-full-title] Pathology, research and practice
  • [ISO-abbreviation] Pathol. Res. Pract.
  • [Language] eng
  • [Publication-type] Journal Article; Meta-Analysis
  • [Publication-country] Germany
  •  go-up   go-down


16. Hildebrand J, Gorlia T, Kros JM, Afra D, Frenay M, Omuro A, Stupp R, Lacombe D, Allgeier A, van den Bent MJ, EORTC Brain Tumour Group investigators: Adjuvant dibromodulcitol and BCNU chemotherapy in anaplastic astrocytoma: results of a randomised European Organisation for Research and Treatment of Cancer phase III study (EORTC study 26882). Eur J Cancer; 2008 Jun;44(9):1210-6
Hazardous Substances Data Bank. Carmustine .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Adjuvant dibromodulcitol and BCNU chemotherapy in anaplastic astrocytoma: results of a randomised European Organisation for Research and Treatment of Cancer phase III study (EORTC study 26882).
  • BACKGROUND: In a previous randomised EORTC study on adjuvant dibromodulcitol (DBD) and bichloroethylnitrosourea (BCNU) in adults with glioblastoma multiforme (GBM) and anaplastic astrocytoma (AA), a clinically significant trend towards a longer overall survival (OS) and a progression-free survival (PFS) was observed in the subgroup of AA.
  • METHODS: Continuation of the previous phase III trial for newly diagnosed AA according to the local pathologist.
  • Central pathology review of grade 3 tumours remains crucial.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Astrocytoma / drug therapy

  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • COS Scholar Universe. author profiles.
  • ClinicalTrials.gov. clinical trials - ClinicalTrials.gov .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18248979.001).
  • [ISSN] 0959-8049
  • [Journal-full-title] European journal of cancer (Oxford, England : 1990)
  • [ISO-abbreviation] Eur. J. Cancer
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / U10 CA 11488
  • [Publication-type] Clinical Trial, Phase III; Journal Article; Multicenter Study; Randomized Controlled Trial; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] LJ2P1SIK8Y / Mitolactol; U68WG3173Y / Carmustine
  • [Investigator] Afra D; Maat B; Hildebrand J; de Wit O; Frenay F; Chatel M; Rivier I; Taphoorn M; Delattre JY; de Tribolet N; Stupp R; Punt J; Garfield J; Chinot O; van den Bent M; Lahrmann H; Cristo C; Mouchamps M; Haferkamp G; Bravo Marques J
  •  go-up   go-down


17. Pipas JM, Meyer LP, Rhodes CH, Cromwell LD, McDonnell CE, Kingman LS, Rigas JR, Fadul CE: A Phase II trial of paclitaxel and topotecan with filgrastim in patients with recurrent or refractory glioblastoma multiforme or anaplastic astrocytoma. J Neurooncol; 2005 Feb;71(3):301-5
Hazardous Substances Data Bank. TAXOL .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] A Phase II trial of paclitaxel and topotecan with filgrastim in patients with recurrent or refractory glioblastoma multiforme or anaplastic astrocytoma.
  • PURPOSE: Therapy for high-grade gliomas remains unsatisfactory.
  • We conducted a Phase II trial of these agents in combination with filgrastim (G-CSF) in patients with recurrent or refractory glioblastoma multiforme or anaplastic astrocytoma.
  • Hematologic toxicity was common with 25 /% of patients experiencing grade III or IV leukopenia despite G-CSF support.
  • CONCLUSION: Paclitaxel and topotecan with G-CSF support exhibits modest activity in adults with recurrent or refractory glioblastoma and anaplastic astrocytoma.
  • The significant hematotoxicity encountered, however, cannot justify further investigation of this combination in patients with high grade brain tumors.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Astrocytoma / drug therapy. Brain Neoplasms / drug therapy. Glioblastoma / drug therapy. Neoplasm Recurrence, Local / drug therapy

  • Genetic Alliance. consumer health - Glioblastoma.
  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. Filgrastim .
  • Hazardous Substances Data Bank. Topotecan .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Int J Radiat Oncol Biol Phys. 2002 Jul 15;53(4):980-6 [12095566.001]
  • [Cites] J Natl Cancer Inst. 1994 Oct 19;86(20):1517-24 [7932806.001]
  • [Cites] Cancer Chemother Pharmacol. 1994;34(2):171-4 [8194169.001]
  • [Cites] Oncologist. 2003;8(1):76-82 [12604734.001]
  • [Cites] J Clin Oncol. 1997 Sep;15(9):3121-8 [9294475.001]
  • [Cites] J Clin Oncol. 1996 Jun;14(6):1964-5 [8656268.001]
  • [Cites] Ann Oncol. 2001 Jul;12(7):923-7 [11521796.001]
  • [Cites] J Clin Oncol. 2001 Apr 1;19(7):1893-900 [11283120.001]
  • [Cites] Cancer Res. 1993 Feb 15;53(4):725-7 [8428353.001]
  • [Cites] J Clin Oncol. 1995 Sep;13(9):2230-7 [7545219.001]
  • [Cites] J Clin Oncol. 1990 Jul;8(7):1277-80 [2358840.001]
  • [Cites] Cancer Chemother Pharmacol. 2001 Sep;48(3):188-96 [11592339.001]
  • [Cites] Ann Oncol. 1996 Feb;7(2):205-7 [8777179.001]
  • [Cites] J Natl Cancer Inst. 1992 Dec 2;84(23):1816-20 [1331485.001]
  • [Cites] J Clin Oncol. 1998 Jun;16(6):2032-7 [9626200.001]
  • [Cites] J Clin Oncol. 1995 Aug;13(8):2066-71 [7636549.001]
  • [Cites] Biometrics. 1993 Sep;49(3):741-52 [8241370.001]
  • [Cites] J Clin Oncol. 1994 Mar;12(3):539-43 [8120551.001]
  • [Cites] J Clin Oncol. 1996 Feb;14(2):600-9 [8636777.001]
  • [Cites] Cancer Res. 1994 Oct 1;54(19):5118-22 [7923128.001]
  • [Cites] Drugs. 1995 Jan;49(1):11-9 [7705211.001]
  • [Cites] Cancer. 2001 Jan 15;91(2):417-22 [11180089.001]
  • [Cites] J Clin Oncol. 1998 Jun;16(6):2188-94 [9626220.001]
  • [Cites] Cancer. 1993 Apr 15;71(8):2585-97 [8453582.001]
  • [Cites] Expert Opin Pharmacother. 2001 Mar;2(3):491-505 [11336601.001]
  • [Cites] J Clin Oncol. 1994 Oct;12(10):2013-21 [7931469.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2001 Sep 1;51(1):113-9 [11516860.001]
  • (PMID = 15735921.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Clinical Trial; Clinical Trial, Phase II; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Recombinant Proteins; 143011-72-7 / Granulocyte Colony-Stimulating Factor; 7M7YKX2N15 / Topotecan; P88XT4IS4D / Paclitaxel; PVI5M0M1GW / Filgrastim
  •  go-up   go-down


18. Keles GE, Chang EF, Lamborn KR, Tihan T, Chang CJ, Chang SM, Berger MS: Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma. J Neurosurg; 2006 Jul;105(1):34-40
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma.
  • OBJECT: To investigate the prognostic significance of the volumetrically assessed extent of resection on time to tumor progression (TTP), overall survival (OS), and tumor recurrence patterns, the authors retrospectively analyzed preoperative and postoperative tumor volumes in 102 adult patients from the time of the initial resection of a hemispheric anaplastic astrocytoma (AA).
  • In contrast to low-grade gliomas, there was no statistically significant relationship between the extent of resection and histological characteristics at the time of recurrence, that is, tumor Grade III compared with Grade IV.
  • [MeSH-major] Astrocytoma / pathology. Astrocytoma / surgery. Brain Neoplasms / pathology. Brain Neoplasms / surgery. Neoplasm Recurrence, Local / pathology

  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16871879.001).
  • [ISSN] 0022-3085
  • [Journal-full-title] Journal of neurosurgery
  • [ISO-abbreviation] J. Neurosurg.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Contrast Media
  •  go-up   go-down


19. Chamberlain MC, Chowdhary SA, Glantz MJ: Anaplastic astrocytomas: biology and treatment. Expert Rev Neurother; 2008 Apr;8(4):575-86
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Anaplastic astrocytomas: biology and treatment.
  • Anaplastic astrocytomas (AA), WHO grade III gliomas, comprise 10-15% of all glial neoplasms.
  • The most important predictor of response to therapy and survival in AA tumors is the presence or absence of the 1p19q co-deletion, a translocation that defines a subset of oligodendroglial tumors, and anaplastic oligodendrogliomas in particular.
  • [MeSH-major] Astrocytoma / diagnosis. Astrocytoma / therapy. Brain Neoplasms / diagnosis. Brain Neoplasms / therapy. Clinical Trials as Topic

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Clinical Trials.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18416660.001).
  • [ISSN] 1744-8360
  • [Journal-full-title] Expert review of neurotherapeutics
  • [ISO-abbreviation] Expert Rev Neurother
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


20. Somasundaram K, Reddy SP, Vinnakota K, Britto R, Subbarayan M, Nambiar S, Hebbar A, Samuel C, Shetty M, Sreepathi HK, Santosh V, Hegde AS, Hegde S, Kondaiah P, Rao MR: Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma. Oncogene; 2005 Oct 27;24(47):7073-83
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma.
  • Astrocytoma is the most common type of brain cancer constituting more than half of all brain tumors.
  • With an aim to identify markers describing astrocytoma progression, we have carried out microarray analysis of astrocytoma samples of different grades using cDNA microarray containing 1152 cancer-specific genes.
  • Data analysis identified several differentially regulated genes between normal brain tissue and astrocytoma as well as between grades II/III astrocytoma and glioblastoma multiforme (GBM; grade IV).
  • As ASCL has been implicated in neuroendocrine, medullary thyroid and small-cell lung cancers, we chose to examine the role of ASCL1 in the astrocytoma development.
  • Our data revealed that ASCL1 is overexpressed in progressive astrocytoma as evidenced by increased levels of ASCL1 transcripts in 85.71% (6/7) of grade II diffuse astrocytoma (DA), 90% (9/10) of grade III anaplastic astrocytoma (AA) and 87.5% (7/8) of secondary GBMs, while the majority of primary de novo GBMs expressed similar to or less than normal brain levels (66.67%; 8/12).
  • ASCL1 upregulation in progressive astrocytoma is accompanied by inhibition of Notch signaling as seen by uninduced levels of HES1, a transcriptional target of Notch1, increased levels of HES6, a dominant-negative inhibitor of HES1-mediated repression of ASCL1, and increased levels of Notch ligand Delta1, which is capable of inhibiting Notch signaling by forming intracellular Notch ligand autonomous complexes.
  • Our results imply that inhibition of Notch signaling may be an important early event in the development of grade II DA and subsequent progression to grade III AA and secondary GBM.
  • [MeSH-major] Astrocytoma / genetics. DNA-Binding Proteins / metabolism. Gene Expression Regulation, Neoplastic. Glioblastoma / genetics. Membrane Proteins / metabolism. Signal Transduction. Transcription Factors / metabolism
  • [MeSH-minor] Basic Helix-Loop-Helix Transcription Factors. Brain / metabolism. Brain / pathology. Brain Neoplasms / genetics. Brain Neoplasms / metabolism. Brain Neoplasms / pathology. Disease Progression. Gene Expression Profiling. Helix-Loop-Helix Motifs. Humans. Oligonucleotide Array Sequence Analysis. RNA, Neoplasm / genetics. RNA, Neoplasm / metabolism. Receptors, Notch. Reverse Transcriptase Polymerase Chain Reaction. Up-Regulation

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16103883.001).
  • [ISSN] 0950-9232
  • [Journal-full-title] Oncogene
  • [ISO-abbreviation] Oncogene
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / ASCL1 protein, human; 0 / Basic Helix-Loop-Helix Transcription Factors; 0 / DNA-Binding Proteins; 0 / Membrane Proteins; 0 / RNA, Neoplasm; 0 / Receptors, Notch; 0 / Transcription Factors
  •  go-up   go-down


21. Matusan-Ilijas K, Behrem S, Jonjic N, Zarkovic K, Lucin K: Osteopontin expression correlates with angiogenesis and survival in malignant astrocytoma. Pathol Oncol Res; 2008 Sep;14(3):293-8
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Osteopontin expression correlates with angiogenesis and survival in malignant astrocytoma.
  • Seventy-six human astrocytomas including eight pilocytic astrocytomas (grade I), 10 diffuse astrocytomas (grade II), 8 anaplastic astrocytomas (grade III) and 50 glioblastomas (grade IV) were immunohistochemically stained for OPN protein.
  • In normal brain tissue some glial and neuronal cells showed weak cytoplasmic staining, while interstitium was negative.
  • Our results indicate the overexpression of OPN protein in astrocytoma cells and suggest the role of OPN in astrocytoma progression and angiogenesis.
  • [MeSH-major] Astrocytoma / blood supply. Astrocytoma / metabolism. Biomarkers, Tumor / metabolism. Brain Neoplasms / blood supply. Brain Neoplasms / metabolism. Neovascularization, Pathologic / metabolism. Osteopontin / metabolism
  • [MeSH-minor] Brain / blood supply. Brain / metabolism. Brain / pathology. Disease Progression. Humans. Kaplan-Meier Estimate. Prognosis

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Am J Respir Crit Care Med. 1999 Oct;160(4):1269-73 [10508818.001]
  • [Cites] Stroke. 1998 Aug;29(8):1698-706; discussion 1707 [9707214.001]
  • [Cites] J Surg Oncol. 2006 Sep 15;94(4):325-31 [16917865.001]
  • [Cites] Br J Cancer. 2000 Jun;82(12):1967-73 [10864205.001]
  • [Cites] J Vet Med Sci. 2004 Oct;66(10):1307-10 [15528873.001]
  • [Cites] Oncogene. 1999 Jul 22;18(29):4237-46 [10435636.001]
  • [Cites] FASEB J. 1993 Dec;7(15):1475-82 [8262332.001]
  • [Cites] Am J Pathol. 1996 Jul;149(1):293-305 [8686754.001]
  • [Cites] Cancer Res. 2002 Aug 15;62(16):4820-8 [12183442.001]
  • [Cites] Oncogene. 2006 May 4;25(19):2818-26 [16314830.001]
  • [Cites] Brain Res. 2005 Apr 11;1041(1):95-101 [15804504.001]
  • [Cites] J Cell Biochem. 1994 Sep;56(1):48-51 [7528752.001]
  • [Cites] Cancer Lett. 2003 Jul 30;198(1):107-17 [12893437.001]
  • [Cites] Cancer Res. 2002 Jun 15;62(12):3417-27 [12067984.001]
  • [Cites] Anticancer Res. 1998 Mar-Apr;18(2A):807-12 [9615723.001]
  • [Cites] Lab Invest. 1995 Jan;72(1):55-63 [7837791.001]
  • [Cites] Clin Cancer Res. 2004 Jan 1;10(1 Pt 1):184-90 [14734468.001]
  • [Cites] Mol Cell Biol. 2000 Apr;20(8):2734-42 [10733576.001]
  • [Cites] J Cell Biol. 1998 May 18;141(4):1083-93 [9585425.001]
  • [Cites] Leukemia. 2005 Dec;19(12):2166-76 [16208410.001]
  • [Cites] J Neurooncol. 2001 Jun;53(2):161-76 [11716068.001]
  • [Cites] Oncogene. 2003 Feb 27;22(8):1198-205 [12606946.001]
  • [Cites] Cancer Res. 2002 Sep 15;62(18):5336-43 [12235004.001]
  • [Cites] Neuropathol Appl Neurobiol. 2005 Jun;31(3):292-303 [15885066.001]
  • [Cites] Front Biosci. 1999 Feb 15;4:D188-99 [9989953.001]
  • [Cites] J Natl Cancer Inst. 1993 Feb 3;85(3):200-6 [8423624.001]
  • [Cites] Br J Cancer. 2004 May 17;90(10):1877-81 [15138464.001]
  • [Cites] Radiother Oncol. 2007 Jun;83(3):398-405 [17524506.001]
  • [Cites] Am J Pathol. 2006 May;168(5):1676-85 [16651633.001]
  • (PMID = 18493866.001).
  • [ISSN] 1219-4956
  • [Journal-full-title] Pathology oncology research : POR
  • [ISO-abbreviation] Pathol. Oncol. Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 106441-73-0 / Osteopontin
  •  go-up   go-down


22. Wick W, Weller M: [Anaplastic glioma. Neuropathology, molecular diagnostics and current study concepts]. Nervenarzt; 2010 Aug;81(8):928-30, 932-5
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Anaplastic glioma. Neuropathology, molecular diagnostics and current study concepts].
  • According to the current WHO classification anaplastic gliomas comprise pure astrocytomas and oligodendrogliomas and mixed tumors.
  • This review summarizes findings, discusses problems and defines new questions from the phase III trials on anaplastic gliomas.
  • Therefore, marker profiles should be included into the next WHO brain tumor classification.
  • The current standard of care for first-line treatment in anaplastic gliomas is radiotherapy or chemotherapy.
  • Inclusion in this trial is already based on the WHO grade and the 1p/19q status and not on the histopathological subtype.
  • Furthermore, anaplastic gliomas are an important group of brain tumors for developing future molecular targeted therapies and should therefore be in the main focus of academic and industrial drug development, which aims at improved efficacy and avoiding long-term side-effects.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Oligodendroglioma / pathology
  • [MeSH-minor] Antineoplastic Agents, Alkylating / therapeutic use. Brain / pathology. Chromosome Deletion. Clinical Trials as Topic. Clinical Trials, Phase III as Topic. Combined Modality Therapy. Cranial Irradiation. DNA Modification Methylases / genetics. DNA Mutational Analysis. DNA Repair Enzymes / genetics. Disease-Free Survival. Humans. Isocitrate Dehydrogenase / genetics. Promoter Regions, Genetic / genetics. Survival Rate. Tumor Suppressor Proteins / genetics

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Lancet Oncol. 2009 May;10 (5):459-66 [19269895.001]
  • [Cites] J Neurol. 2009 May;256(5):734-41 [19240962.001]
  • [Cites] Science. 2009 Apr 10;324(5924):261-5 [19359588.001]
  • [Cites] Cancer Res. 2009 May 15;69(10 ):4502-9 [19366800.001]
  • [Cites] Eur J Cancer. 2008 Jun;44(9):1210-6 [18248979.001]
  • [Cites] J Neurooncol. 2009 May;92(3):401-15 [19357966.001]
  • [Cites] J Clin Oncol. 2010 Apr 20;28(12 ):2051-7 [20308655.001]
  • [Cites] Nat Rev Neurol. 2010 Jan;6(1):39-51 [19997073.001]
  • [Cites] Science. 2008 Sep 26;321(5897):1807-12 [18772396.001]
  • [Cites] N Engl J Med. 2000 Nov 9;343(19):1350-4 [11070098.001]
  • [Cites] Lancet Oncol. 2006 May;7(5):392-401 [16648043.001]
  • [Cites] J Clin Oncol. 1990 Jul;8(7):1277-80 [2358840.001]
  • [Cites] J Clin Oncol. 2003 Sep 1;21(17):3276-84 [12947063.001]
  • [Cites] Neuro Oncol. 2008 Dec;10 (6):1019-24 [18676355.001]
  • [Cites] J Clin Oncol. 2009 Dec 10;27(35):5881-6 [19901104.001]
  • [Cites] J Clin Oncol. 2010 Apr 10;28(11):1963-72 [20231676.001]
  • [Cites] J Natl Cancer Inst. 1998 Oct 7;90(19):1473-9 [9776413.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 Oct;65(10):988-94 [17021403.001]
  • [Cites] Acta Neuropathol. 2007 Aug;114(2):97-109 [17618441.001]
  • [Cites] Neuro Oncol. 2009 Dec;11(6):737-46 [19224764.001]
  • [Cites] Cancer Res. 2006 Oct 15;66(20):9852-61 [17047046.001]
  • [Cites] J Clin Oncol. 2009 Oct 1;27(28):4733-40 [19720927.001]
  • [Cites] Cancer Cell. 2010 May 18;17(5):510-22 [20399149.001]
  • [Cites] Clin Cancer Res. 2008 Nov 1;14 (21):7068-73 [18981004.001]
  • [Cites] J Clin Oncol. 2007 Aug 1;25(22):3357-61 [17664483.001]
  • [Cites] J Clin Oncol. 2006 Jun 20;24(18):2707-14 [16782910.001]
  • [Cites] Brain Pathol. 2002 Apr;12(2):257-9 [11958379.001]
  • [Cites] N Engl J Med. 2009 Feb 19;360(8):765-73 [19228619.001]
  • [Cites] J Clin Oncol. 2009 Dec 10;27(35):5874-80 [19901110.001]
  • [Cites] Acta Neuropathol. 2009 Oct;118(4):469-74 [19554337.001]
  • [Cites] J Clin Oncol. 2006 Mar 10;24(8):1281-8 [16525183.001]
  • [Cites] J Clin Oncol. 2006 Jun 20;24(18):2715-22 [16782911.001]
  • [Cites] J Neurosurg. 2008 Feb;108(2):330-5 [18240930.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10 ):997-1003 [15758010.001]
  • [Cites] Clin Cancer Res. 2007 Dec 1;13(23):6933-7 [18056167.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10 ):987-96 [15758009.001]
  • [Cites] Neurology. 2006 Jan 24;66(2):239-42 [16434662.001]
  • (PMID = 20635074.001).
  • [ISSN] 1433-0407
  • [Journal-full-title] Der Nervenarzt
  • [ISO-abbreviation] Nervenarzt
  • [Language] ger
  • [Publication-type] English Abstract; Journal Article; Review
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 0 / Tumor Suppressor Proteins; EC 1.1.1.41 / Isocitrate Dehydrogenase; EC 1.1.1.42. / IDH1 protein, human; EC 2.1.1.- / DNA Modification Methylases; EC 2.1.1.63 / MGMT protein, human; EC 6.5.1.- / DNA Repair Enzymes
  •  go-up   go-down


23. MacDonald TJ, Pollack IF, Okada H, Bhattacharya S, Lyons-Weiler J: Progression-associated genes in astrocytoma identified by novel microarray gene expression data reanalysis. Methods Mol Biol; 2007;377:203-22
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Progression-associated genes in astrocytoma identified by novel microarray gene expression data reanalysis.
  • Astrocytoma is graded as pilocytic (WHO grade I), diffuse (WHO grade II), anaplastic (WHO grade III), and glioblastoma multiforme (WHO grade IV).
  • The progression from low- to high-grade astrocytoma is associated with distinct molecular changes that vary with patient age, yet the prognosis of high-grade tumors in children and adults is equally dismal.
  • Whether specific gene expression changes are consistently associated with all high-grade astrocytomas, independent of patient age, is not known.
  • We identified nine genes consistently dysregulated in high-grade tumors, using four novel tests for identifying differentially expressed genes.
  • Four genes encoding ribosomal proteins (RPS2, RPS8, RPS18, RPL37A) were upregulated, and five genes (APOD, SORL1, SPOCK2, PRSS11, ID3) were downregulated in high-grade by all tests.
  • Expression results were validated using a third astrocytoma dataset.
  • This suggests that dysregulation of APOD may be critical for malignant astrocytoma formation, and thus a possible novel universal target for therapeutic intervention.
  • Further investigation is needed to evaluate the role of APOD, as well as the other genes identified, in malignant astrocytoma development.
  • [MeSH-major] Astrocytoma / genetics. Biomarkers, Tumor / genetics. Brain Neoplasms / genetics. Gene Expression. Oligonucleotide Array Sequence Analysis / methods

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17634619.001).
  • [ISSN] 1064-3745
  • [Journal-full-title] Methods in molecular biology (Clifton, N.J.)
  • [ISO-abbreviation] Methods Mol. Biol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor
  • [Number-of-references] 49
  •  go-up   go-down


24. Miyajima Y, Sato Y, Oka H, Utsuki S, Kondo K, Tanizaki Y, Nagashio R, Tsuchiya B, Okayasu I, Fujii K: Prognostic significance of nuclear DJ-1 expression in astrocytoma. Anticancer Res; 2010 Jan;30(1):265-9
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Prognostic significance of nuclear DJ-1 expression in astrocytoma.
  • Twenty-nine formalin-fixed and paraffin-embedded glioblastomas (grade IV), 21 anaplastic astorocytomas (grade III), and 14 diffuse astrocytomas (grade II) were immunohistochemically studied to identify the expression of DJ-1 protein.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Oncogene Proteins / biosynthesis

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20150646.001).
  • [ISSN] 1791-7530
  • [Journal-full-title] Anticancer research
  • [ISO-abbreviation] Anticancer Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / Intracellular Signaling Peptides and Proteins; 0 / Oncogene Proteins; 0 / PARK7 protein, human
  •  go-up   go-down


25. Moulding HD, Friedman DP, Curtis M, Kenyon L, Flanders AE, Paek SH, Andrews DW: Revisiting anaplastic astrocytomas I: an expansive growth pattern is associated with a better prognosis. J Magn Reson Imaging; 2008 Dec;28(6):1311-21
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Revisiting anaplastic astrocytomas I: an expansive growth pattern is associated with a better prognosis.
  • PURPOSE: To study whether anaplastic astrocytomas that are nonenhancing and/or well-circumscribed (expansive) are associated with a better prognosis.
  • MATERIALS AND METHODS: We retrospectively identified 59 patients with pathologically confirmed World Health Organizaiton (WHO) grade III anaplastic astrocytoma who underwent craniotomy at our institution from 1995 through 2006.
  • CONCLUSION: Circumscribed growth in histologically proven anaplastic astrocytoma, which has not been emphasized in past studies, has a considerable survival advantage.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Magnetic Resonance Imaging / methods

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - MRI Scans.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. GADOPENTETATE DIMEGLUMINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2008 Wiley-Liss, Inc.
  • (PMID = 19025897.001).
  • [ISSN] 1053-1807
  • [Journal-full-title] Journal of magnetic resonance imaging : JMRI
  • [ISO-abbreviation] J Magn Reson Imaging
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Contrast Media; K2I13DR72L / Gadolinium DTPA
  •  go-up   go-down


26. Reddy PS, Umesh S, Thota B, Tandon A, Pandey P, Hegde AS, Balasubramaniam A, Chandramouli BA, Santosh V, Rao MR, Kondaiah P, Somasundaram K: PBEF1/NAmPRTase/Visfatin: a potential malignant astrocytoma/glioblastoma serum marker with prognostic value. Cancer Biol Ther; 2008 May;7(5):663-8
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] PBEF1/NAmPRTase/Visfatin: a potential malignant astrocytoma/glioblastoma serum marker with prognostic value.
  • Malignant astrocytomas comprise anaplastic astrocytoma (AA; grade III) and Glioblastoma (GBM; grade IV).
  • Further validation using real time RT-qPCR on an independent set of tumor samples (n=91) and normal brain samples (n=9), GBM specific higher expression of PBEF1 was confirmed.
  • We carried out ELISA analysis on serum samples of astrocytoma patients to determine whether this protein levels would correlate with the presence of tumor and tumor grade.
  • Statistical analysis of these data indicates that in patients with astrocytoma, serum PBEF1 levels correlate with tumor grade and is highest in GBM.
  • Thus, we have identified PBEF1 as a potential malignant astrocytoma serum marker and prognostic indicator among GBMs.
  • [MeSH-major] Astrocytoma / metabolism. Biomarkers, Tumor. Brain / metabolism. Brain Neoplasms / metabolism. Cytokines / physiology. Gene Expression Regulation, Neoplastic. Glioblastoma / metabolism. Nicotinamide Phosphoribosyltransferase / metabolism

  • Genetic Alliance. consumer health - Glioblastoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18728403.001).
  • [ISSN] 1555-8576
  • [Journal-full-title] Cancer biology & therapy
  • [ISO-abbreviation] Cancer Biol. Ther.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Cytokines; 0 / Tumor Suppressor Protein p53; EC 2.4.2.12 / Nicotinamide Phosphoribosyltransferase; EC 2.4.2.12 / nicotinamide phosphoribosyltransferase, human
  •  go-up   go-down


27. Gumprecht H, Grosu AL, Souvatsoglou M, Dzewas B, Weber WA, Lumenta CB: 11C-Methionine positron emission tomography for preoperative evaluation of suggestive low-grade gliomas. Zentralbl Neurochir; 2007 Feb;68(1):19-23
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] 11C-Methionine positron emission tomography for preoperative evaluation of suggestive low-grade gliomas.
  • OBJECTIVE: The treatment regimen for cerebral gliomas is different, depending on the histological grade of the lesion.
  • The therapeutic strategy for anaplastic gliomas and glioblastomas is more aggressive, including microsurgical removal, radiation and chemotherapy.
  • The management for low-grade gliomas is still under discussion, operation or "wait and see" tactics are possible options.
  • Although most of the low-grade gliomas appear as hypointense lesions without contrast medium (CM) enhancement on magnetic resonance images, in some cases lesions without CM enhancement can be anaplastic tumours as well.
  • 11C-Methionine positron emission tomography (MET-PET) was performed for preoperative evaluation of non or low CM enhancing intracerebral lesions, so-called suggestive low-grade gliomas.
  • METHOD: 20 patients harbouring suggestive low-grade gliomas were included.
  • Histologically the 2 patients with sparse CM enhancement and MET uptake were glioblastoma multiforme, 10/14 patients with MET uptake and without CM enhancement had an anaplastic astrocytoma WHO III, 3/14 with MET uptake and no CM enhancement had an anaplastic oligoastrocytoma WHO III, and 1/14 had an oligoastrocytoma grade II.
  • The lesions of the 4 patients without MET uptake and without CM enhancement were classified as astrocytoma grade II in 2 cases, as astrocytoma grade I in 1 case and as astrocytoma III in one case.
  • CONCLUSION: According to the results of this study, we find MET-PET to be a helpful tool for pretreatment evaluation of non-CM enhancing, suggestive low-grade intracerebral lesions.
  • [MeSH-major] Brain Neoplasms / radionuclide imaging. Glioma / radionuclide imaging. Methionine. Radiopharmaceuticals
  • [MeSH-minor] Astrocytoma / radionuclide imaging. Astrocytoma / surgery. Glioblastoma / radionuclide imaging. Glioblastoma / surgery. Humans. Image Processing, Computer-Assisted. Magnetic Resonance Imaging. Neurosurgical Procedures. Positron-Emission Tomography

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. (L)-Methionine .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17487804.001).
  • [ISSN] 0044-4251
  • [Journal-full-title] Zentralblatt für Neurochirurgie
  • [ISO-abbreviation] Zentralbl. Neurochir.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Radiopharmaceuticals; AE28F7PNPL / Methionine
  •  go-up   go-down


28. Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M, Westphal M, Schackert G, Meyermann R, Pietsch T, Reifenberger G, Weller M, Loeffler M, von Deimling A: Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol; 2010 Dec;120(6):707-18
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas.
  • WHO grading of human brain tumors extends beyond a strictly histological grading system by providing a basis predictive for the clinical behavior of the respective neoplasm.
  • For example, patients with glioblastoma WHO grade IV usually show a less favorable clinical course and receive more aggressive first-line treatment than patients with anaplastic astrocytoma WHO grade III.
  • Here we provide evidence that the IDH1 status is more prognostic for overall survival than standard histological criteria that differentiate high-grade astrocytomas.
  • We sequenced the isocitrate dehydrogenase 1 gene (IDH1) at codon 132 in 382 patients with anaplastic astrocytoma and glioblastoma from the NOA-04 trial and from a prospective translational cohort study of the German Glioma Network.
  • Patients with anaplastic astrocytomas carried IDH1 mutations in 60%, and patients with glioblastomas in 7.2%.
  • IDH1 was the most prominent single prognostic factor (RR 2.7; 95% CI 1.6-4.5) followed by age, diagnosis and MGMT.
  • The sequence from more favorable to poorer outcome was (1) anaplastic astrocytoma with IDH1 mutation, (2) glioblastoma with IDH1 mutation, (3) anaplastic astrocytoma without IDH1 mutation and (4) glioblastoma without IDH1 mutation (p < 0.0001).
  • In this combined set of anaplastic astrocytomas and glioblastomas both, IDH1 mutation and IDH1 expression status were of greater prognostic relevance than histological diagnosis according to the current WHO classification system.
  • We propose to complement the current WHO classification and grading of high-grade astrocytic gliomas by the IDH1 mutation status and to use this combined histological and molecular classification in future clinical trials.
  • [MeSH-major] Brain Neoplasms / genetics. Glioblastoma / genetics. Glioma / classification. Glioma / genetics. Isocitrate Dehydrogenase / genetics. Mutation / genetics
  • [MeSH-minor] Adolescent. Adult. Age Factors. Aged. Aged, 80 and over. Astrocytoma / diagnosis. Astrocytoma / genetics. Astrocytoma / pathology. Cohort Studies. Female. Humans. Male. Middle Aged. Prognosis. Prospective Studies. Young Adult


29. de Vries NA, Beijnen JH, van Tellingen O: High-grade glioma mouse models and their applicability for preclinical testing. Cancer Treat Rev; 2009 Dec;35(8):714-23
Hazardous Substances Data Bank. DACARBAZINE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] High-grade glioma mouse models and their applicability for preclinical testing.
  • High-grade gliomas (WHO grade III anaplastic astrocytoma and grade IV glioblastoma multiforme) are the most common primary tumors in the central nervous system in adults.
  • Unfortunately, despite great efforts in finding better therapies, high-grade glioma remains among the most devastating and deadliest of all human cancers.
  • This review will discuss the advantages and shortcomings of the established high-grade glioma mouse models with emphasis on their potential applicability for preclinical testing of novel drugs and treatment regimens.
  • [MeSH-major] Antineoplastic Agents / pharmacology. Astrocytoma / drug therapy. Astrocytoma / pathology. Genetic Engineering. Glioblastoma / drug therapy. Glioblastoma / pathology
  • [MeSH-minor] Animals. Antineoplastic Combined Chemotherapy Protocols / pharmacology. Biomarkers, Tumor / metabolism. Blood-Brain Barrier. Dacarbazine / analogs & derivatives. Dacarbazine / pharmacology. Disease Models, Animal. Mice. Phosphorylcholine / analogs & derivatives. Phosphorylcholine / pharmacology. Prognosis. Transplantation, Heterologous

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19767151.001).
  • [ISSN] 1532-1967
  • [Journal-full-title] Cancer treatment reviews
  • [ISO-abbreviation] Cancer Treat. Rev.
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Biomarkers, Tumor; 107-73-3 / Phosphorylcholine; 2GWV496552 / perifosine; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide
  • [Number-of-references] 86
  •  go-up   go-down


30. Tehrani M, Friedman TM, Olson JJ, Brat DJ: Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioblastoma. Brain Pathol; 2008 Apr;18(2):164-71
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioblastoma.
  • Intravascular thrombosis is a frequent finding in glioblastoma [GBM; World Health Organization (WHO) grade IV] specimens and could potentially be involved in astrocytoma progression to GBM or represent a surrogate marker of GBM histology.
  • We investigated whether intravascular thrombosis was more frequent or prominent in GBM than other central nervous system (CNS) malignancies and considered its prognostic significance in anaplastic astrocytoma (AA; WHO grade III), which lacks necrosis.
  • Histologic sections were examined for thrombosis, necrosis and microvascular hyperplasia from each of 297 CNS tumors, including 103 GBMs, 46 AAs, 20 diffuse astrocytoma (DAs; WHO grade II), eight anaplastic oligodendrogliomas (AOs; WHO grade III), 20 oligodendrogliomas (ODs; WHO grade II), 49 metastatic carcinomas (METs), 31 primary central nervous system lymphomas (PCNSLs) and 20 medulloblastomas (MBs).
  • The sensitivity of thrombosis for the diagnosis of GBM in this set of tumors was 92% and the specificity was 91%.

  • Genetic Alliance. consumer health - Glioblastoma.
  • Genetic Alliance. consumer health - Thrombosis.
  • MedlinePlus Health Information. consumer health - Blood Clots.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neuropathol Exp Neurol. 2005 Jun;64(6):479-89 [15977639.001]
  • [Cites] Cancer Res. 2006 Mar 1;66(5):2584-91 [16510576.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 Jun;65(6):529-39 [16783163.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 Sep;65(9):846-54 [16957578.001]
  • [Cites] Cancer Res. 2006 Nov 15;66(22):10643-6 [17108099.001]
  • [Cites] Crit Rev Oncol Hematol. 2007 May;62(2):126-36 [17293122.001]
  • [Cites] Acta Neuropathol. 2007 Aug;114(2):97-109 [17618441.001]
  • [Cites] Proc Staff Meet Mayo Clin. 1949 Feb 2;24(3):71-5 [18111063.001]
  • [Cites] Cancer. 2000 Jun 1;88(11):2606-18 [10861440.001]
  • [Cites] J Neuropathol Exp Neurol. 2001 Mar;60(3):248-62 [11245209.001]
  • [Cites] Thromb Res. 2001 Jun 15;102(6):V215-24 [11516455.001]
  • [Cites] Curr Opin Pulm Med. 2001 Sep;7(5):326-31 [11584184.001]
  • [Cites] J Neurosurg. 1991 Mar;74(3):480-6 [1899696.001]
  • [Cites] Nature. 1992 Oct 29;359(6398):845-8 [1279432.001]
  • [Cites] Neurosurgery. 1995 Feb;36(2):375-80; discussion 380-1 [7731519.001]
  • [Cites] Cancer. 1996 Mar 15;77(6):1161-6 [8635139.001]
  • [Cites] Noshuyo Byori. 1996 Nov;13(2):115-8 [8958516.001]
  • [Cites] J Pathol Bacteriol. 1954 Jul;68(1):231-3 [13212575.001]
  • [Cites] Acta Pathol Microbiol Scand. 1950;27(1):51-64 [15406242.001]
  • [Cites] Cancer Res. 2005 Feb 15;65(4):1406-13 [15735028.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):987-96 [15758009.001]
  • [Cites] Neuro Oncol. 2005 Apr;7(2):122-33 [15831231.001]
  • [Cites] Trends Mol Med. 2002;8(4 Suppl):S62-7 [11927290.001]
  • [Cites] Clin Biochem. 2002 Jun;35(4):321-5 [12135696.001]
  • [Cites] Neurosurgery. 2002 Jul;51(1):2-12; discussion 12-3 [12182418.001]
  • [Cites] Ann Intern Med. 2003 Apr 15;138(8):659-68 [12693889.001]
  • [Cites] Cancer Res. 2004 Feb 1;64(3):920-7 [14871821.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2004 Mar 15;58(4):1147-52 [15001257.001]
  • [Cites] Lab Invest. 2004 Apr;84(4):397-405 [14990981.001]
  • [Cites] Cancer. 1983 Aug 1;52(3):550-4 [6305479.001]
  • [Cites] Cancer. 1987 May 1;59(9):1617-25 [3030531.001]
  • [Cites] Cancer. 1988 Nov 15;62(10):2152-65 [3179928.001]
  • (PMID = 18093251.001).
  • [ISSN] 1015-6305
  • [Journal-full-title] Brain pathology (Zurich, Switzerland)
  • [ISO-abbreviation] Brain Pathol.
  • [Language] ENG
  • [Grant] United States / NINDS NIH HHS / NS / NS053727-01; United States / NINDS NIH HHS / NS / R01 NS053727; United States / NINDS NIH HHS / NS / NS053727; United States / NINDS NIH HHS / NS / R01 NS053727-01
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] Switzerland
  • [Other-IDs] NLM/ NIHMS82090; NLM/ PMC2610479
  •  go-up   go-down


31. Guan X, Lai S, Lackey J, Shi J, Techavipoo U, Moulding HD, Flanders AE, Andrews DW: Revisiting anaplastic astrocytomas II: further characterization of an expansive growth pattern with visually enhanced diffusion tensor imaging. J Magn Reson Imaging; 2008 Dec;28(6):1322-36
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Revisiting anaplastic astrocytomas II: further characterization of an expansive growth pattern with visually enhanced diffusion tensor imaging.
  • Infiltrating tumors were WHO Grade IV astrocytomas and all expansive tumors were either WHO Grade III astrocytomas or WHO Grade II astrocytomas.
  • CONCLUSION: We have successfully developed software that visually enhances the anatomic details of the tumor/fiber interface in patients with anaplastic astrocytomas.
  • These data support the existence of a subgroup of patients within the WHO Grade III classification with expansive tumors and a significantly better prognosis.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Diffusion Magnetic Resonance Imaging / methods. Image Enhancement / methods. Image Processing, Computer-Assisted

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2008 Wiley-Liss, Inc.
  • (PMID = 19025901.001).
  • [ISSN] 1053-1807
  • [Journal-full-title] Journal of magnetic resonance imaging : JMRI
  • [ISO-abbreviation] J Magn Reson Imaging
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


32. Watanabe Y, Yamasaki F, Kajiwara Y, Saito T, Nishimoto T, Bartholomeusz C, Ueno NT, Sugiyama K, Kurisu K: Expression of phosphoprotein enriched in astrocytes 15 kDa (PEA-15) in astrocytic tumors: a novel approach of correlating malignancy grade and prognosis. J Neurooncol; 2010 Dec;100(3):449-57
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of phosphoprotein enriched in astrocytes 15 kDa (PEA-15) in astrocytic tumors: a novel approach of correlating malignancy grade and prognosis.
  • Phosphoprotein enriched in astrocytes 15 kDa (PEA-15) is a multifunctional protein that was first identified in brain astrocytes and that has subsequently been shown to be expressed in different tissues.
  • We studied the PEA-15 expression pattern of 65 patients [diagnosed according to World Health Organization (WHO) criteria] with diffuse astrocytoma (WHO grade II), anaplastic astrocytoma (grade III), and glioblastoma (grade IV).
  • In grade II astrocytoma (diffuse astrocytoma) and grade III astrocytoma (anaplastic astrocytoma), 100% and 88.9% of patients expressed high PEA-15 levels, respectively, while a smaller number (50%) of patients with grade IV astrocytoma (glioblastoma) expressed high PEA-15 levels.
  • PEA-15 expression level was inversely associated with WHO grade (P = 0.0006).
  • Next, we evaluated prognosis and PEA-15 expression levels in 43 patients with high-grade astrocytomas based on the following parameters: age, gender, WHO grade, surgical resection extent, MIB-1 labeling index (LI), and PEA-15 expression level.
  • Multivariable analyses revealed that high PEA-15 expression level displayed a significant correlation with longer overall survival (OS) in high-grade astrocytomas (P = 0.0024).
  • In conclusion, PEA-15 expression level was inversely associated with WHO grade and may serve as an important prognostic factor for high-grade astrocytomas.
  • [MeSH-major] Astrocytoma / diagnosis. Astrocytoma / metabolism. Brain Neoplasms / diagnosis. Brain Neoplasms / metabolism. Intracellular Signaling Peptides and Proteins / metabolism. Phosphoproteins / metabolism. Statistics as Topic

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Health Statistics.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer. 1988 Nov 15;62(10):2152-65 [3179928.001]
  • [Cites] J Neurosci. 1999 Oct 1;19(19):8244-51 [10493725.001]
  • [Cites] J Biol Chem. 2002 Jul 12;277(28):25020-5 [11976344.001]
  • [Cites] Radiother Oncol. 2007 Dec;85(3):371-8 [18035440.001]
  • [Cites] Mol Cancer Ther. 2008 May;7(5):1013-24 [18445660.001]
  • [Cites] Oncogene. 2005 Oct 27;24(47):7012-21 [16044159.001]
  • [Cites] Oncogene. 2008 Feb 14;27(8):1155-66 [17700518.001]
  • [Cites] Mol Biol Cell. 2006 Dec;17(12):5141-52 [16987961.001]
  • [Cites] Mol Cell Biol. 2004 Jun;24(11):5005-15 [15143191.001]
  • [Cites] J Neurochem. 1998 Sep;71(3):1307-14 [9721757.001]
  • [Cites] Lancet Oncol. 2005 May;6(5):322-7 [15863380.001]
  • [Cites] Mol Cell Biol. 2003 Jul;23(13):4511-21 [12808093.001]
  • [Cites] Cancer Res. 2001 Feb 1;61(3):1162-70 [11221847.001]
  • [Cites] Biochem J. 2005 Sep 15;390(Pt 3):729-35 [15916534.001]
  • [Cites] Cancer Res. 2007 Feb 15;67(4):1536-44 [17308092.001]
  • [Cites] Oncogene. 1999 Aug 5;18(31):4409-15 [10442631.001]
  • [Cites] J Cell Mol Med. 2008 Dec;12(6A):2416-26 [18284607.001]
  • [Cites] Dev Cell. 2001 Aug;1(2):239-50 [11702783.001]
  • [Cites] Mol Biol Cell. 2005 Aug;16(8):3552-61 [15917297.001]
  • [Cites] Lancet. 2002 Mar 23;359(9311):1011-8 [11937180.001]
  • [Cites] Cancer Res. 2008 Nov 15;68(22):9302-10 [19010903.001]
  • [Cites] Neuropathology. 2008 Oct;28(5):507-15 [18410277.001]
  • [Cites] J Biol Chem. 1993 Mar 15;268(8):5911-20 [8449955.001]
  • [Cites] J Biol Chem. 2004 Mar 26;279(13):12840-7 [14707138.001]
  • [Cites] Cancer Res. 2006 Feb 1;66(3):1491-9 [16452205.001]
  • [Cites] Int J Cancer. 2007 Mar 15;120(6):1215-22 [17192900.001]
  • (PMID = 20455002.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Intracellular Signaling Peptides and Proteins; 0 / Ki-67 Antigen; 0 / PEA15 protein, human; 0 / Phosphoproteins
  •  go-up   go-down


33. Antonelli M, Buttarelli FR, Arcella A, Nobusawa S, Donofrio V, Oghaki H, Giangaspero F: Prognostic significance of histological grading, p53 status, YKL-40 expression, and IDH1 mutations in pediatric high-grade gliomas. J Neurooncol; 2010 Sep;99(2):209-15
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Prognostic significance of histological grading, p53 status, YKL-40 expression, and IDH1 mutations in pediatric high-grade gliomas.
  • The objective of this study was to evaluate, in a series of 43 pediatric high-grade gliomas (21 anaplastic astrocytoma WHO grade III and 22 glioblastoma WHO grade IV), the prognostic value of histological grading and expression of p53 and YKL-40.
  • The prognostic stratification for histological grading showed no difference in overall (OS) and progression-free survival (PFS) between glioblastomas and anaplastic astrocytomas.
  • TP53 mutations were detected in five of 27 (18%) cases (four glioblastomas and one anaplastic astrocytoma).
  • Our results suggest that in pediatric high-grade gliomas: (i) histological grading does not have strong prognostic significance, (ii) YKL-40 overexpression is less frequent than adult high-grade gliomas and does not correlate with a more aggressive behavior, (iii) TP53 mutations but not p53 expression may correlate with a more aggressive behavior, and (iv) IDH1 mutations are absent.
  • These observations support the concept that, despite identical histological features, the biology of high-grade gliomas in children differs from that in adults, and therefore different prognostic factors are needed.
  • [MeSH-major] Astrocytoma / genetics. Astrocytoma / metabolism. Glycoproteins / metabolism. Isocitrate Dehydrogenase / genetics. Lectins / metabolism. Mutation / genetics. Tumor Suppressor Protein p53 / genetics
  • [MeSH-minor] Adipokines. Adolescent. Adult. Brain Neoplasms / genetics. Brain Neoplasms / metabolism. Brain Neoplasms / pathology. Child. Child, Preschool. Chitinase-3-Like Protein 1. DNA, Neoplasm / genetics. Female. Humans. Immunoenzyme Techniques. Infant. Infant, Newborn. Male. Neoplasm Staging. Polymerase Chain Reaction. Prognosis. Young Adult

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Curr Oncol Rep. 2009 Jan;11(1):68-72 [19080744.001]
  • [Cites] Am J Pathol. 2007 May;170(5):1445-53 [17456751.001]
  • [Cites] J Neurooncol. 2005 Dec;75(3):267-72 [16195804.001]
  • [Cites] Cancer. 2001 Dec 15;92(12):3155-64 [11753995.001]
  • [Cites] Neuro Oncol. 2009 Aug;11(4):341-7 [19435942.001]
  • [Cites] Pediatr Blood Cancer. 2007 Dec;49(7):888-93 [17554787.001]
  • [Cites] Science. 2008 Sep 26;321(5897):1807-12 [18772396.001]
  • [Cites] J Clin Oncol. 2009 Sep 1;27(25):4150-4 [19636000.001]
  • [Cites] Cancer Cell. 2006 Mar;9(3):157-73 [16530701.001]
  • [Cites] Biochem J. 2002 Jul 1;365(Pt 1):119-26 [12071845.001]
  • [Cites] Hum Pathol. 1999 Nov;30(11):1284-90 [10571506.001]
  • [Cites] Cancer Res. 2004 Oct 1;64(19):6892-9 [15466178.001]
  • [Cites] Acta Neuropathol. 2007 Aug;114(2):97-109 [17618441.001]
  • [Cites] Acta Neuropathol. 2008 Dec;116(6):597-602 [18985363.001]
  • [Cites] N Engl J Med. 2009 May 21;360(21):2248; author reply 2249 [19458374.001]
  • [Cites] Neuro Oncol. 2009 Jun;11(3):274-80 [18981259.001]
  • [Cites] Clin Cancer Res. 2005 May 1;11(9):3326-34 [15867231.001]
  • [Cites] Acta Neuropathol. 2004 Jul;108(1):49-56 [15118874.001]
  • [Cites] J Neurosurg. 1991 Jan;74(1):27-37 [1984503.001]
  • [Cites] Clin Cancer Res. 2006 Jul 1;12 (13):3935-41 [16818690.001]
  • [Cites] Clin Cancer Res. 2009 Oct 1;15(19):6002-7 [19755387.001]
  • [Cites] Curr Probl Cancer. 2008 May-Jun;32(3):97-123 [18501774.001]
  • [Cites] Recent Results Cancer Res. 2009;171:67-81 [19322538.001]
  • [Cites] N Engl J Med. 2009 Feb 19;360(8):765-73 [19228619.001]
  • [Cites] Am J Pathol. 2001 Apr;158(4):1525-32 [11290570.001]
  • [Cites] J Clin Oncol. 2007 Apr 1;25(10):1196-208 [17401009.001]
  • [Cites] Cancer Res. 2001 Oct 15;61(20):7404-7 [11606370.001]
  • [Cites] J Neurosurg. 1997 Jan;86(1):121-30 [8988090.001]
  • [Cites] Cancer. 2002 Jan 1;94(1):264-71 [11815986.001]
  • [Cites] Neurosurgery. 1995 Aug;37(2):246-54 [7477776.001]
  • [Cites] Exp Cell Res. 1999 Jul 10;250(1):168-73 [10388530.001]
  • [Cites] N Engl J Med. 2002 Feb 7;346(6):420-7 [11832530.001]
  • [Cites] Clin Cancer Res. 2007 Nov 1;13(21):6284-92 [17975139.001]
  • (PMID = 20174854.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Adipokines; 0 / CHI3L1 protein, human; 0 / Chitinase-3-Like Protein 1; 0 / DNA, Neoplasm; 0 / Glycoproteins; 0 / Lectins; 0 / TP53 protein, human; 0 / Tumor Suppressor Protein p53; EC 1.1.1.41 / Isocitrate Dehydrogenase; EC 1.1.1.42. / IDH1 protein, human
  •  go-up   go-down


34. Elsir T, Eriksson A, Orrego A, Lindström MS, Nistér M: Expression of PROX1 Is a common feature of high-grade malignant astrocytic gliomas. J Neuropathol Exp Neurol; 2010 Feb;69(2):129-38
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of PROX1 Is a common feature of high-grade malignant astrocytic gliomas.
  • An average of 79% of cells in World Health Organization Grade IV (glioblastoma, n = 15) and 57% of cells in World Health Organization Grade III (anaplastic astrocytoma, n = 13) were strongly PROX1 positive; low-grade diffuse astrocytomas (Grade II, n = 13) had 21% of cells that were strongly positive; Grade I tumors (n = 15) had 1.5%; and non-neoplastic brain tissue (n = 15) had 3.7% of cells that were PROX1 positive.
  • We conclude that PROX1 may constitute a useful tool for the diagnosis and grading ofastrocytic gliomas and for distinguishing Grade III and Grade IV tumors from Grade I and Grade II tumors.
  • [MeSH-major] Astrocytoma / metabolism. Astrocytoma / pathology. Brain Neoplasms / metabolism. Brain Neoplasms / pathology. Homeodomain Proteins / metabolism. Tumor Suppressor Proteins / metabolism
  • [MeSH-minor] Antigens, Nuclear / metabolism. Biomarkers / metabolism. Brain Diseases / metabolism. Cell Proliferation. Humans. Immunohistochemistry. Microtubule-Associated Proteins / metabolism. Microvessels / metabolism. Mitosis. Nerve Tissue Proteins / metabolism. Tubulin / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20084020.001).
  • [ISSN] 1554-6578
  • [Journal-full-title] Journal of neuropathology and experimental neurology
  • [ISO-abbreviation] J. Neuropathol. Exp. Neurol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, Nuclear; 0 / Biomarkers; 0 / Homeodomain Proteins; 0 / MAP2 protein, human; 0 / Microtubule-Associated Proteins; 0 / Nerve Tissue Proteins; 0 / Tubulin; 0 / Tumor Suppressor Proteins; 0 / neuronal nuclear antigen NeuN, human; 0 / prospero-related homeobox 1 protein
  •  go-up   go-down


35. Ritz R, Müller M, Dietz K, Duffner F, Bornemann A, Roser F, Tatagiba M: Hypericin uptake: a prognostic marker for survival in high-grade glioma. J Clin Neurosci; 2008 Jul;15(7):778-83
Hazardous Substances Data Bank. PERYLENE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Hypericin uptake: a prognostic marker for survival in high-grade glioma.
  • Three patients suffered from an anaplastic astrocytoma, WHO grade III, nine had a glioblastoma, WHO grade IV.
  • [MeSH-major] Brain Neoplasms / drug therapy. Drug Resistance, Neoplasm / genetics. Glioma / drug therapy. Perylene / analogs & derivatives. Photochemotherapy / methods
  • [MeSH-minor] Adult. Aged. Astrocytoma / drug therapy. Astrocytoma / metabolism. Astrocytoma / physiopathology. Cell Line, Tumor. Cell Proliferation. Disease-Free Survival. Drug Therapy. Female. Fluorescence. Glioblastoma / drug therapy. Glioblastoma / metabolism. Glioblastoma / physiopathology. Humans. Light. Lipoproteins, LDL / metabolism. Male. Microscopy, Fluorescence / methods. Middle Aged. Models, Statistical. Predictive Value of Tests. Prognosis. Radiation-Sensitizing Agents / metabolism. Radiotherapy. Survival Rate

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentIn] J Clin Neurosci. 2009 Oct;16(10):1381-2 [19595595.001]
  • (PMID = 18394904.001).
  • [ISSN] 0967-5868
  • [Journal-full-title] Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
  • [ISO-abbreviation] J Clin Neurosci
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Scotland
  • [Chemical-registry-number] 0 / Lipoproteins, LDL; 0 / Radiation-Sensitizing Agents; 5QD5427UN7 / Perylene; 7V2F1075HD / hypericin
  •  go-up   go-down


36. Gimenez M, Souza VC, Izumi C, Barbieri MR, Chammas R, Oba-Shinjo SM, Uno M, Marie SK, Rosa JC: Proteomic analysis of low- to high-grade astrocytomas reveals an alteration of the expression level of raf kinase inhibitor protein and nucleophosmin. Proteomics; 2010 Aug;10(15):2812-21
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Proteomic analysis of low- to high-grade astrocytomas reveals an alteration of the expression level of raf kinase inhibitor protein and nucleophosmin.
  • The aim of this study was to identify differentially expressed proteins in diffuse astrocytoma grade II, anaplastic astrocytoma grade III and glioblastoma multiforme grade IV in human tumor samples and in non-neoplastic brain tissue as control using 2-DE and MS.
  • Tumor and control brain tissue dissection was guided by histological hematoxylin/eosin tissue sections to provide more than 90% of tumor cells and astrocytes.
  • Six proteins were detected as up-regulated in higher grade astrocytomas and the most important finding was nucleophosmin (NPM) (p<0.05), whereas four proteins were down-regulated, among them raf kinase inhibitor protein (RKIP) (p<0.05).
  • We report here for the first time the alteration of NPM and RKIP expression in brain cancer.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Gene Expression Regulation, Neoplastic. Nuclear Proteins / genetics. Phosphatidylethanolamine Binding Protein / genetics. Proteomics
  • [MeSH-minor] Adult. Amino Acid Sequence. Brain / metabolism. Brain / pathology. Electrophoresis, Gel, Two-Dimensional. Female. Humans. Male. Middle Aged. Molecular Sequence Data. Proteins / genetics. Proteins / isolation & purification


37. Bien E, Stachowicz-Stencel T, Szalewska M, Krawczyk M, Synakiewicz A, Dubaniewicz-Wybieralska M, Zielinski P, Adamkiewicz-Drozynska E, Balcerska A: Poor-risk high-grade gliomas in three survivors of childhood acute lymphoblastic leukaemia--an overview of causative factors and possible therapeutic options. Childs Nerv Syst; 2009 May;25(5):619-26
Hazardous Substances Data Bank. METHOTREXATE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Poor-risk high-grade gliomas in three survivors of childhood acute lymphoblastic leukaemia--an overview of causative factors and possible therapeutic options.
  • PURPOSE: Malignant high-grade gliomas are the most common secondary neoplasms in children cured of acute lymphoblastic leukaemia (ALL).
  • Although many predisposing factors exist (including systemic or intrathecal chemotherapy, young age, brain infiltration and genetic predispositions), cranial irradiation appears to be the strongest one.
  • METHODS: Three cases of secondary high-grade gliomas (two multiform glioblastomas, grade IV; one anaplastic astrocytoma, grade III) developed in ALL survivors (F-M, 1:2) 3 to 6.3 years after stopping ALL therapy according to BFM-90 trial.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentIn] Childs Nerv Syst. 2009 Jul;25(7):779; author reply 781-2 [19452153.001]
  • [Cites] J Clin Oncol. 2006 Aug 20;24(24):3858-64 [16921038.001]
  • [Cites] J Clin Oncol. 1998 Dec;16(12):3761-7 [9850019.001]
  • [Cites] Lancet. 1999 Jul 3;354(9172):34-9 [10406363.001]
  • [Cites] J Clin Oncol. 2004 Jul 1;22(13):2701-7 [15226337.001]
  • [Cites] J Pediatr. 1991 Dec;119(6):985-9 [1960624.001]
  • [Cites] Eur J Cancer. 2008 Jan;44(2):257-68 [17981026.001]
  • [Cites] AJNR Am J Neuroradiol. 2005 May;26(5):1263-9 [15891195.001]
  • [Cites] J Clin Invest. 1992 Feb;89(2):640-7 [1737852.001]
  • [Cites] Cancer Res. 1995 Oct 1;55(19):4237-9 [7671227.001]
  • [Cites] Strahlenther Onkol. 2005 Jun;181(6):372-7 [15925979.001]
  • [Cites] J Clin Oncol. 1995 Oct;13(10):2497-502 [7595699.001]
  • [Cites] J Clin Oncol. 2005 Nov 1;23(31):7936-41 [16258093.001]
  • [Cites] Leukemia. 2000 Dec;14(12):2257-66 [11187917.001]
  • [Cites] Hematology Am Soc Hematol Educ Program. 2006;:142-6 [17124053.001]
  • [Cites] Curr Opin Hematol. 2003 Jul;10(4):290-6 [12799535.001]
  • [Cites] J Clin Oncol. 2003 May 1;21(9):1798-809 [12721257.001]
  • [Cites] JAMA. 2007 Mar 21;297(11):1207-15 [17374815.001]
  • [Cites] Childs Nerv Syst. 2008 Jul;24(7):793-805 [18392837.001]
  • [Cites] Haematologica. 2003 May;88(5):555-60 [12745275.001]
  • [Cites] Childs Nerv Syst. 2007 Feb;23(2):185-93 [17021727.001]
  • [Cites] Blood. 2000 May 1;95(9):2770-5 [10779419.001]
  • [Cites] Neurol India. 2004 Sep;52(3):375-7 [15472432.001]
  • [Cites] Cancer. 2008 May 15;112(10 ):2267-73 [18327820.001]
  • [Cites] Lancet. 2002 Mar 23;359(9311):1011-8 [11937180.001]
  • [Cites] Cancer. 2004 Aug 15;101(4):817-24 [15305415.001]
  • [Cites] Int J Cancer. 1994 Nov 15;59(4):451-6 [7960210.001]
  • [Cites] Pediatr Blood Cancer. 2004 Jan;42(1):24-9 [14752790.001]
  • [Cites] Am J Clin Oncol. 1997 Jun;20(3):263-5 [9167750.001]
  • [Cites] Blood Cells Mol Dis. 2003 Jul-Aug;31(1):84-92 [12850490.001]
  • [Cites] Blood. 2002 Jun 15;99(12):4257-64 [12036851.001]
  • (PMID = 19301014.001).
  • [ISSN] 1433-0350
  • [Journal-full-title] Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
  • [ISO-abbreviation] Childs Nerv Syst
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article; Review
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Antimetabolites, Antineoplastic; YL5FZ2Y5U1 / Methotrexate
  • [Number-of-references] 30
  •  go-up   go-down


38. Stege EM, Kros JM, de Bruin HG, Enting RH, van Heuvel I, Looijenga LH, van der Rijt CD, Smitt PA, van den Bent MJ: Successful treatment of low-grade oligodendroglial tumors with a chemotherapy regimen of procarbazine, lomustine, and vincristine. Cancer; 2005 Feb 15;103(4):802-9
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Successful treatment of low-grade oligodendroglial tumors with a chemotherapy regimen of procarbazine, lomustine, and vincristine.
  • BACKGROUND: Anaplastic oligodendroglioma (OD) tumors, especially those with the combined loss of the short arm of chromosome 1 (1p) and the long arm of chromosome 19 (19q), are sensitive to chemotherapy.
  • Only limited data are available on the role of chemotherapy in low-grade OD.
  • The authors retrospectively studied the outcome of the procarbazine, lomustine, and vincristine (PCV) chemotherapy regimen in a group of 16 patients with newly diagnosed OD and 5 patients with recurrent low-grade OD.
  • A Phase III trial should be initiated to compare radiotherapy with chemotherapy.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Astrocytoma / drug therapy. Brain Neoplasms / drug therapy. Oligodendroglioma / drug therapy

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. LOMUSTINE .
  • Hazardous Substances Data Bank. VINCRISTINE .
  • Hazardous Substances Data Bank. PROCARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright (c) 2005 American Cancer Society.
  • (PMID = 15637687.001).
  • [ISSN] 0008-543X
  • [Journal-full-title] Cancer
  • [ISO-abbreviation] Cancer
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Tumor Suppressor Protein p53; 35S93Y190K / Procarbazine; 5J49Q6B70F / Vincristine; 7BRF0Z81KG / Lomustine
  •  go-up   go-down


39. Balzarotti M, Fontana F, Marras C, Boiardi A, Croci D, Ciusani E, Salmaggi A: In vitro study of low molecular weight heparin effect on cell growth and cell invasion in primary cell cultures of high-grade gliomas. Oncol Res; 2006;16(5):245-50
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] In vitro study of low molecular weight heparin effect on cell growth and cell invasion in primary cell cultures of high-grade gliomas.
  • In this work we investigated the effect of LMWH (enoxaparin) on cell growth and cell invasion in primary cell cultures obtained from high-grade glioma specimens: 5 anaplastic astrocytoma (AA) and 13 glioblastoma multiforme (GBM).
  • A significant decrease in tumor cell growth was observed after treatment with 10 U/ml (-21%; p = 0.001) and 100 U/ml (-26%; p < 0.001); tumor cells from AA (grade III;.
  • WHO) were more affected by LMWH treatment compared to cell lines from GBM (grade IV; WHO).
  • In conclusion, our results confirm the antineoplastic effect of LMWH, suggesting a potential direct role on tumor cell growth in high grade gliomas.
  • [MeSH-major] Brain Neoplasms / drug therapy. Cell Proliferation / drug effects. Enoxaparin / pharmacology. Glioma / drug therapy

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17294805.001).
  • [ISSN] 0965-0407
  • [Journal-full-title] Oncology research
  • [ISO-abbreviation] Oncol. Res.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Enoxaparin; 0 / Receptor, PAR-1
  •  go-up   go-down


40. Wykosky J, Gibo DM, Stanton C, Debinski W: Interleukin-13 receptor alpha 2, EphA2, and Fos-related antigen 1 as molecular denominators of high-grade astrocytomas and specific targets for combinatorial therapy. Clin Cancer Res; 2008 Jan 1;14(1):199-208
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Interleukin-13 receptor alpha 2, EphA2, and Fos-related antigen 1 as molecular denominators of high-grade astrocytomas and specific targets for combinatorial therapy.
  • PURPOSE: We investigated the expression of interleukin-13 receptor alpha2 (IL-13R alpha 2), EphA2, and Fos-related antigen 1 (Fra-1) in astrocytomas and normal brain.
  • We sought to document whether the expression of the three factors changed with progression to higher grade malignancy and whether two or three targets in combination might be sufficient to target all patients with high-grade astrocytomas.
  • EXPERIMENTAL DESIGN: Immunohistochemistry was done for IL-13R alpha 2, EphA2, and Fra-1 using human brain tumor tissue microarrays containing 30 specimens of WHO grades II and III astrocytomas, 46 glioblastoma multiformes (GBM), and 9 normal brain samples.
  • RESULTS: Expression of all three proteins was significantly higher in GBM compared with normal brain, low-grade, and anaplastic astrocytomas.
  • CONCLUSIONS: IL-13R alpha 2, EphA2, and Fra-1 are attractive therapeutic targets representing molecular denominators of high-grade astrocytomas.
  • [MeSH-major] Astrocytoma / metabolism. Biomarkers, Tumor / analysis. Brain Neoplasms / metabolism. Interleukin-13 Receptor alpha2 Subunit / biosynthesis. Proto-Oncogene Proteins c-fos / biosynthesis. Receptor, EphA2 / biosynthesis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18172271.001).
  • [ISSN] 1078-0432
  • [Journal-full-title] Clinical cancer research : an official journal of the American Association for Cancer Research
  • [ISO-abbreviation] Clin. Cancer Res.
  • [Language] eng
  • [Grant] United States / NINDS NIH HHS / NS / 1F31 NS055533-01; United States / NCI NIH HHS / CA / R01 CA74145
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Bacterial Toxins; 0 / Biomarkers, Tumor; 0 / Exotoxins; 0 / Interleukin-13 Receptor alpha2 Subunit; 0 / Proto-Oncogene Proteins c-fos; 0 / Virulence Factors; 0 / fos-related antigen 1; EC 2.4.2.- / ADP Ribose Transferases; EC 2.4.2.31 / toxA protein, Pseudomonas aeruginosa; EC 2.7.10.1 / Receptor, EphA2
  •  go-up   go-down


41. Capper D, Weissert S, Balss J, Habel A, Meyer J, Jäger D, Ackermann U, Tessmer C, Korshunov A, Zentgraf H, Hartmann C, von Deimling A: Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol; 2010 Jan;20(1):245-54
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors.
  • Heterozygous point mutations of isocitrate dehydrogenase (IDH)1 codon 132 are frequent in grade II and III gliomas.
  • Immunohistochemistry of 345 primary brain tumors demonstrated a strong cytoplasmic and weaker nuclear staining in 122 cases.
  • The very high frequency and the distribution of this mutation among specific brain tumor entities allow the highly sensitive and specific discrimination of various tumors by immunohistochemistry, such as anaplastic astrocytoma from primary glioblastoma or diffuse astrocytoma World Health Organization (WHO) grade II from pilocytic astrocytoma or ependymoma.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / enzymology. Brain Neoplasms / genetics. Ependymoma / genetics. Glioma / enzymology. Glioma / genetics. Isocitrate Dehydrogenase / genetics. Isocitrate Dehydrogenase / immunology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19903171.001).
  • [ISSN] 1750-3639
  • [Journal-full-title] Brain pathology (Zurich, Switzerland)
  • [ISO-abbreviation] Brain Pathol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0 / DNA, Neoplasm; EC 1.1.1.41 / Isocitrate Dehydrogenase; EC 1.1.1.42. / IDH1 protein, human
  •  go-up   go-down


42. Marcus HJ, Carpenter KL, Price SJ, Hutchinson PJ: In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines. J Neurooncol; 2010 Mar;97(1):11-23
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines.
  • This study's objective was to utilise microdialysis to monitor levels of glucose, lactate, pyruvate, glutamate and glycerol in patients following surgery for intrinsic brain tumours, and to assess the concentration of growth factors, cytokines and other proteins involved in the pathogenesis of high-grade gliomas in vivo.
  • Eight patients with suspected high-grade gliomas were studied.
  • Histology demonstrated WHO IV glioblastoma in five cases, WHO III anaplastic astrocytoma in two cases, and one cerebral lymphoma.
  • In the high-grade gliomas (WHO IV and III), tumour margin microdialysates consistently showed significantly lower glucose, higher lactate/pyruvate (L/P) ratio, higher glutamate and higher glycerol, relative to peritumour microdialysates (P < 0.05).

  • Genetic Alliance. consumer health - Glioma.
  • Hazardous Substances Data Bank. GLUTAMIC ACID HYDROCHLORIDE .
  • Hazardous Substances Data Bank. DEXAMETHASONE .
  • Hazardous Substances Data Bank. LACTIC ACID .
  • Hazardous Substances Data Bank. GLUCOSE .
  • Hazardous Substances Data Bank. GLYCERIN .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Ann N Y Acad Sci. 1999;886:236-9 [10667228.001]
  • [Cites] Clin Cancer Res. 2006 Oct 1;12 (19):5698-704 [17020973.001]
  • [Cites] Brain Tumor Pathol. 2004;21(3):105-12 [15696970.001]
  • [Cites] Int J Dev Neurosci. 1999 Aug-Oct;17(5-6):495-502 [10571411.001]
  • [Cites] Neuro Oncol. 2005 Apr;7(2):122-33 [15831231.001]
  • [Cites] Nature. 1985 Jan 10-18;313(5998):144-7 [2981413.001]
  • [Cites] J Cell Sci. 1997 Oct;110 ( Pt 19):2473-82 [9410885.001]
  • [Cites] N Engl J Med. 2001 Jan 11;344(2):114-23 [11150363.001]
  • [Cites] Eur J Clin Pharmacol. 1983;24(1):103-8 [6832191.001]
  • [Cites] Neoplasia. 1999 Aug;1(3):208-19 [10935475.001]
  • [Cites] Physiol Meas. 2005 Aug;26(4):423-8 [15886437.001]
  • [Cites] Curr Med Chem. 2007;14(14):1525-37 [17584061.001]
  • [Cites] J Neuroimmunol. 1997 Sep;78(1-2):152-61 [9307240.001]
  • [Cites] J Neurosurg. 2001 Mar;94(3):464-73 [11235952.001]
  • [Cites] Science. 2006 May 26;312(5777):1158-9 [16728625.001]
  • [Cites] Clin Cancer Res. 2002 Sep;8(9):2894-901 [12231534.001]
  • [Cites] Int J Cancer. 1997 Jun 11;71(6):1066-76 [9185713.001]
  • [Cites] J Neurosurg. 1999 Feb;90(2):300-5 [9950501.001]
  • [Cites] J Physiol. 2007 May 1;580(Pt.3):937-49 [17317742.001]
  • [Cites] J Clin Neurosci. 2005 Nov;12(8):930-3 [16326273.001]
  • [Cites] Br J Neurosurg. 2007 Apr;21(2):204-9 [17453790.001]
  • [Cites] Brain Pathol. 2005 Oct;15(4):297-310 [16389942.001]
  • [Cites] J Neurooncol. 2005 Feb;71(3):287-93 [15735919.001]
  • [Cites] Biochim Biophys Acta. 2000 Mar 7;1477(1-2):267-83 [10708863.001]
  • [Cites] Cancer Res. 1996 Jul 15;56(14):3196-8 [8764105.001]
  • [Cites] J Neurooncol. 2006 Dec;80(3):285-93 [16773220.001]
  • [Cites] J Neurooncol. 2009 Jan;91(1):51-8 [18787762.001]
  • [Cites] Brain Tumor Pathol. 2003;20(2):39-45 [14756439.001]
  • [Cites] J Neurosurg. 1992 Jan;76(1):72-80 [1727172.001]
  • [Cites] Cancer Res. 1990 Oct 15;50(20):6683-8 [2208133.001]
  • [Cites] Bull Schweiz Akad Med Wiss. 1974 Jul;30(1-3):44-55 [4371656.001]
  • [Cites] J Neurosurg. 1987 Jun;66(6):865-74 [3033172.001]
  • [Cites] J Neurooncol. 2003 Jan;61(2):151-60 [12622454.001]
  • [Cites] Lancet. 1993 Jun 26;341(8861):1607-10 [8099987.001]
  • [Cites] Brain Pathol. 1990 Sep;1(1):12-8 [1669688.001]
  • [Cites] Acta Neurochir (Wien). 1993;121(3-4):199-205 [8512018.001]
  • [Cites] Eur J Anaesthesiol. 1996 May;13(3):269-78 [8737118.001]
  • [Cites] J Neurol Neurosurg Psychiatry. 1984 Oct;47(10):1087-90 [6502166.001]
  • [Cites] J Neurotrauma. 2007 Oct;24(10):1545-57 [17970618.001]
  • [Cites] Clin Exp Metastasis. 1999;17(7):555-66 [10845554.001]
  • [Cites] Int J Cancer. 2005 Jun 10;115(2):202-13 [15688401.001]
  • [Cites] Brain Tumor Pathol. 2001;18(1):13-21 [11517969.001]
  • [Cites] Proc Natl Acad Sci U S A. 1987 Oct;84(19):6899-903 [3477813.001]
  • [Cites] Eur J Pharmacol. 2008 Sep 28;593(1-3):1-9 [18652821.001]
  • [Cites] J Neurooncol. 2000 Mar;47(1):11-22 [10930095.001]
  • [Cites] Radiology. 1990 Sep;176(3):791-9 [2389038.001]
  • [Cites] Neoplasia. 2007 Sep;9(9):777-87 [17898873.001]
  • [Cites] Acta Neurochir (Wien). 2009 Jan;151(1):51-61; discussion 61 [19099177.001]
  • [Cites] Dev Biol. 1974 Dec;41(2):255-66 [4548877.001]
  • [Cites] Clin Cancer Res. 2003 Jul;9(7):2576-82 [12855633.001]
  • [Cites] J Neurosurg. 1995 Oct;83(4):657-64 [7674016.001]
  • [Cites] Trends Cell Biol. 2001 Nov;11(11):S37-43 [11684441.001]
  • [Cites] Am J Pathol. 1998 Aug;153(2):429-37 [9708803.001]
  • [Cites] J Neuroimmunol. 1994 Mar;50(2):187-94 [8120140.001]
  • [Cites] J Neurosurg. 2007 May;106(5):820-5 [17542525.001]
  • [Cites] Nature. 1974 Aug 2;250(465):422-4 [4368539.001]
  • [Cites] J Clin Endocrinol Metab. 1998 Feb;83(2):453-9 [9467557.001]
  • [Cites] Annu Rev Biochem. 1977;46:765-95 [197882.001]
  • [Cites] N Engl J Med. 2005 Oct 20;353(16):1711-23 [16236742.001]
  • [Cites] Ann Neurol. 1992 Mar;31(3):319-27 [1637139.001]
  • [Cites] Acta Neurochir (Wien). 1992;114(1-2):8-11 [1561943.001]
  • [Cites] J Neurooncol. 2003 Sep;64(3):227-37 [14558598.001]
  • [Cites] Am J Physiol Endocrinol Metab. 2000 Mar;278(3):E413-20 [10710495.001]
  • [Cites] J Neurosurg. 2000 Jul;93(1):37-43 [10883903.001]
  • [Cites] AJNR Am J Neuroradiol. 2006 Oct;27(9):1969-74 [17032877.001]
  • [Cites] J Neurosurg. 1996 Apr;84(4):606-16 [8613852.001]
  • [Cites] Biomed Pharmacother. 2005 Aug;59(7):359-64 [16084059.001]
  • [Cites] Brain Res Bull. 2000 Jan 1;51(1):29-34 [10654577.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10 ):987-96 [15758009.001]
  • [Cites] Cancer Res. 1991 Apr 15;51(8):2164-72 [2009534.001]
  • [Cites] Prostaglandins Leukot Essent Fatty Acids. 2008 Jul-Aug;79(1-2):59-65 [18762411.001]
  • [Cites] Biol Psychiatry. 1997 Mar 1;41(5):574-84 [9046990.001]
  • [Cites] Br J Cancer. 2001 Jul 6;85(1):55-63 [11437402.001]
  • [Cites] Neurosurgery. 2005 Jun;56(6):1264-8; discussion 1268-70 [15918942.001]
  • (PMID = 19714445.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Grant] United Kingdom / Medical Research Council / / G0600986; United Kingdom / Medical Research Council / / G9439390; United Kingdom / Medical Research Council / /
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Hormonal; 0 / Cytokines; 0 / Intercellular Signaling Peptides and Proteins; 0 / Tissue Inhibitor of Metalloproteinase-1; 127497-59-0 / Tissue Inhibitor of Metalloproteinase-2; 33X04XA5AT / Lactic Acid; 3KX376GY7L / Glutamic Acid; 7S5I7G3JQL / Dexamethasone; 8558G7RUTR / Pyruvic Acid; EC 3.4.24.35 / Matrix Metalloproteinase 9; IY9XDZ35W2 / Glucose; PDC6A3C0OX / Glycerol
  •  go-up   go-down


43. Ghosh S, Duigou GJ: Decreased replication ability of E1-deleted adenoviruses correlates with increased brain tumor malignancy. Cancer Res; 2005 Oct 1;65(19):8936-43
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Decreased replication ability of E1-deleted adenoviruses correlates with increased brain tumor malignancy.
  • Although they are being developed for antitumor therapies, the proliferative behaviors of these viruses in normal brain tissues or in brain tumors are unknown.
  • To address this, freshly cultured cells from normal human brain and common brain tumors (astrocytomas and meningiomas) were infected using wild-type species C adenoviruses and adenoviruses missing E1A (H5dl312) or E1A plus E1B (H5dl434).
  • Wild-type adenoviruses grew efficiently in normal brain and brain tumor cells.
  • In comparison, E1-deleted adenovirus DNA replication was delayed and lower in cells derived from normal brain tissues, meningiomas, and low-grade astrocytomas.
  • However, in contrast, E1-deleted adenovirus DNA replication did not occur or was extremely low in cells derived from malignancy grade III and IV astrocytic tumors.
  • Because wild-type adenoviruses infected and replicated in all cells, the malignancy grade-based differential E1-deleted adenovirus DNA replication was not explained by differential virus uptake.
  • Compared with a 5-day average for wild-type infections, advanced cytopathology was noted approximately 4 weeks after H5dl312 or H5dl434 infection of meningioma, astrocytoma, and normal brain cells.
  • Cytopathology was not observed after H5dl312 or H5dl434 infection of glioblastoma, anaplastic astrocytoma, and gliosarcoma cells.
  • Because of this tumor grade-based differential growth, the E1-deleted adenoviruses may represent novel tools for studies of brain tumor malignancy.
  • [MeSH-major] Adenoviridae / physiology. Adenovirus E1 Proteins / deficiency. Brain Neoplasms / pathology. Brain Neoplasms / virology. Virus Replication / physiology
  • [MeSH-minor] Astrocytoma / pathology. Astrocytoma / virology. Cell Line, Tumor. Cytopathogenic Effect, Viral. Disease Progression. Glioblastoma / pathology. Glioblastoma / virology. Gliosarcoma / pathology. Gliosarcoma / virology. Humans. Meningioma / pathology. Meningioma / virology

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16204066.001).
  • [ISSN] 0008-5472
  • [Journal-full-title] Cancer research
  • [ISO-abbreviation] Cancer Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Adenovirus E1 Proteins
  •  go-up   go-down


44. Lymbouridou R, Soufla G, Chatzinikola AM, Vakis A, Spandidos DA: Down-regulation of K-ras and H-ras in human brain gliomas. Eur J Cancer; 2009 May;45(7):1294-303
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Down-regulation of K-ras and H-ras in human brain gliomas.
  • Ras genes, a class of nucleotide-binding proteins that regulate normal and transformed cell growth, have been scarcely investigated in human brain tumours.
  • We evaluated the mutational, mRNA and protein expression profile of the ras genes in 21 glioblastomas multiforme (grade IV), four fibrillary astrocytoma (grade II), four anaplastic astrocytoma (grade III) and 15 normal specimens.
  • Our findings provide evidence of K- and H-ras involvement in brain malignant transformation through transcriptional down-regulation, while N-ras seems to contribute less to brain carcinogenesis.
  • [MeSH-major] Brain Neoplasms / genetics. Down-Regulation. Gene Expression Regulation, Neoplastic. Genes, ras. Glioma / genetics
  • [MeSH-minor] Adult. Aged. Astrocytoma / genetics. Astrocytoma / metabolism. Astrocytoma / mortality. Blotting, Western / methods. Case-Control Studies. Codon. Female. Gene Expression. Glioblastoma / genetics. Glioblastoma / metabolism. Glioblastoma / mortality. Humans. Male. Middle Aged. Oncogene Protein p21(ras) / analysis. Oncogene Protein p21(ras) / metabolism. Polymorphism, Restriction Fragment Length. Reverse Transcriptase Polymerase Chain Reaction / methods. Statistics, Nonparametric. Survival Rate

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19179066.001).
  • [ISSN] 1879-0852
  • [Journal-full-title] European journal of cancer (Oxford, England : 1990)
  • [ISO-abbreviation] Eur. J. Cancer
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Codon; EC 3.6.5.2 / Oncogene Protein p21(ras)
  •  go-up   go-down


45. McGirt MJ, Chaichana KL, Gathinji M, Attenello F, Than K, Ruiz AJ, Olivi A, Quiñones-Hinojosa A: Persistent outpatient hyperglycemia is independently associated with decreased survival after primary resection of malignant brain astrocytomas. Neurosurgery; 2008 Aug;63(2):286-91; discussion 291
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Persistent outpatient hyperglycemia is independently associated with decreased survival after primary resection of malignant brain astrocytomas.
  • OBJECTIVE: Patients with malignant brain astrocytomas are at high risk for developing hyperglycemia secondary to frequent corticosteroid administration.
  • Furthermore, hyperglycemia augments in vitro astrocytoma growth, whereas hypoglycemia attenuates in vitro astrocytoma cell growth.
  • We hypothesized that persistent hyperglycemic states in the outpatient setting may serve as a prognostic marker of decreased survival in patients with malignant brain astrocytomas.
  • METHODS: We retrospectively reviewed 367 cases of craniotomy for malignant brain astrocytomas (World Health Organization Grade III or IV).
  • RESULTS: A total of 367 craniotomies (209 primary, 158 secondary) were performed for malignant brain astrocytomas (glioblastoma multiforme, 297; anaplastic astrocytomas, 70); 68 (19%) and 28 (8%) of the patients experienced isolated or persistent outpatient hyperglycemia, respectively.
  • Adjusting for intergroup differences and variables associated with survival in this model, age (P = 0.001), Karnofsky Performance Scale score (P = 0.001), tumor grade (P = 0.001), primary versus secondary resection (P = 0.008), temozolomide (P = 0.007), subsequent resection (P = 0.07), and continued outpatient dexamethasone therapy, persistent outpatient hyperglycemia (relative risk, 1.79; 95% confidence interval, 1.05-3.05, P = 0.03) remained independently associated with decreased survival.
  • CONCLUSION: In our experience, persistent outpatient hyperglycemia was associated with decreased survival in patients undergoing surgical resection for malignant astro- cytomas and was independent of the degree of disability, tumor grade, diabetes, prolonged dexamethasone use, or subsequent treatment modalities.
  • Increased glucose control is warranted in this patient population and may contribute to improved outcomes in the treatment of malignant brain astrocytomas.
  • [MeSH-major] Ambulatory Care / trends. Astrocytoma / mortality. Astrocytoma / surgery. Brain Neoplasms / mortality. Brain Neoplasms / surgery. Hyperglycemia / mortality

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Hyperglycemia.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18797358.001).
  • [ISSN] 1524-4040
  • [Journal-full-title] Neurosurgery
  • [ISO-abbreviation] Neurosurgery
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


46. Palani M, Arunkumar R, Janardhanam VA: Biochemical and cytogenetic analysis of brain tissues in different grades of glioma patients. Ann Neurosci; 2010 Jul;17(3):120-5
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Biochemical and cytogenetic analysis of brain tissues in different grades of glioma patients.
  • BACKGROUND: Glioma, a neoplasm of neuroglial cells, is the most common type of brain tumor, constituting more than 50% of all brain tumors.
  • METHODS: Sixty patients with different grades of glioma include glioblastoma multiforme (n=20), Anaplastic astrocytoma (n=10).
  • Ependymoma (n=10), Pilocytic astrocytoma (n=10) and patients with benign lesions (n=5) served as controls.
  • CK, Na-K(+) ATPases, 5'-Nucleotidases showed marked increase in grade IV.
  • Similarly, Mg2-ATPase, Ca2+ATPases showed significant increase in grade III.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 25205887.001).
  • [ISSN] 0972-7531
  • [Journal-full-title] Annals of neurosciences
  • [ISO-abbreviation] Ann Neurosci
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] India
  • [Other-IDs] NLM/ PMC4116979
  • [Keywords] NOTNLM ; Antioxidants / Biochemical profile in glioma / Chromosomal aberrations / Enzymes / Glioma
  •  go-up   go-down


47. Ahmed N, Bhurgri Y, Sadiq S, Shakoor KA: Pediatric brain tumours at a tertiary care hospital in Karachi. Asian Pac J Cancer Prev; 2007 Jul-Sep;8(3):399-404
MedlinePlus Health Information. consumer health - Childhood Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Pediatric brain tumours at a tertiary care hospital in Karachi.
  • The objectives of this study were to determine the epidemiology of brain tumors during infancy and childhood and to define and segregate childhood brain tumors vis-a-vis their morphological characteristics.
  • The present study includes pediatric brain tumors, ICD-10 category C71 encountered during 10 years (January 1989 through December 1998) at a tertiary care hospital in Karachi.
  • The morphological distribution of cases was astrocytoma (28 cases, 34.6%), primitive neuroectodermal tumor or PNET (40 cases; 49.4%), ependymoma (8 cases, 10%), mixed glioma (4 cases; 5%) and a case of oligodendroglioma.
  • The morphological categorization of supratentorial tumors was astrocytoma (17 cases; 63%), ependymoma (5 cases; 18.5%), mixed glioma (2 cases; 7.4%).
  • The 17 supratentorial astrocytoma were sub-categorized as follows - pilocytic astrocytoma (5 cases; 29.4%), grade II astrocytoma (6 cases; 35.3%); grade III astrocytoma (2 cases; 11.8%), anaplastic astrocytoma (1 case; 5.9%) and glioblastoma multiforme (3 cases; 17.7%).
  • The morphological categorization of infratentorial tumors was astrocytoma (11 cases; 20.4%), medulloblastoma (38 cases; 70.4%), ependymoma (3 cases; 5.6%) and mixed glioma - astroependymoma (2 cases, 3.7%).
  • The morphological sub-categorization of infratentorial astrocytoma was pilocytic astrocytoma (7 cases, 63.6%), with gemistocytic astrocytoma, grade II, grade III and anaplastic astrocytoma comprising 1 (9.1%) case each.
  • The pediatric brain tumors in Karachi reflect a developing country scenario, with a strong male predisposition and a late presentation with a peak in the 5-9 year age group.
  • Population-based studies are required to determine the cancer burden due to pediatric malignancies of the brain in this population and for the morphological categorization of brain tumors in Karachi.
  • [MeSH-major] Brain Neoplasms / epidemiology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18159977.001).
  • [ISSN] 1513-7368
  • [Journal-full-title] Asian Pacific journal of cancer prevention : APJCP
  • [ISO-abbreviation] Asian Pac. J. Cancer Prev.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Thailand
  •  go-up   go-down


48. Perry SL, Bohlin C, Reardon DA, Desjardins A, Friedman AH, Friedman HS, Vredenburgh JJ: Tinzaparin prophylaxis against venous thromboembolic complications in brain tumor patients. J Neurooncol; 2009 Oct;95(1):129-134
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Tinzaparin prophylaxis against venous thromboembolic complications in brain tumor patients.
  • The purpose of this study was to determine the safety of tinzaparin for deep vein thrombosis prophylaxis in newly diagnosed grade III-IV malignant glioma patients.
  • Forty patients were enrolled into the study, 35 with glioblastoma multiforme and 5 with anaplastic astrocytoma.
  • Possible attributable toxicity was limited to two patients who developed CNS hemorrhages (one grade 1 and one grade 2) and one patient with an increase in liver enzymes (grade 3).
  • There were no patients with a grade 4 or 5 CNS hemorrhages or systemic hemorrhages >or=grade 2.
  • Tinzaparin at a fixed prophylactic dose is safe and may decrease the incidence of thromboembolic complications in brain tumor patients.
  • [MeSH-major] Brain Neoplasms / complications. Fibrinolytic Agents / therapeutic use. Glioma / complications. Heparin, Low-Molecular-Weight / therapeutic use. Venous Thromboembolism / etiology. Venous Thromboembolism / prevention & control

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Clin Oncol. 2005 Apr 1;23(10):2130-5 [15699479.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):987-96 [15758009.001]
  • [Cites] J Thromb Haemost. 2007 May;5(5):955-62 [17461929.001]
  • [Cites] Surg Neurol. 2008 Aug;70(2):117-21; discussion 121 [18262633.001]
  • [Cites] Neuro Oncol. 2008 Jun;10(3):355-60 [18436627.001]
  • [Cites] J Thromb Haemost. 2010 Sep;8(9):1959-65 [20598077.001]
  • [Cites] J Clin Oncol. 1999 Nov;17(11):3389-95 [10550132.001]
  • [Cites] Oncologist. 1999;4(6):443-9 [10631688.001]
  • [Cites] Arch Intern Med. 2000 Aug 14-28;160(15):2327-32 [10927730.001]
  • [Cites] Chest. 2001 Jan;119(1 Suppl):132S-175S [11157647.001]
  • [Cites] Semin Radiat Oncol. 2001 Apr;11(2):163-9 [11285554.001]
  • [Cites] Arch Intern Med. 2001 May 28;161(10):1268-79 [11371254.001]
  • [Cites] J Neurosurg Sci. 2001 Dec;45(4):195-201; discussion 201 [11912469.001]
  • [Cites] J Neurooncol. 2002 Aug;59(1):39-47 [12222837.001]
  • [Cites] J Neurol. 2002 Oct;249(10):1409-12 [12382158.001]
  • [Cites] Chest. 2002 Dec;122(6):1933-7 [12475829.001]
  • [Cites] CA Cancer J Clin. 2003 Jan-Feb;53(1):5-26 [12568441.001]
  • [Cites] N Engl J Med. 2003 Jul 10;349(2):109-11 [12853582.001]
  • [Cites] N Engl J Med. 2003 Jul 10;349(2):146-53 [12853587.001]
  • [Cites] South Med J. 2004 Feb;97(2):213-4 [14982286.001]
  • [Cites] J Clin Oncol. 2004 May 15;22(10):1944-8 [15143088.001]
  • [Cites] J Thromb Haemost. 2004 Aug;2(8):1266-71 [15304029.001]
  • [Cites] Ann Neurol. 1983 Mar;13(3):334-6 [6303201.001]
  • [Cites] JAMA. 1988 Sep 2;260(9):1255-8 [3404638.001]
  • [Cites] Lancet. 1992 Jul 18;340(8812):152-6 [1352573.001]
  • [Cites] Mayo Clin Proc. 1994 Apr;69(4):329-32 [8170176.001]
  • [Cites] Neurology. 1993 Jun;43(6):1111-4 [8170553.001]
  • [Cites] Thromb Haemost. 1996 Feb;75(2):233-8 [8815566.001]
  • [Cites] N Engl J Med. 1996 Sep 5;335(10):701-7 [8703169.001]
  • [Cites] N Engl J Med. 1997 Sep 4;337(10):688-98 [9278467.001]
  • [Cites] Br J Surg. 1997 Aug;84(8):1099-103 [9278651.001]
  • [Cites] Eur J Cancer. 1997 Sep;33(10):1592-6 [9389920.001]
  • [Cites] N Engl J Med. 1998 Jul 9;339(2):80-5 [9654538.001]
  • [Cites] J Formos Med Assoc. 1999 May;98(5):365-7 [10420706.001]
  • [Cites] J Clin Oncol. 2005 Apr 1;23(10):2123-9 [15699480.001]
  • (PMID = 19415455.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Grant] United States / NHLBI NIH HHS / HL / K23 HL084233-02; United States / NHLBI NIH HHS / HL / K23 HL084233-03; United States / NHLBI NIH HHS / HL / K23 HL084233; United States / NHLBI NIH HHS / HL / K23 HL084233-01A1; United States / NHLBI NIH HHS / HL / K23-HL084233-02
  • [Publication-type] Clinical Trial; Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Fibrinolytic Agents; 0 / Heparin, Low-Molecular-Weight; 7UQ7X4Y489 / tinzaparin
  • [Other-IDs] NLM/ NIHMS180651; NLM/ PMC2837514
  •  go-up   go-down


49. Shen CF, Yuan XR, Qin ZQ: [Clinical significance of the expression of the RCAS1 mRNA and protein in astrocytic tumors]. Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2007 Oct;32(5):836-9
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • RESULTS: The quantities of RCAS1 mRNA expression between diffusive astrocytoma(Grade II) and anaplastic astrocytoma(Grade III), anaplastic astrocytoma and glioblastoma(Grade IV) were significantly different(P<0.05), while the expression scores of RCAS1 protein were different only between the anaplastic astrocytoma and glioblastoma(P<0.01).
  • RCAS1 protein expression was positively correlated with the tumor grade (r=0.573,P<0.001).
  • The RCAS1 protein was not detected in normal brain tissues by immunohistochemical staining.
  • CONCLUSION: The RCAS1 expression is related to the histological grade of astrocytic tumor.
  • [MeSH-major] Antigens, Neoplasm / metabolism. Astrocytoma / metabolism. Brain Neoplasms / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18007080.001).
  • [ISSN] 1672-7347
  • [Journal-full-title] Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences
  • [ISO-abbreviation] Zhong Nan Da Xue Xue Bao Yi Xue Ban
  • [Language] chi
  • [Publication-type] Controlled Clinical Trial; English Abstract; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] China
  • [Chemical-registry-number] 0 / Antigens, Neoplasm; 0 / EBAG9 protein, human; 0 / RNA, Messenger
  •  go-up   go-down


50. Galldiks N, Kracht LW, Berthold F, Miletic H, Klein JC, Herholz K, Jacobs AH, Heiss WD: [11C]-L-methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol; 2010 Jan;96(2):231-9
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [11C]-L-methionine positron emission tomography in the management of children and young adults with brain tumors.
  • Only a few Methyl-[11C]-L-methionine (MET) positron emission tomography (PET) studies have focused on children and young adults with brain neoplasm.
  • A receiver operating characteristic (ROC) was performed to determine the MET-uptake value that best distinguishes tumorous from non-tumorous brain lesions.
  • A differentiation between tumorous (n = 39) and non-tumorous brain lesions (n = 9) was possible at a threshold of 1.48 of relative MET-uptake with a sensitivity of 83% and a specificity of 92%, respectively.
  • A differentiation between high grade malignant lesions (mean MET-uptake = 2.00 +/- 0.46) and low grade tumors (mean MET-uptake = 1.84 +/- 0.31) was not possible.
  • There was a significant difference in MET-uptake between the histologically homogeneous subgroups of astrocytoma WHO grade II and anaplastic astrocytoma WHO grade III (P = 0.02).
  • [MeSH-major] Brain Neoplasms / radionuclide imaging. Carbon Radioisotopes. Methionine / analogs & derivatives. Positron-Emission Tomography / methods

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. (L)-Methionine .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Acta Radiol. 1987 Nov-Dec;28(6):673-81 [2962599.001]
  • [Cites] J Comput Assist Tomogr. 1983 Dec;7(6):1062-6 [6415134.001]
  • [Cites] Pediatr Neurol. 1990 May-Jun;6(3):163-70 [2193641.001]
  • [Cites] J Comput Assist Tomogr. 1992 Sep-Oct;16(5):804-13 [1522276.001]
  • [Cites] J Comput Assist Tomogr. 1994 Jan-Feb;18(1):110-8 [8282858.001]
  • [Cites] Clin Neurol Neurosurg. 1995 Nov;97(4):349-53 [8599907.001]
  • [Cites] J Nucl Med. 1996 Feb;37(2):387-93 [8667081.001]
  • [Cites] Neurology. 1998 May;50(5):1316-22 [9595980.001]
  • [Cites] Clin Cancer Res. 2004 Nov 1;10(21):7163-70 [15534088.001]
  • [Cites] J Neurosurg. 2006 Feb;104(2):238-53 [16509498.001]
  • [Cites] Eur J Nucl Med Mol Imaging. 2006 May;33(5):516-24 [16450140.001]
  • [Cites] Childs Nerv Syst. 2007 Jul;23(7):739-51 [17356889.001]
  • [Cites] Neurosurg Rev. 1999 Dec;22(4):210-4 [10682929.001]
  • [Cites] J Nucl Med. 2000 Jul;41(7):1250-5 [10914918.001]
  • [Cites] J Nucl Med. 2001 Mar;42(3):432-45 [11337520.001]
  • [Cites] Eur J Nucl Med Mol Imaging. 2002 Feb;29(2):176-82 [11926379.001]
  • [Cites] Cancer. 2002 Sep 15;95(6):1376-86 [12216107.001]
  • [Cites] Pediatr Neurosurg. 2003 Mar;38(3):146-55 [12601239.001]
  • [Cites] Eur J Nucl Med Mol Imaging. 2003 Jun;30(6):868-73 [12692687.001]
  • [Cites] J Neuroimaging. 2003 Jul;13(3):269-71 [12889176.001]
  • [Cites] Mol Imaging. 2002 Oct;1(4):309-35 [12926228.001]
  • [Cites] Eur J Nucl Med Mol Imaging. 2003 Oct;30(10):1389-97 [12920486.001]
  • [Cites] J Neuroimaging. 2004 Oct;14(4):372-6 [15358961.001]
  • [Cites] Int J Appl Radiat Isot. 1979 Jul;30(7):393-9 [478664.001]
  • [Cites] J Clin Oncol. 1990 Jul;8(7):1277-80 [2358840.001]
  • (PMID = 19575148.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Carbon Radioisotopes; AE28F7PNPL / Methionine; BN630929UL / methionine methyl ester
  • [Other-IDs] NLM/ PMC2808525
  •  go-up   go-down


51. Hughes MA, Parisi M, Grossman S, Kleinberg L: Primary brain tumors treated with steroids and radiotherapy: low CD4 counts and risk of infection. Int J Radiat Oncol Biol Phys; 2005 Aug 1;62(5):1423-6
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Primary brain tumors treated with steroids and radiotherapy: low CD4 counts and risk of infection.
  • PURPOSE: Patients with primary brain tumors are often treated with high doses of corticosteroids for prolonged periods to reduce intracranial swelling and alleviate symptoms such as headaches.
  • METHODS AND MATERIALS: CD4 counts were measured during RT in 70 of 76 consecutive patients with newly diagnosed Grade III and IV astrocytoma and anaplastic oligodendroglioma treated with corticosteroids and seen at the Johns Hopkins Hospital.
  • CONCLUSION: The results of this study have confirmed the clinical impression that the use of high-dose corticosteroids and RT in patients with primary brain cancer is sufficient to result in severe immunosuppression and place these patients at risk of life-threatening opportunistic infections.
  • [MeSH-major] Adrenal Cortex Hormones / therapeutic use. Brain Neoplasms / drug therapy. Brain Neoplasms / radiotherapy. Immunocompromised Host. Opportunistic Infections / etiology. Pneumonia, Pneumocystis / etiology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Steroids.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16029802.001).
  • [ISSN] 0360-3016
  • [Journal-full-title] International journal of radiation oncology, biology, physics
  • [ISO-abbreviation] Int. J. Radiat. Oncol. Biol. Phys.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Adrenal Cortex Hormones
  •  go-up   go-down


52. Perez-Saldana MT, Vilar C, Geffner-Sclarsky D, Belenguer-Benavides A, Del Villar-Igea A, Gil-Fortuno M, Bahamonde D: [Meningoencephalomyelitis as the initial symptom of a brain tumour mimicking encephalitis due to herpes simplex virus: a case report]. Rev Neurol; 2007 Mar 16-31;44(6):348-52
MedlinePlus Health Information. consumer health - Meningitis.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Meningoencephalomyelitis as the initial symptom of a brain tumour mimicking encephalitis due to herpes simplex virus: a case report].
  • [Transliterated title] Meningoencefalomielitis como manifestacion inicial de un tumor cerebral que imita una encefalitis por virus del herpes simple: descripcion de un caso.
  • We report a case of meningoencephalomyelitis that initially presented as encephalitis due to herpes simplex virus (HSV) and which was finally seen to be an anaplastic oligoastrocytoma.
  • The post-mortem examination revealed a grade III oligoastrocytoma in both temporal lobes, which had extended into the adjacent subarachnoid space and the cerebral and cervical leptomeninges.
  • CONCLUSIONS: Non-specific symptoms of low back pain can conceal a brain tumour.
  • [MeSH-major] Astrocytoma. Brain Neoplasms. Encephalitis, Herpes Simplex / etiology. Meninges / pathology. Meningitis / etiology

  • Genetic Alliance. consumer health - Herpes simplex encephalitis.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17385171.001).
  • [ISSN] 0210-0010
  • [Journal-full-title] Revista de neurologia
  • [ISO-abbreviation] Rev Neurol
  • [Language] spa
  • [Publication-type] Case Reports; English Abstract; Journal Article
  • [Publication-country] Spain
  •  go-up   go-down


53. Khan MK, Hunter GK, Vogelbaum M, Suh JH, Chao ST: Evidence-based adjuvant therapy for gliomas: current concepts and newer developments. Indian J Cancer; 2009 Apr-Jun;46(2):96-107
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Of the 18,820 new cases of primary central nervous system (CNS) tumors diagnosed annually in the United States, gliomas account for over 60% with 30-40% of them being glioblastoma multiforme (GBM), 10% being anaplastic astrocytoma (AA), and 10% being low grade gliomas (LGGs).
  • This is in contrast to one study from West Bengal, India, in which only 7.9% of the brain tumors were GBMs, while 46.8% were astrocytomas.
  • Common to these approaches is the use of adjuvant radiation therapy, even as surgery alone, with or without chemotherapy, may be the mainstay for some lower grade and low-risk gliomas.
  • Specifically, the database is searched using the following keywords, with various combinations: glioma, low-grade, anaplastic, astrocytoma, oligodendroglioma, oligoastrocytoma, glioblastoma multiforme, chemotherapy, radiation, new concepts, phase III, MGMT, CDX-110 (Celldex), temozolomide, 1p/19q deletion, and bevacizumab.
  • [MeSH-minor] Antineoplastic Agents / therapeutic use. Astrocytoma / drug therapy. Astrocytoma / radiotherapy. Astrocytoma / therapy. Glioblastoma / drug therapy. Glioblastoma / radiotherapy. Glioblastoma / therapy. Humans

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19346643.001).
  • [ISSN] 0019-509X
  • [Journal-full-title] Indian journal of cancer
  • [ISO-abbreviation] Indian J Cancer
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] India
  • [Chemical-registry-number] 0 / Antineoplastic Agents
  • [Number-of-references] 64
  •  go-up   go-down


54. Bozinov O, Köhler S, Samans B, Benes L, Miller D, Ritter M, Sure U, Bertalanffy H: Candidate genes for the progression of malignant gliomas identified by microarray analysis. Neurosurg Rev; 2008 Jan;31(1):83-9; discussion 89-90
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Malignant astrocytomas of World Health Organization (WHO) grade III or IV have a reduced median survival time, and possible pathways have been described for the progression of anaplastic astrocytomas and glioblastomas, but the molecular basis of malignant astrocytoma progression is still poorly understood.
  • We compared the transcriptional profile of 4,608 genes in tumours of 15 patients including 6 anaplastic astrocytomas (WHO grade III) and 9 glioblastomas (WHO grade IV) using microarray analysis.
  • Further analyses confirmed same transcription directions for Olig2 and IL-13Ralpha2 in anaplastic astrocytomas as compared to glioblastomas.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Gene Expression Profiling. Glioblastoma / genetics. Oligonucleotide Array Sequence Analysis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [ErratumIn] Neurosurg Rev. 2008 Apr;31(2):247-8
  • [Cites] J Clin Oncol. 2004 May 15;22(10):1926-33 [15143086.001]
  • [Cites] Neoplasia. 2005 Jan;7(1):7-16 [15720813.001]
  • [Cites] Am J Pathol. 2003 Sep;163(3):1033-43 [12937144.001]
  • [Cites] Mol Med. 2000 May;6(5):440-9 [10952023.001]
  • [Cites] Cancer Res. 2004 Sep 15;64(18):6503-10 [15374961.001]
  • [Cites] Methods. 2001 Dec;25(4):386-401 [11846608.001]
  • [Cites] Blood. 2001 May 1;97(9):2673-9 [11313257.001]
  • [Cites] Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [12184808.001]
  • [Cites] J Clin Oncol. 2003 Jul 1;21(13):2508-18 [12839017.001]
  • [Cites] J Neuropathol Exp Neurol. 2004 May;63(5):499-509 [15198128.001]
  • [Cites] J Cell Biol. 2004 Sep 27;166(7):963-8 [15452140.001]
  • [Cites] Brain Pathol. 2002 Jan;12(1):108-16 [11771519.001]
  • [Cites] Mol Cancer Ther. 2003 Aug;2(8):783-7 [12939468.001]
  • [Cites] Cell Death Differ. 2004 Feb;11(2):196-202 [14576772.001]
  • [Cites] Life Sci. 1997;60(1):13-9 [8995527.001]
  • [Cites] J Cell Sci. 2005 Mar 1;118(Pt 5):843-6 [15731001.001]
  • [Cites] Acta Neuropathol. 2004 Mar;107(3):277-82 [14730454.001]
  • [Cites] J Clin Oncol. 2004 Jan 1;22(1):133-42 [14638850.001]
  • [Cites] J Mol Med (Berl). 2004 Oct;82(10):656-70 [15316624.001]
  • [Cites] Cancer Res. 2000 Mar 1;60(5):1168-72 [10728667.001]
  • [Cites] J Exp Med. 2001 Dec 17;194(12):1743-54 [11748276.001]
  • [Cites] Oncogene. 2003 Jul 31;22(31):4918-23 [12894235.001]
  • [Cites] Nucleic Acids Res. 2002 Feb 15;30(4):e15 [11842121.001]
  • [Cites] Neuropathology. 2005 Mar;25(1):1-7 [15822813.001]
  • [Cites] Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10851-6 [11526205.001]
  • [Cites] Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3497-502 [10737801.001]
  • [Cites] J Neurosurg. 2003 Aug;99(2):344-50 [12924709.001]
  • [Cites] Curr Opin Oncol. 2004 Nov;16(6):607-13 [15627025.001]
  • [Cites] J Neurooncol. 2001 Jun;53(2):161-76 [11716068.001]
  • [Cites] Cell. 2002 Apr 5;109(1):61-73 [11955447.001]
  • [Cites] Oncogene. 2003 Apr 17;22(15):2361-73 [12700671.001]
  • [Cites] Neuropathol Appl Neurobiol. 2005 Feb;31(1):62-9 [15634232.001]
  • [Cites] Nature. 2002 Jan 24;415(6870):436-42 [11807556.001]
  • [Cites] Cancer Res. 2001 Sep 15;61(18):6885-91 [11559565.001]
  • [Cites] J Immunother. 2005 May-Jun;28(3):193-202 [15838375.001]
  • [Cites] J Neurooncol. 2004 Nov;70(2):137-60 [15674475.001]
  • [Cites] Cancer. 2004 Sep 1;101(5):1036-42 [15329913.001]
  • [Cites] Oncogene. 2005 Nov 24;24(53):7902-12 [16103881.001]
  • (PMID = 17917751.001).
  • [ISSN] 0344-5607
  • [Journal-full-title] Neurosurgical review
  • [ISO-abbreviation] Neurosurg Rev
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Basic Helix-Loop-Helix Transcription Factors; 0 / Interleukin-13 Receptor alpha2 Subunit; 0 / Nerve Tissue Proteins; 0 / OLIG2 protein, human
  •  go-up   go-down


55. Comincini S, Ferrara V, Arias A, Malovini A, Azzalin A, Ferretti L, Benericetti E, Cardarelli M, Gerosa M, Passarin MG, Turazzi S, Bellazzi R: Diagnostic value of PRND gene expression profiles in astrocytomas: relationship to tumor grades of malignancy. Oncol Rep; 2007 May;17(5):989-96
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • In order to address clinical important issues, PRND mRNA expression was investigated in a panel of 111 astrocytoma tissue samples, histologically classified according to the World Health Organization (WHO) criteria (6 grade I pilocytic astrocytomas, 15 grade II low-grade astrocytomas, 26 grade III anaplastic astrocytomas and 64 grade IV glioblastoma multiforme).
  • Real-time PRND gene expression profiling, after normalisation with GAPDH, revealed large differences between low (WHO I and II) and high grade (III and IV) of malignancy (P<0.001).
  • Extensive differences in PRND gene expression were also found within each grade of malignancy, suggesting that PRND mRNA quantitation might be useful to distinguish astrocytoma subtypes, and important in disease stratification and in the assessment of specific treatment strategies.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Prions / biosynthesis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17390034.001).
  • [ISSN] 1021-335X
  • [Journal-full-title] Oncology reports
  • [ISO-abbreviation] Oncol. Rep.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / GPI-Linked Proteins; 0 / PRND protein, human; 0 / Prions
  •  go-up   go-down


56. Shuangshoti S, Thorner PS, Ruangvejvorachai P, Saha B, Groshen S, Taylor CR, Malhotra S, Imam SA: J1-31 protein expression in astrocytes and astrocytomas. Neuropathology; 2009 Oct;29(5):521-7
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Materials consisted of formalin-fixed paraffin-embedded tissue specimens that included five cases of normal brain, 17 of gliosis, 15 of pilocytic astrocytoma (WHO grade I), 26 of low-grade diffuse astrocytoma (WHO grade II), four of anaplastic astrocytoma (WHO grade III), and eight of glioblastoma (WHO grade IV).
  • The antibody showed reactivity with tumor cells in 12/15 (80%) cases of pilocytic astrocytoma, although intensity of staining was generally weaker and more focal than observed in reactive gliosis.
  • J1-31-positive tumor cells were detected in only 9/26 (35%) cases of the low-grade diffuse astrocytoma and none of the cases of anaplastic astrocytoma and glioblastoma.
  • Increasing Ki-67 indices paralleled advancing tumor grades. p53 protein was expressed more commonly in infiltrating astrocytomas compared to pilocytic astrocytoma.
  • In conclusion, down-regulation of J1-31 expression correlates with advancing grade of astrocytomas.
  • The anti-J1-31 antibody may help further our understanding of astrocytes in disease and may be useful as an aid in the pathologic diagnosis of astrocytic lesions.
  • [MeSH-major] Astrocytes / metabolism. Astrocytoma / metabolism. Nerve Tissue Proteins / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19019178.001).
  • [ISSN] 1440-1789
  • [Journal-full-title] Neuropathology : official journal of the Japanese Society of Neuropathology
  • [ISO-abbreviation] Neuropathology
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Australia
  • [Chemical-registry-number] 0 / Glial Fibrillary Acidic Protein; 0 / J1-31 protein, human; 0 / Ki-67 Antigen; 0 / Nerve Tissue Proteins; 0 / Tumor Suppressor Protein p53
  •  go-up   go-down


57. Samaras V, Piperi C, Levidou G, Zisakis A, Kavantzas N, Themistocleous MS, Boviatsis EI, Barbatis C, Lea RW, Kalofoutis A, Korkolopoulou P: Analysis of interleukin (IL)-8 expression in human astrocytomas: associations with IL-6, cyclooxygenase-2, vascular endothelial growth factor, and microvessel morphometry. Hum Immunol; 2009 Jun;70(6):391-7
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • IL-6- and IL-8-secreting peripheral blood monocytes (PBMCs) were evaluated in 17 glioblastoma (WHO grade IV), 5 anaplastic astrocytoma (WHO grade III), and 6 diffuse astrocytoma patients (WHO grade II), in parallel with 23 healthy controls using enzyme-linked immunosorbent spot (ELISPOT) assay.
  • IL-8 immunoreactivity was detected in malignant cells or macrophages in perivascular areas and in pseudopalisading cells around necrosis and was positively correlated with histological grade (p = 0.0175) and tumor necrosis (p = 0.0793).
  • Moreover, our study seems to be the first attempt to link IL-8 expression by tumor cells with histological grade, implicating its potent role in gliomagenesis.
  • [MeSH-major] Astrocytoma / immunology. Brain Neoplasms / immunology. Cyclooxygenase 2 / immunology. Microvessels / immunology. Vascular Endothelial Growth Factor A / immunology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19332096.001).
  • [ISSN] 1879-1166
  • [Journal-full-title] Human immunology
  • [ISO-abbreviation] Hum. Immunol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, CD34; 0 / Interleukin-6; 0 / Interleukin-8; 0 / VEGFA protein, human; 0 / Vascular Endothelial Growth Factor A; EC 1.14.99.1 / Cyclooxygenase 2
  •  go-up   go-down


58. Figarella-Branger D, Bouvier C: [Histological classification of human gliomas: state of art and controversies]. Bull Cancer; 2005 Apr;92(4):301-9
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The aim is to define the histological type of glioma (astrocytic, oligodendrocytic or mixed) and the grade in order to classify the patients and give them an accurate treatment.
  • In particular this classification does not take into account the intrinsic morphological heterogeneity of infiltrative gliomas and does not discriminate the tumour cells from the residual brain parenchyma.
  • According to the WHO classification, infiltrative gliomas encompass astrocytic gliomas (diffuse astrocytomas grade II, anaplastic astrocytomas grade III and glioblastomas grade IV), oligodendroglial tumours (oligodendrogliomas grade II, anaplastic oligodendrogliomas grade III) and mixed gliomas (oligoastrocytomas grade II and anaplastic oligoastrocytomas grade III).
  • Circumscribed gliomas mainly corresponds to pilocytic astrocytomas (grade I).
  • Three distinct tumour growth patterns may be seen in gliomas, type I: tumor tissue only, type II: tumour tissue and isolated tumor cells permeating the brain parenchyma (ITC) and type III: ITCs only and no tumor tissue.
  • According to the Sainte Anne classification, gliomas are divided into astrocytic gliomas (pilocytic astrocytomas, structure type I, glioblastomas structure type II) and oligodendrogliomas and mixed oligoastrocytomas (grade A: lack of contrast enhancement and lack of endothelial hyperplasia, structure type III; and grade B: contrast enhancement or endothelial hyperplasia, structure type II and III).
  • [MeSH-major] Brain Neoplasms / pathology. Glioma / pathology
  • [MeSH-minor] Astrocytoma / pathology. Humans. Neoplasms, Complex and Mixed / classification. Neoplasms, Complex and Mixed / pathology. Oligodendroglioma / pathology. Reproducibility of Results. World Health Organization

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15888386.001).
  • [ISSN] 1769-6917
  • [Journal-full-title] Bulletin du cancer
  • [ISO-abbreviation] Bull Cancer
  • [Language] fre
  • [Publication-type] English Abstract; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] France
  •  go-up   go-down


59. Rathi KR, Radotra BD, Khosla VK: Proliferative index in astrocytic tumours. Indian J Pathol Microbiol; 2007 Oct;50(4):754-8

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Although internationally accepted WHO grading system of CNS tumours is based on histological features of H&E stained sections, yet there are cases where differentiation between grade II and grade III is difficult particularly when the biopsy is small.
  • Formalin-fixed paraffin-embedded surgical specimens from 90 cases of astrocytic tumours, 30 each of low-grade astrocytoma (grade II), anaplastic astrocytoma (grade III), and glioblastoma multiforme (grade IV), were immunostained by standard indirect immunoperoxidase technique using MIB-1 monoclonal antibody.
  • The mean MIB-1 LI values of astrocytomas, anaplastic astrocytomas and glioblastomas were 1.75 +/- 1.5%, 8.74 +/- 6.2%, and 20.54 +/- 12.2% respectively and there was statistically significant difference between grade II and III (Unpaired "t" test, T value 5.907, p value < 0.001) and grade III and grade IV (T value 4.734, p value < 0.001).
  • The statistical analysis also revealed that the mean MIB-1 LI increased with histological grade of malignancy (One way ANOVA test, p value < 0.001).
  • [MeSH-major] Astrocytoma / classification. Astrocytoma / pathology. Cell Proliferation. Glioblastoma / classification. Glioblastoma / pathology. Severity of Illness Index
  • [MeSH-minor] Brain Neoplasms / chemistry. Brain Neoplasms / classification. Brain Neoplasms / pathology. Flavivirus. Humans. Immunohistochemistry / methods. Ubiquitin-Protein Ligases / analysis

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18306542.001).
  • [ISSN] 0377-4929
  • [Journal-full-title] Indian journal of pathology & microbiology
  • [ISO-abbreviation] Indian J Pathol Microbiol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] India
  • [Chemical-registry-number] EC 6.3.2.19 / MIB1 ligase, human; EC 6.3.2.19 / Ubiquitin-Protein Ligases
  •  go-up   go-down


60. Stettner MR, Wang W, Nabors LB, Bharara S, Flynn DC, Grammer JR, Gillespie GY, Gladson CL: Lyn kinase activity is the predominant cellular SRC kinase activity in glioblastoma tumor cells. Cancer Res; 2005 Jul 1;65(13):5535-43
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • As we have found that Lyn, but not Fyn, activity promotes migration of glioblastoma cells in response to the cooperative signal generated by platelet-derived growth factor receptor beta and integrin alpha(v)beta3, we compared the activity and expression of Lyn and Fyn in glioblastoma (grade IV) tumor biopsy samples with that in anaplastic astrocytoma (grade III) tumors, nonneoplastic brain, and normal autopsy brain samples.
  • The levels of phosphorylation of the autophosphorylation site were consistent with significantly higher Lyn activity in glioblastoma tumor tissue than nonneoplastic brain.
  • Although the normalized levels of Lyn protein and the relative levels of Lyn message were significantly higher in glioblastoma samples than nonneoplastic brain, the normalized levels of Lyn protein did not correlate with Lyn activity in the glioblastoma samples.
  • There was no significant difference in the normalized levels of c-Src and Fyn protein and message in the glioblastoma and nonneoplastic brain.
  • [MeSH-major] Brain Neoplasms / enzymology. Glioblastoma / enzymology. src-Family Kinases / metabolism
  • [MeSH-minor] Astrocytoma / enzymology. Astrocytoma / genetics. Astrocytoma / pathology. Biopsy. Brain / enzymology. Endothelial Cells / enzymology. Humans. Immunohistochemistry. Phosphotransferases / genetics. Phosphotransferases / metabolism. Protein-Tyrosine Kinases. Proto-Oncogene Proteins / genetics. Proto-Oncogene Proteins / metabolism. Proto-Oncogene Proteins c-fyn. RNA, Messenger / genetics. RNA, Messenger / metabolism

  • Genetic Alliance. consumer health - Glioblastoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15994925.001).
  • [ISSN] 0008-5472
  • [Journal-full-title] Cancer research
  • [ISO-abbreviation] Cancer Res.
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / CA97110; United States / NCI NIH HHS / CA / P50 CA97247
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Proto-Oncogene Proteins; 0 / RNA, Messenger; EC 2.7.- / Phosphotransferases; EC 2.7.10.1 / Protein-Tyrosine Kinases; EC 2.7.10.2 / CSK tyrosine-protein kinase; EC 2.7.10.2 / FYN protein, human; EC 2.7.10.2 / Proto-Oncogene Proteins c-fyn; EC 2.7.10.2 / lyn protein-tyrosine kinase; EC 2.7.10.2 / src-Family Kinases
  •  go-up   go-down


61. Debono B, Derrey S, Rabehenoina C, Proust F, Freger P, Laquerrière A: Primary diffuse multinodular leptomeningeal gliomatosis: case report and review of the literature. Surg Neurol; 2006 Mar;65(3):273-82; discussion 282

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Histological examination revealed an anaplastic astrocytoma.
  • RESULTS: Complete neuraxis postmortem examination revealed no intraparenchymatous glioma and was conclusive for the diagnosis of primary leptomeningeal gliomatosis (astrocytic, World Health Organization grade III), with a multinodular pattern in the spinal cord, the brainstem, and the brain base with diffuse extension into the cerebellar subarachnoid spaces.
  • CONCLUSIONS: Our case illustrates the diagnostic difficulties in making the premortem diagnosis.
  • In most cases, autopsy evaluation alone permits definitive primary diffuse leptomeningeal gliomatosis diagnosis.
  • [MeSH-major] Astrocytoma / surgery. Meningeal Neoplasms / surgery. Neoplasms, Neuroepithelial / surgery. Peripheral Nervous System Neoplasms / surgery. Spinal Nerve Roots / surgery
  • [MeSH-minor] Brain / pathology. Cerebellum / pathology. Diagnosis, Differential. Fatal Outcome. Humans. Intracranial Pressure / physiology. Male. Meninges / pathology. Middle Aged. Neoplasm Invasiveness / pathology. Neurologic Examination. Prognosis

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16488248.001).
  • [ISSN] 0090-3019
  • [Journal-full-title] Surgical neurology
  • [ISO-abbreviation] Surg Neurol
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article; Review
  • [Publication-country] United States
  • [Number-of-references] 39
  •  go-up   go-down


62. Nafe R, Van de Nes J, Yan B, Schlote W: Distribution of nuclear size and internuclear distance are important criteria for grading astrocytomas. Clin Neuropathol; 2006 Jan-Feb;25(1):48-56
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • AIM: The differentiation between low-grade astrocytomas and anaplastic astrocytomas is susceptible to considerable inter-observer variability.
  • In order to contribute to a better standardization of astrocytoma-grading based on quantitative data, the present study focuses on two important aspects not being considered in previous morphometric studies: elaboration of a decision flow chart for tumor grading based on morphometric parameters and appropriate cut-off-values, easily performed using low-cost equipment such as measuring oculars; investigation of the distribution (histograms) of parameters describing nuclear size and internuclear distance, which had been represented in previous studies by their mean and standard deviation only.
  • MATERIAL AND METHODS: At least 300 tumor cell nuclei per case were investigated in paraffin sections from surgical specimen of 75 patients with astrocytomas WHO grade II (n = 23) and anaplastic astrocytomas WHO grade III (n = 52) by means of a digital image analysis system.
  • A decision tree was constructed using a knowledge based algorithm, which provided astrocytoma grading based on the distribution of values for nuclear diameter, as well as the numerical nuclear density and proliferation index.
  • CONCLUSION: The study demonstrates that a morphometric examination of tumor cell nuclei in paraffin sections supports the clinically important differential diagnosis between low-grade and high-grade astrocytomas.
  • [MeSH-major] Astrocytoma / classification. Astrocytoma / pathology. Brain Neoplasms / classification. Brain Neoplasms / pathology. Cell Nucleus / ultrastructure

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16465775.001).
  • [ISSN] 0722-5091
  • [Journal-full-title] Clinical neuropathology
  • [ISO-abbreviation] Clin. Neuropathol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  •  go-up   go-down


63. Nakamura M, Shimada K, Ishida E, Higuchi T, Nakase H, Sakaki T, Konishi N: Molecular pathogenesis of pediatric astrocytic tumors. Neuro Oncol; 2007 Apr;9(2):113-23
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Astrocytomas are the most common pediatric brain tumors, accounting for 7%-8% of all childhood cancers.
  • Here, we report an extensive characterization of 44 pediatric astrocytomas--16 diffuse astrocytomas (WHO grade II), 10 anaplastic astrocytomas (WHO grade III), and 18 glioblastomas (WHO grade IV)--in terms of genetic alterations frequently observed in adult astrocytomas.
  • Some form of p53 mutation was found in three diffuse astrocytomas, in three anaplastic astrocytomas, and in six glioblastomas examined; PTEN mutations were detected only in two glioblastomas.
  • EGFR amplification was detected in only one anaplastic astrocytoma and two glioblastomas, but no amplification was observed for the PDGFR-alpha gene.
  • Loss of heterozygosity (LOH) on 1p/19q and 10p/10q was less common in pediatric astrocytic tumors than in those seen in adults, but the frequency of LOH on 22q was comparable, occurring in 44% of diffuse astrocytomas, 40% of anaplastic astrocytomas, and 61% of glioblastomas.
  • Interestingly, a higher frequency of p53 mutations and LOH on 19q and 22q in tumors from children six or more years of age at diagnosis was found, compared with those from younger children.
  • Our results suggest some differences in children compared to adults in the genetic pathways leading to the formation of de novo astrocytic tumors.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Hum Pathol. 1999 Nov;30(11):1284-90 [10571506.001]
  • [Cites] Acta Neuropathol. 2005 Oct;110(4):402-10 [16155764.001]
  • [Cites] Lab Invest. 2000 Jan;80(1):65-72 [10653004.001]
  • [Cites] Brain Pathol. 2000 Apr;10(2):249-59 [10764044.001]
  • [Cites] J Neuropathol Exp Neurol. 2000 Jun;59(6):539-43 [10850866.001]
  • [Cites] Lab Invest. 2001 Jan;81(1):77-82 [11204276.001]
  • [Cites] Cancer Res. 2001 Mar 1;61(5):2124-8 [11280776.001]
  • [Cites] Am J Pathol. 2001 Apr;158(4):1253-62 [11290543.001]
  • [Cites] Brain Pathol. 2001 Apr;11(2):159-68 [11303791.001]
  • [Cites] Carcinogenesis. 2001 Oct;22(10):1715-9 [11577014.001]
  • [Cites] Childs Nerv Syst. 2001 Sep;17(9):503-11 [11585322.001]
  • [Cites] J Neuropathol Exp Neurol. 2001 Nov;60(11):1099-104 [11706939.001]
  • [Cites] Cancer. 2001 Dec 15;92(12):3155-64 [11753995.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Mar;61(3):215-25; discussion 226-9 [11895036.001]
  • [Cites] Acta Neuropathol. 2002 Mar;103(3):267-75 [11907807.001]
  • [Cites] Curr Treat Options Oncol. 2001 Dec;2(6):529-36 [12057098.001]
  • [Cites] J Neurooncol. 2002 Sep;59(2):117-22 [12241104.001]
  • [Cites] Cancer Res. 2003 Feb 15;63(4):737-41 [12591717.001]
  • [Cites] Brain Pathol. 2004 Apr;14(2):131-6 [15193025.001]
  • [Cites] Cancer Res. 2004 Oct 1;64(19):6892-9 [15466178.001]
  • [Cites] Cancer Res. 1990 May 15;50(10):2987-90 [2334901.001]
  • [Cites] Cancer. 1993 May 15;71(10 Suppl):3229-36 [8490859.001]
  • [Cites] Brain Pathol. 1993 Jan;3(1):19-26 [8269081.001]
  • [Cites] Oncogene. 1994 Mar;9(3):949-54 [8108140.001]
  • [Cites] Neurosurgery. 1994 Feb;34(2):213-9; discussion 219-20 [8177380.001]
  • [Cites] J Neurosurg. 1994 Sep;81(3):427-36 [8057151.001]
  • [Cites] Neurosurgery. 1994 Jun;34(6):967-72; discussion 972-3 [8084407.001]
  • [Cites] Brain Pathol. 1996 Jul;6(3):217-23; discussion 23-4 [8864278.001]
  • [Cites] Neurosurgery. 1996 Feb;38(2):258-64 [8869052.001]
  • [Cites] Cytogenet Cell Genet. 1996;72(2-3):100-12 [8978759.001]
  • [Cites] Cancer Res. 1997 Jan 15;57(2):304-9 [9000573.001]
  • [Cites] Brain Pathol. 1997 Apr;7(2):755-64 [9161727.001]
  • [Cites] J Neuropathol Exp Neurol. 1997 Jul;56(7):782-9 [9210874.001]
  • [Cites] Nat Genet. 1997 Sep;17(1):32-9 [9288095.001]
  • [Cites] Genes Chromosomes Cancer. 1998 May;22(1):9-15 [9591629.001]
  • [Cites] Acta Neuropathol. 1998 Jun;95(6):559-64 [9650746.001]
  • [Cites] J Neuropathol Exp Neurol. 1998 Jul;57(7):684-9 [9690672.001]
  • [Cites] Clin Cancer Res. 1999 Jul;5(7):1786-92 [10430083.001]
  • [Cites] Oncogene. 1999 Jul 15;18(28):4144-52 [10435596.001]
  • [Cites] Lab Invest. 2005 Feb;85(2):165-75 [15592495.001]
  • [Cites] Clin Cancer Res. 1999 Dec;5(12):4085-90 [10632344.001]
  • (PMID = 17327574.001).
  • [ISSN] 1522-8517
  • [Journal-full-title] Neuro-oncology
  • [ISO-abbreviation] Neuro-oncology
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 2.7.10.1 / Receptor, Platelet-Derived Growth Factor beta; EC 3.1.3.67 / PTEN Phosphohydrolase
  • [Other-IDs] NLM/ PMC1871665
  •  go-up   go-down


64. Erdamar S, Bagci P, Oz B, Dirican A: Correlation of endothelial nitric oxide synthase and vascular endothelial growth factor expression with malignancy in patients with astrocytic tumors. J BUON; 2006 Apr-Jun;11(2):213-6
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • PURPOSE: Many characteristics of malignant brain tumors (increased vascular permeability, vasodilatation, neovascularisation and free radical injury to the tumor and adjacent normal tissues) are believed to be mediated by nitric oxide (NO) synthetized by endothelial NO synthase (eNOS).
  • Our aim was to study immunohistochemically the coexpression of eNOS and VEGF in astrocytic tumors and to analyse their possible correlation with tumor grade, angiogenesis and proliferation index.
  • MATERIALS AND METHODS: Sections from 120 randomly selected patients with supratentorial astrocytic tumors [38 glioblastomas (GB), 22 anaplastic astrocytomas (AA) and 20 low-grade astrocytomas (LA)], also including oligodendrogliomas (n=20) and mixed oligoastrocytomas (n=20), were immunostained with monoclonal antibodies for eNOS and VEGF using the avidin-biotin method.
  • RESULTS: There was positive correlation between eNOS and VEGF expressions and histological grade (p<0.05) in terms of intensity and extent of immunoreactivity distribution.
  • CONCLUSION: Overexpressions of eNOS and VEGF in astrocytic tumors were significantly correlated with histological grade, proliferative potential and malignant transformation.
  • The expression of VEGF in a necrotic and ischemic tumor such as GB is more intense and diffuse than low-grade astrocytomas.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Nitric Oxide Synthase Type III / biosynthesis. Vascular Endothelial Growth Factor A / biosynthesis

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17318973.001).
  • [ISSN] 1107-0625
  • [Journal-full-title] Journal of B.U.ON. : official journal of the Balkan Union of Oncology
  • [ISO-abbreviation] J BUON
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / Vascular Endothelial Growth Factor A; EC 1.14.13.39 / Nitric Oxide Synthase Type III
  •  go-up   go-down


65. Ohgaki H, Kleihues P: Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol; 2005 Jun;64(6):479-89
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • While survival rates for pilocytic astrocytomas were excellent (96% at 10 years), the prognosis of diffusely infiltrating gliomas was poorer, with median survival times (MST) of 5.6 years for low-grade astrocytoma WHO grade II, 1.6 years for anaplastic astrocytoma grade III, and 0.4 years for glioblastoma.
  • For oligodendrogliomas the MSTwas 11.6 years for grade II and 3.5 years for grade III.
  • Primary (de novo) glioblastomas prevailed (95%), while secondary glioblastomas that progressed from low-grade or anaplastic gliomas were rare (5%).
  • [MeSH-major] Astrocytoma. Brain Neoplasms. Loss of Heterozygosity. Oligodendroglioma. Tumor Suppressor Protein p53 / genetics


66. Nafe R, Schlote W, Schneider B: Histomorphometry of tumour cell nuclei in astrocytomas using shape analysis, densitometry and topometric analysis. Neuropathol Appl Neurobiol; 2005 Feb;31(1):34-44
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Although tumour cell nuclei are important histological structures for grading of astrocytomas according to the WHO-classification of brain tumours, there is no reported morphometric study of astrocytomas which describes quantitatively the four main morphologic criteria of tumour cell nuclei: size, shape, texture (densitometric characteristics) and spatial relationships between the nuclei (topometric analysis).
  • The objective of the study was to test, if these morphometric parameters were sufficient for statistical discrimination between pilocytic astrocytomas WHO-grade I, astrocytomas grade II and anaplastic astrocytomas grade III.
  • Our results showed a correct reclassification of 97.3% (72/74) of the cases with respect to the tumour grade by means of cross-validated discriminant analysis.
  • [MeSH-major] Astrocytoma / pathology. Astrocytoma / ultrastructure. Brain Neoplasms / pathology. Brain Neoplasms / ultrastructure. Cell Nucleus / pathology. Cell Nucleus / ultrastructure

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15634229.001).
  • [ISSN] 0305-1846
  • [Journal-full-title] Neuropathology and applied neurobiology
  • [ISO-abbreviation] Neuropathol. Appl. Neurobiol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


67. Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stühler K, Meyer HE, Reifenberger G: Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol; 2010 May;20(3):539-50
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Diffuse astrocytoma of World Health Organization (WHO) grade II has an inherent tendency to spontaneously progress to anaplastic astrocytoma WHO grade III or secondary glioblastoma WHO grade IV.
  • We explored the role of microRNAs (miRNAs) in glioma progression by investigating the expression profiles of 157 miRNAs in four patients with primary WHO grade II gliomas that spontaneously progressed to WHO grade IV secondary glioblastomas.
  • Validation experiments on independent series of primary low-grade and secondary high-grade astrocytomas confirmed miR-17 and miR-184 as promising candidates, which were selected for functional analyses.
  • [MeSH-major] Brain Neoplasms / genetics. Brain Neoplasms / pathology. Cell Transformation, Neoplastic / pathology. Glioma / genetics. Glioma / pathology. MicroRNAs / physiology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19775293.001).
  • [ISSN] 1750-3639
  • [Journal-full-title] Brain pathology (Zurich, Switzerland)
  • [ISO-abbreviation] Brain Pathol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0 / MicroRNAs
  •  go-up   go-down


68. da Fonseca CO, Linden R, Futuro D, Gattass CR, Quirico-Santos T: Ras pathway activation in gliomas: a strategic target for intranasal administration of perillyl alcohol. Arch Immunol Ther Exp (Warsz); 2008 Jul-Aug;56(4):267-76
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Intranasal delivery allows drugs that do not cross the blood-brain barrier to enter the central nervous system.
  • The cohort consisted of 37 patients, including 29 with glioblastoma multiforme (GBM), 5 with grade III astrocytoma (AA), and 3 with anaplastic oligodendroglioma (AO).
  • [MeSH-major] Antineoplastic Agents / therapeutic use. Brain Neoplasms / drug therapy. Glioma / drug therapy. Mitogen-Activated Protein Kinase Kinases / metabolism. Monoterpenes / therapeutic use. ras Proteins / metabolism
  • [MeSH-minor] Administration, Intranasal. Adult. Aged. Apoptosis / drug effects. Astrocytoma / drug therapy. Astrocytoma / metabolism. Disease-Free Survival. Female. Glioblastoma / drug therapy. Glioblastoma / metabolism. Humans. Male. Middle Aged. Neoplasm Recurrence, Local / drug therapy. Neoplasm Recurrence, Local / metabolism. Oligodendroglioma / drug therapy. Oligodendroglioma / metabolism. Signal Transduction / drug effects


69. El-Habr EA, Tsiorva P, Theodorou M, Levidou G, Korkolopoulou P, Vretakos G, Petraki L, Michalopoulos NV, Patsouris E, Saetta AA: Analysis of PIK3CA and B-RAF gene mutations in human astrocytomas: association with activation of ERK and AKT. Clin Neuropathol; 2010 Jul-Aug;29(4):239-45
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Neither low grade astrocytomas nor anaplastic astrocytomas revealed any mutations in these genes.
  • Moreover, pERK nuclear expression increased in parallel with tumor grade (II, III v/s IV, p = 0.0262).
  • pAKT cytoplasmic expression increased with increasing tumor grade (II,III v/s IV, p = 0.0930), although the latter relationship was of marginal significance. pAKT cytoplasmic expression was also positively correlated with pERK nuclear expression (p = 0.0156).
  • Moreover, the correlation of pERK nuclear and pAKT cytoplasmic expression with tumor grade suggests the possible crucial role of the activation of these proteins in human gliomagenesis.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. MAP Kinase Signaling System / physiology. Mutation / genetics. Phosphatidylinositol 3-Kinases / genetics. Proto-Oncogene Proteins B-raf / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20569675.001).
  • [ISSN] 0722-5091
  • [Journal-full-title] Clinical neuropathology
  • [ISO-abbreviation] Clin. Neuropathol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] EC 2.7.1.- / Phosphatidylinositol 3-Kinases; EC 2.7.1.137 / PIK3CA protein, human; EC 2.7.11.1 / BRAF protein, human; EC 2.7.11.1 / Proto-Oncogene Proteins B-raf; EC 2.7.11.1 / Proto-Oncogene Proteins c-akt; EC 2.7.11.24 / Extracellular Signal-Regulated MAP Kinases
  •  go-up   go-down


70. Mott RT, Turner KC, Bigner DD, McLendon RE: Utility of EGFR and PTEN numerical aberrations in the evaluation of diffusely infiltrating astrocytomas. Laboratory investigation. J Neurosurg; 2008 Feb;108(2):330-5
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • OBJECT: Diffusely infiltrating astrocytomas are the most common primary brain tumors.
  • Given the important roles for EGFR and PTEN in the malignant progression of astrocytomas, the authors hypothesized that the fraction of tumor cells with aberrations in these genetic loci would correlate with the histological grade.
  • METHODS: The authors evaluated 217 consecutive diffusely infiltrating astrocytomas that were graded using the WHO guidelines, including 16 diffuse astrocytomas (WHO Grade II), 72 anaplastic astrocytomas ([AAs] WHO Grade III), and 129 glioblastomas multiforme ([GBMs] WHO Grade IV).
  • RESULTS: The population of tumor cells with polysomy of chromosome 7 and the EGFR locus and monosomy of chromosome 10 and the PTEN locus correlated significantly with histological grade.
  • In particular, high-grade astrocytomas (that is, AAs and GBMs) had elevated fractions of tumor cells with polysomy of chromosome 7 and the EGFR locus and monosomy of chromosome 10 and the PTEN locus.
  • Using these findings, the authors generated a mathematical model capable of subcategorizing high-grade astrocytomas.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Chromosome Aberrations. Genes, erbB-1 / genetics. PTEN Phosphohydrolase / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18240930.001).
  • [ISSN] 0022-3085
  • [Journal-full-title] Journal of neurosurgery
  • [ISO-abbreviation] J. Neurosurg.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] EC 3.1.3.48 / PTEN protein, human; EC 3.1.3.67 / PTEN Phosphohydrolase
  •  go-up   go-down


71. Bozinov O, Kalk JM, Krayenbühl N, Woernle CM, Sure U, Bertalanffy H: Decreasing expression of the interleukin-13 receptor IL-13Ralpha2 in treated recurrent malignant gliomas. Neurol Med Chir (Tokyo); 2010;50(8):617-21
Hazardous Substances Data Bank. TENIPOSIDE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The expression level of IL-13Ralpha2 was examined in a total of 45 tissue samples of anaplastic astrocytomas (AAs) World Health Organization (WHO) grade III, glioblastomas (GBMs) WHO grade IV, and first-recurrent glioblastomas (frGBMs) after treatment with radiation and chemotherapy.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Glioblastoma / metabolism. Interleukin-13 Receptor alpha2 Subunit / metabolism. Neoplasm Recurrence, Local / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20805641.001).
  • [ISSN] 1349-8029
  • [Journal-full-title] Neurologia medico-chirurgica
  • [ISO-abbreviation] Neurol. Med. Chir. (Tokyo)
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] Japan
  • [Chemical-registry-number] 0 / Actins; 0 / Exotoxins; 0 / IL13-PE38QQR; 0 / Immunotoxins; 0 / Interleukin-13; 0 / Interleukin-13 Receptor alpha2 Subunit; 0S726V972K / Nimustine; 63231-63-0 / RNA; 957E6438QA / Teniposide
  •  go-up   go-down


72. Ducray F, Dutertre G, Ricard D, Gontier E, Idbaih A, Massard C: [Advances in adults' gliomas biology, imaging and treatment]. Bull Cancer; 2010 Jan;97(1):17-36
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Transliterated title] Actualités dans la biologie, l'imagerie et le traitement des gliomes de l'adulte.
  • In anaplastic gliomas ongoing studies depend on 1p/19q codeletion status and in glioblastomas on MGMT methylation status.
  • Advanced brain tumor imaging elicits a better identification of gliomas evolutive potential of.
  • In low-grade gliomas, the importance of maximal resection and the role of chemotherapy are being increasingly recognized.
  • In anaplastic gliomas, phase III studies have clarified the respective roles of chemotherapy and radiotherapy.
  • [MeSH-major] Brain Neoplasms. Glioma
  • [MeSH-minor] Adult. Astrocytoma / diagnosis. Astrocytoma / genetics. Astrocytoma / therapy. Combined Modality Therapy / methods. Diagnostic Imaging / methods. Humans. Oligodendroglioma / diagnosis. Oligodendroglioma / genetics. Oligodendroglioma / therapy. Receptor, Epidermal Growth Factor / antagonists & inhibitors. Receptors, Vascular Endothelial Growth Factor / antagonists & inhibitors

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20028650.001).
  • [ISSN] 1769-6917
  • [Journal-full-title] Bulletin du cancer
  • [ISO-abbreviation] Bull Cancer
  • [Language] fre
  • [Publication-type] English Abstract; Journal Article; Review
  • [Publication-country] France
  • [Chemical-registry-number] EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 2.7.10.1 / Receptors, Vascular Endothelial Growth Factor
  • [Number-of-references] 166
  •  go-up   go-down


73. Attenello FJ, Mukherjee D, Datoo G, McGirt MJ, Bohan E, Weingart JD, Olivi A, Quinones-Hinojosa A, Brem H: Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol; 2008 Oct;15(10):2887-93
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • BACKGROUND: Gliadel (polifeprosan 20 with carmustine [BCNU] implant) is commonly used for local delivery of BCNU to high-grade gliomas after resection and is associated with increased survival.
  • METHODS: We retrospectively reviewed records of 1013 patients undergoing craniotomy for resection of malignant brain astrocytoma (World Health Organization grade III/IV disease).
  • RESULTS: A total of 1013 craniotomies were performed for malignant brain astrocytoma.
  • A total of 288 (28%) received Gliadel wafer (250 glioblastoma multiforme (GBM), 38 anaplastic astrocytoma/anaplastic oligodendroglioma (AA/AO), 166 primary resection, 122 revision resection).
  • CONCLUSION: In our experience, use of Gliadel wafer was not associated with an increase in perioperative morbidity after surgical treatment of malignant astrocytoma.
  • [MeSH-major] Antineoplastic Agents, Alkylating / therapeutic use. Biocompatible Materials / therapeutic use. Brain Neoplasms / drug therapy. Brain Neoplasms / surgery. Carmustine / therapeutic use. Decanoic Acids / therapeutic use. Neurosurgical Procedures. Polyesters / therapeutic use

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. Carmustine .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18636295.001).
  • [ISSN] 1534-4681
  • [Journal-full-title] Annals of surgical oncology
  • [ISO-abbreviation] Ann. Surg. Oncol.
  • [Language] eng
  • [Publication-type] Clinical Trial; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 0 / Biocompatible Materials; 0 / Decanoic Acids; 0 / Drug Carriers; 0 / Polyesters; 90409-78-2 / decanedioic acid-4,4'-(1,3-propanediylbis(oxy))bis(benzoic acid) copolymer; U68WG3173Y / Carmustine
  •  go-up   go-down


74. Nakamura M, Shimada K, Nakase H, Konishi N: [Clinicopathological diagnosis of gliomas by genotype analysis]. Brain Nerve; 2009 Jul;61(7):773-80
Hazardous Substances Data Bank. PROCARBAZINE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Clinicopathological diagnosis of gliomas by genotype analysis].
  • Glioblastomas (WHO grade IV) may develop de novo (primary glioblastomas) or through progression from lower-grade astrocytomas (secondary glioblastomas) both glioblastomas show similar histological features.
  • Oligodendroglioma is recognized as a particular subtype of gliomas that shows remarkable response to chemotherapy [procarbazine+CCNU+vincristine (PCV)], making their correct diagnosis important.
  • However, the histological differentiation of oligodendrogliomas from diffuse astrocytoma could be highly subjective in cases without typical morphological features.
  • Loss of heterozygosity (LOH) on chromosomes 1p and 19q is correlated with sensitivity to PCV chemotherapy with increased survival in anaplastic oligodendroglioma cases (WHO grade III).
  • This article suggests that more biological and molecular approaches to brain tumor classification will provide improved means to treat these tumors.
  • [MeSH-major] Genotype. Glioblastoma / diagnosis. Glioblastoma / genetics. Molecular Diagnostic Techniques
  • [MeSH-minor] Antineoplastic Agents, Alkylating. Antineoplastic Combined Chemotherapy Protocols / administration & dosage. Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Brain Neoplasms. Chromosomes, Human, Pair 1 / genetics. Chromosomes, Human, Pair 19 / genetics. DNA Modification Methylases / genetics. DNA Repair Enzymes / genetics. Dacarbazine / analogs & derivatives. Humans. Lomustine / administration & dosage. Loss of Heterozygosity. Pharmacogenetics. Procarbazine / administration & dosage. Prognosis. Tumor Suppressor Proteins / genetics. Vincristine / administration & dosage

  • Hazardous Substances Data Bank. LOMUSTINE .
  • Hazardous Substances Data Bank. DACARBAZINE .
  • Hazardous Substances Data Bank. VINCRISTINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19618854.001).
  • [ISSN] 1881-6096
  • [Journal-full-title] Brain and nerve = Shinkei kenkyū no shinpo
  • [ISO-abbreviation] Brain Nerve
  • [Language] jpn
  • [Publication-type] English Abstract; Journal Article; Review
  • [Publication-country] Japan
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 0 / Tumor Suppressor Proteins; 35S93Y190K / Procarbazine; 5J49Q6B70F / Vincristine; 7BRF0Z81KG / Lomustine; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide; EC 2.1.1.- / DNA Modification Methylases; EC 2.1.1.63 / MGMT protein, human; EC 6.5.1.- / DNA Repair Enzymes; PCV protocol
  • [Number-of-references] 42
  •  go-up   go-down


75. Boss A, Bisdas S, Kolb A, Hofmann M, Ernemann U, Claussen CD, Pfannenberg C, Pichler BJ, Reimold M, Stegger L: Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med; 2010 Aug;51(8):1198-205
Hazardous Substances Data Bank. (L)-Methionine .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Diagnoses at the time of referral were low-grade astrocytoma (n = 2), suspicion of low-grade astrocytoma (n = 1), anaplastic astrocytoma (World Health Organization grade III; n = 1), glioblastoma (n = 2), atypical neurocytoma (n = 1), and meningioma (n = 3).
  • CONCLUSION: Structural, functional, and molecular imaging in patients with brain tumors is feasible with diagnostic imaging quality using simultaneous hybrid PET/MR image acquisition.
  • [MeSH-major] Brain Neoplasms / pathology. Brain Neoplasms / radionuclide imaging. Magnetic Resonance Imaging / methods. Positron-Emission Tomography / methods

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - MRI Scans.
  • COS Scholar Universe. author profiles.
  • ClinicalTrials.gov. clinical trials - ClinicalTrials.gov .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20660388.001).
  • [ISSN] 1535-5667
  • [Journal-full-title] Journal of nuclear medicine : official publication, Society of Nuclear Medicine
  • [ISO-abbreviation] J. Nucl. Med.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Gallium Radioisotopes; 0 / Radiopharmaceuticals; AE28F7PNPL / Methionine; RWM8CCW8GP / Octreotide; U194AS08HZ / Edotreotide
  •  go-up   go-down


76. Belda-Iniesta C, de Castro Carpeño J, Casado Sáenz E, Cejas Guerrero P, Perona R, González Barón M: Molecular biology of malignant gliomas. Clin Transl Oncol; 2006 Sep;8(9):635-41

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Gliomas are the most common primary brain tumours.
  • For example, gliomas of astrocytic origin (astrocytomas) are classified into pilocytic astrocytoma (grade I), astrocytoma (grade II), anaplastic astrocytoma (grade III) and glioblastoma multiforme (GMB) (grade IV).
  • Tumors derived from oligodendrocytes include grade II (oliogodendrogliomas) and grade III neoplasms (oligoastrocytoma).
  • On the opposite site, patients carrying a glioblastoma multiforme usually die within the first year after the diagnosis is made.
  • Furthermore, the ability that allows several low-grade gliomas to progress into more aggressive tumors has allowed cancer researchers to elucidate several pathways implicated in molecular biology of these devastating tumors.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Neoplasia. 2005 Jan;7(1):7-16 [15720813.001]
  • [Cites] Am J Pathol. 2003 Sep;163(3):1033-43 [12937144.001]
  • [Cites] Glia. 2002 Sep;39(3):193-206 [12203386.001]
  • [Cites] Biochem Biophys Res Commun. 2005 Sep 9;334(4):1351-8 [16039986.001]
  • [Cites] Cell. 1995 Dec 15;83(6):993-1000 [8521522.001]
  • [Cites] Cancer Res. 2005 May 15;65(10):4088-96 [15899798.001]
  • [Cites] Cancer Res. 2001 Sep 15;61(18):6674-8 [11559533.001]
  • [Cites] Cell Cycle. 2006 Apr;5(7):783-91 [16582634.001]
  • [Cites] Int J Cancer. 2006 Aug 15;119(4):792-800 [16550607.001]
  • [Cites] Cancer Treat Rev. 2004 Apr;30(2):193-204 [15023437.001]
  • [Cites] Cancer Cell. 2006 Mar;9(3):157-73 [16530701.001]
  • [Cites] Nat Genet. 2000 May;25(1):55-7 [10802656.001]
  • [Cites] Int J Cancer. 1995 Aug 9;62(4):386-92 [7635563.001]
  • [Cites] Mol Cancer Ther. 2002 Nov;1(13):1229-36 [12479704.001]
  • [Cites] Cancer Cell. 2003 Apr;3(4):311-6 [12726857.001]
  • [Cites] Cancer Cell. 2002 Apr;1(3):269-77 [12086863.001]
  • [Cites] Physiol Genomics. 2001 Feb 07;5(1):21-33 [11161003.001]
  • [Cites] Cancer Res. 2000 Dec 1;60(23):6617-22 [11118044.001]
  • [Cites] Oncogene. 2003 Dec 8;22(56):9030-40 [14663481.001]
  • [Cites] Cancer Res. 2005 May 15;65(10 ):4051-8 [15899794.001]
  • [Cites] Clin Cancer Res. 2004 Jan 1;10(1 Pt 1):212-21 [14734472.001]
  • [Cites] Cancer Res. 2003 Sep 15;63(18):5821-8 [14522905.001]
  • [Cites] Cancer Res. 2004 Oct 1;64(19):7011-21 [15466194.001]
  • [Cites] Cancer Res. 1997 Oct 1;57(19):4183-6 [9331071.001]
  • [Cites] J Neuropathol Exp Neurol. 1998 Feb;57(2):122-30 [9600204.001]
  • [Cites] Genes Dev. 1998 Dec 1;12(23):3644-9 [9851971.001]
  • [Cites] Cell. 2004 Apr 16;117(2):211-23 [15084259.001]
  • [Cites] J Neurooncol. 1998 Jan;36(2):123-40 [9525812.001]
  • [Cites] Cancer Res. 1995 May 1;55(9):1941-5 [7728764.001]
  • [Cites] Oncogene. 2001 Mar 1;20(9):1103-9 [11314047.001]
  • [Cites] Cancer Res. 1994 Nov 15;54(22):5804-7 [7954404.001]
  • [Cites] Oncogene. 2004 Jun 3;23 (26):4594-602 [15077177.001]
  • [Cites] Cancer Res. 2001 Sep 15;61(18):6885-91 [11559565.001]
  • [Cites] Genes Chromosomes Cancer. 1994 Oct;11(2):91-6 [7529554.001]
  • [Cites] Cancer Res. 2003 Apr 1;63(7):1602-7 [12670911.001]
  • [Cites] J Neuropathol Exp Neurol. 1994 Jan;53(1):11-21 [8301315.001]
  • (PMID = 17005465.001).
  • [ISSN] 1699-048X
  • [Journal-full-title] Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
  • [ISO-abbreviation] Clin Transl Oncol
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] Italy
  • [Number-of-references] 36
  •  go-up   go-down


77. Maiti AK, Ghosh K, Chatterjee U, Chakrobarti S, Chatterjee S, Basu S: Epidermal growth factor receptor and proliferating cell nuclear antigen in astrocytomas. Neurol India; 2008 Oct-Dec;56(4):456-62
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • MATERIALS AND METHODS: We investigated the immunohistochemical expression of EGFR and PCNA using the appropriate monoclonal antibodies in 40 cases of astrocytic tumors of which 21 cases were glioblastoma, eight cases were Grade III or anaplastic astrocytomas and six cases were Grade II or diffuse astrocytomas and five cases were Grade I or pilocytic astrocytomas.
  • RESULTS: Both the EGFR expression and PCNA labeling index increase with increasing grades of astrocytomas with a significantly high percentage of cells showing positive staining for both EGFR and PCNA in GBM and Grade III astrocytomas compared to Grade II astrocytomas.
  • The expression levels of both EGFR and PCNA were low in Grade I or pilocytic astrocytomas.
  • CONCLUSIONS: A significant correlation was found between EGFR overexpression and PCNA labeling index in Grade III and Grade II astrocytomas and glioblastoma.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Proliferating Cell Nuclear Antigen / metabolism. Receptor, Epidermal Growth Factor / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19127042.001).
  • [ISSN] 0028-3886
  • [Journal-full-title] Neurology India
  • [ISO-abbreviation] Neurol India
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] India
  • [Chemical-registry-number] 0 / Proliferating Cell Nuclear Antigen; EC 2.7.10.1 / Receptor, Epidermal Growth Factor
  •  go-up   go-down


78. Balkanov AS, Makarenko MF, Poliakov PIu, Kachkov IA: [Results of hyperfractionated radiation therapy used in combination with lomustin in malignant gliomas of the brain]. Zh Vopr Neirokhir Im N N Burdenko; 2005 Jul-Sep;(3):14-16; discussion 16-7
Hazardous Substances Data Bank. DEXAMETHASONE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Results of hyperfractionated radiation therapy used in combination with lomustin in malignant gliomas of the brain].
  • The postoperative use of lomustin, a nitrosourea agent, was investigated for its impact on the efficiency of hyperfractionated radiation therapy performed in patients with glioblastoma and anaplastic astrocytoma of the brain.
  • A total of 35 patients (26 and 9 patients with glioblastoma and anaplastic astrocytoma, respectively) were followed up.
  • Lomustin in combination with hyperfractionated radiation therapy was found to have no effect on the survival of patients with glioblastoma and anaplastic astrocytoma.
  • [MeSH-major] Antineoplastic Agents, Alkylating / therapeutic use. Brain Neoplasms / drug therapy. Brain Neoplasms / radiotherapy. Glioma / drug therapy. Glioma / radiotherapy. Lomustine / therapeutic use

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. LOMUSTINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16485820.001).
  • [ISSN] 0042-8817
  • [Journal-full-title] Zhurnal voprosy neĭrokhirurgii imeni N. N. Burdenko
  • [ISO-abbreviation] Zh Vopr Neirokhir Im N N Burdenko
  • [Language] rus
  • [Publication-type] Clinical Trial; English Abstract; Journal Article
  • [Publication-country] Russia (Federation)
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 7BRF0Z81KG / Lomustine; 7S5I7G3JQL / Dexamethasone
  •  go-up   go-down


79. Capper D, Mittelbronn M, Meyermann R, Schittenhelm J: Pitfalls in the assessment of MGMT expression and in its correlation with survival in diffuse astrocytomas: proposal of a feasible immunohistochemical approach. Acta Neuropathol; 2008 Feb;115(2):249-59
MedlinePlus Health Information. consumer health - Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • For this, 162 astrocytic tumors WHO II-IV (36 diffuse astrocytomas WHO II, 51 anaplastic astrocytomas, 75 primary glioblastomas) as well as 25 glioblastoma infiltration zones and 19 glioblastoma relapses were analyzed for immunohistochemical MGMT protein expression using tissue microarray technique.
  • Expression of MGMT significantly decreased from WHO grade II (25.6%) to glioblastoma (16.8%, p = 0.01) with lowest levels in grade III tumors (10.2%, II/III p < 0.0001).
  • Significant negative associations of MGMT and survival were detected for WHO grade II and IV (p = 0.003 and 0.013).
  • We conclude that immunohistochemical MGMT assessment has potential as a powerful diagnostic tool but analysis should only be performed in a grade dependent manner, before radio-/chemotherapy and with special attention to the infiltration zone of diffuse astrocytomas.
  • [MeSH-major] Astrocytoma / metabolism. Astrocytoma / mortality. Biomarkers, Tumor / analysis. Brain Neoplasms / metabolism. Brain Neoplasms / mortality. DNA Modification Methylases / biosynthesis. DNA Repair Enzymes / biosynthesis. Tumor Suppressor Proteins / biosynthesis

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17965865.001).
  • [ISSN] 0001-6322
  • [Journal-full-title] Acta neuropathologica
  • [ISO-abbreviation] Acta Neuropathol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Biomarkers, Tumor; 0 / Tumor Suppressor Proteins; EC 2.1.1.- / DNA Modification Methylases; EC 2.1.1.63 / MGMT protein, human; EC 6.5.1.- / DNA Repair Enzymes
  •  go-up   go-down


80. Kronik N, Kogan Y, Vainstein V, Agur Z: Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol Immunother; 2008 Mar;57(3):425-39
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Glioblastoma (GBM), a highly aggressive (WHO grade IV) primary brain tumor, is refractory to traditional treatments, such as surgery, radiation or chemotherapy.
  • The mathematical model successfully retrieved clinical trial results of efficacious aCTL immunotherapy for recurrent anaplastic oligodendroglioma and anaplastic astrocytoma (WHO grade III).
  • Re-initiation of clinical trials, using calculated individualized regimens for grade III-IV malignant glioma, is suggested.
  • [MeSH-major] Brain Neoplasms / immunology. Computer Simulation. Glioblastoma / immunology. Immunotherapy / methods. Models, Immunological. T-Lymphocytes, Cytotoxic / immunology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [ErratumIn] Cancer Immunol Immunother. 2008 Mar;57(3):441
  • (PMID = 17823798.001).
  • [ISSN] 0340-7004
  • [Journal-full-title] Cancer immunology, immunotherapy : CII
  • [ISO-abbreviation] Cancer Immunol. Immunother.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Cytokines
  •  go-up   go-down


81. Talos IF, Zou KH, Kikinis R, Jolesz FA: Volumetric assessment of tumor infiltration of adjacent white matter based on anatomic MRI and diffusion tensor tractography. Acad Radiol; 2007 Apr;14(4):431-6
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • RATIONALE AND OBJECTIVES: To perform a retrospective, quantitative assessment of the anatomic relationship between intra-axial, supratentorial, primary brain tumors, and adjacent white matter fiber tracts based on anatomic and diffusion tensor magnetic resonance imaging (MRI).
  • MATERIAL AND METHODS: Preoperative, anatomic (T1- and T2-weighted), and LINESCAN diffusion tensor MRI were obtained in 12 patients harboring supratentorial gliomas (World Health Organization [WHO] Grades II and III).
  • RESULTS: There were five patients with low-grade oligodendroglioma (WHO Grade II), one with low-grade mixed oligoastrocytoma (WHO Grade II), one with ganglioglioma, two with low-grade astrocytoma (WHO Grade II), and three with anaplastic astrocytoma (WHO Grade III).
  • Our results confirm previous reports that extensive white matter infiltration by primary brain tumors is a common occurrence.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Magn Reson Imaging. 2001 Jun;13(6):967-75 [11382961.001]
  • [Cites] AJNR Am J Neuroradiol. 2006 Oct;27(9):1969-74 [17032877.001]
  • [Cites] Ann Neurol. 2002 Mar;51(3):377-80 [11891834.001]
  • [Cites] J Clin Oncol. 2002 Apr 15;20(8):2076-84 [11956268.001]
  • [Cites] Med Image Anal. 2002 Jun;6(2):93-108 [12044998.001]
  • [Cites] J Neurosurg. 2002 Sep;97(3):568-75 [12296640.001]
  • [Cites] NMR Biomed. 2002 Nov-Dec;15(7-8):468-80 [12489096.001]
  • [Cites] J Neurosurg. 2002 Dec;97(6):1333-42 [12507131.001]
  • [Cites] Neurosurgery. 2004 Aug;55(2):358-70; discussion 370-1 [15271242.001]
  • [Cites] Radiology. 2004 Aug;232(2):451-60 [15215555.001]
  • [Cites] J Neurosurg. 1987 Jun;66(6):865-74 [3033172.001]
  • [Cites] Cancer. 1994 Apr 1;73(7):1937-45 [8137221.001]
  • [Cites] Surg Neurol. 1995 Sep;44(3):208-21; discussion 221-3 [8545771.001]
  • [Cites] Neurosurgery. 1996 Apr;38(4):678-84; discussion 684-5 [8692384.001]
  • [Cites] Neurosurgery. 1996 Aug;39(2):253-8; discussion 258-9 [8832661.001]
  • [Cites] J Neurooncol. 1997 Aug;34(1):37-59 [9210052.001]
  • [Cites] J Comput Assist Tomogr. 1997 Jul-Aug;21(4):554-66 [9216759.001]
  • [Cites] Brain Res. 1998 Jan 5;780(1):27-33 [9473573.001]
  • [Cites] Med Image Anal. 1996 Mar;1(1):35-51 [9873920.001]
  • [Cites] Clin Neurol Neurosurg. 2005 Apr;107(3):174-80 [15823671.001]
  • [Cites] Radiology. 2005 Aug;236(2):615-20 [16040917.001]
  • [Cites] Cancer. 2006 Mar 15;106(6):1358-63 [16470608.001]
  • [Cites] Radiology. 2006 Apr;239(1):217-22 [16484348.001]
  • [Cites] Neurosurgery. 2006 Apr;58(4 Suppl 2):ONS-292-303; discussion ONS-303-4 [16582653.001]
  • [Cites] Radiology. 2006 May;239(2):506-13 [16641355.001]
  • [Cites] J Neurooncol. 2006 Jun;78(2):179-85 [16739029.001]
  • [Cites] Neuroimage. 2006 Sep;32(3):1127-33 [16798013.001]
  • [Cites] J Neurosurg. 2001 Nov;95(5):735-45 [11702861.001]
  • (PMID = 17368212.001).
  • [ISSN] 1076-6332
  • [Journal-full-title] Academic radiology
  • [ISO-abbreviation] Acad Radiol
  • [Language] ENG
  • [Grant] United States / NCRR NIH HHS / RR / P41 RR013218-098542; United States / NCRR NIH HHS / RR / U41 RR019703; United States / NIGMS NIH HHS / GM / R01 GM074068; United States / NCRR NIH HHS / RR / U41 RR019703-03S1; United States / NIBIB NIH HHS / EB / P41 EB015898; United States / NLM NIH HHS / LM / R01 LM007861; United States / NCRR NIH HHS / RR / P41 RR013218-02; United States / NCRR NIH HHS / RR / RR019703-03S1; United States / NCRR NIH HHS / RR / P41 RR013218; United States / NCRR NIH HHS / RR / RR013218-108434; United States / NCRR NIH HHS / RR / RR013218-098542; United States / NCI NIH HHS / CA / P01 CA067165; United States / NCRR NIH HHS / RR / P41 RR013218-108434
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Other-IDs] NLM/ NIHMS21072; NLM/ PMC2397554
  •  go-up   go-down


82. Cao WD, Zhang X, Zhang JN, Yang ZJ, Zhen HN, Cheng G, Li B, Gao D: Immunocytochemical detection of 14-3-3 in primary nervous system tumors. J Neurooncol; 2006 Apr;77(2):125-30
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • In this paper, Immunohistochemistry using a specific anti-14-3-3 antibody was performed on formalin-fixed, paraffin embedded archival tissue from 124 primary human nervous system tumors and 10 normal brain tissues.
  • However, 14-3-3 immunoreactivity was seen in the majority of astrocytomas [grade I (9/11), II (16/21), III (13/17), IV (17/21)].
  • But the intensity and degree of 14-3-3 immunoreactivity in diffuse astrocytomas, anaplastic astrocytoma, and glioblastoma multiformes showed trends with tumor grade, with glioblastomas having the highest positivity (P = 0.048).
  • The 14-3-3 immunoreactivity was also seen in the majority of other gliomas [oligodendroglioma (2/3), anaplastic oligodendroglioma (4/4), ependymoma (1/2), anaplastic ependymoma (2/2), choroid plexus papilloma (3/3), pineocytoma (2/2), medulloblastoma (5/8)].
  • [MeSH-major] 14-3-3 Proteins / biosynthesis. Biomarkers, Tumor / analysis. Brain Neoplasms / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Biochem J. 2004 Apr 15;379(Pt 2):395-408 [14744259.001]
  • [Cites] J Neurosurg. 2002 Sep;97(3):668-75 [12296652.001]
  • [Cites] Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8511-5 [10411906.001]
  • [Cites] Pathol Res Pract. 2002;198(12):813-9 [12608658.001]
  • [Cites] Exp Cell Res. 2001 Nov 15;271(1):142-51 [11697890.001]
  • [Cites] Am J Pathol. 1999 Mar;154(3):767-74 [10079254.001]
  • [Cites] J Neurochem. 1982 May;38(5):1475-82 [7062063.001]
  • [Cites] Cell. 1996 Nov 15;87(4):619-28 [8929531.001]
  • [Cites] Expert Rev Anticancer Ther. 2005 Feb;5(1):177-91 [15757449.001]
  • [Cites] FEBS Lett. 1993 Oct 4;331(3):296-303 [8375512.001]
  • [Cites] EMBO J. 2000 Feb 1;19(3):349-58 [10654934.001]
  • [Cites] Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10142-6 [7479742.001]
  • [Cites] J Neurochem. 1982 May;38(5):1466-74 [7038050.001]
  • [Cites] Acta Neuropathol. 2004 Feb;107(2):137-43 [14605832.001]
  • [Cites] Virchows Arch A Pathol Anat Histopathol. 1986;409(2):127-47 [2424168.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 2000;40:617-47 [10836149.001]
  • [Cites] Nat Rev Cancer. 2003 Dec;3(12):931-43 [14737123.001]
  • [Cites] J Biol Chem. 2003 Jan 17;278(3):2058-65 [12426317.001]
  • [Cites] Biochem Pharmacol. 2000 Oct 15;60(8):1143-51 [11007952.001]
  • [Cites] FASEB J. 2003 Apr;17(6):767-9 [12594176.001]
  • [Cites] J Biol Chem. 1997 Apr 25;272(17):11663-9 [9111084.001]
  • [Cites] Biochem Soc Trans. 2002 Aug;30(4):387-91 [12196100.001]
  • [Cites] Annu Rev Med. 1997;48:267-81 [9046961.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Mar;61(3):245-53 [11895039.001]
  • [Cites] Neurol Med Chir (Tokyo). 1994 Jul;34(7):429-35 [7526231.001]
  • [Cites] Cell. 1999 Mar 19;96(6):857-68 [10102273.001]
  • [Cites] Bioessays. 2001 Oct;23(10):936-46 [11598960.001]
  • [Cites] Mol Cell. 2003 Jan;11(1):11-23 [12535517.001]
  • [Cites] Ann Neurol. 2002 Dec;52(6):722-31 [12447925.001]
  • [Cites] Biochem Soc Trans. 2002 Aug;30(4):360-5 [12196095.001]
  • [Cites] Trends Biochem Sci. 1992 Dec;17(12):498-501 [1471260.001]
  • (PMID = 16292484.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / 14-3-3 Proteins; 0 / Biomarkers, Tumor; 0 / YWHAB protein, human
  •  go-up   go-down


83. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, Felsberg J, Wolter M, Mawrin C, Wick W, Weller M, Herold-Mende C, Unterberg A, Jeuken JW, Wesseling P, Reifenberger G, von Deimling A: Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol; 2009 Oct;118(4):469-74
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Somatic mutations in the IDH1 gene encoding cytosolic NADP+-dependent isocitrate dehydrogenase have been shown in the majority of astrocytomas, oligodendrogliomas and oligoastrocytomas of WHO grades II and III.
  • Preliminary data suggest an importance of IDH1 mutation for prognosis showing that patients with anaplastic astrocytomas, oligodendrogliomas and oligoastrocytomas harboring IDH1 mutations seem to fare much better than patients without this mutation in their tumors.
  • We found 165 IDH1 (72.7%) and 2 IDH2 mutations (0.9%) in 227 diffuse astrocytomas WHO grade II, 146 IDH1 (64.0%) and 2 IDH2 mutations (0.9%) in 228 anaplastic astrocytomas WHO grade III, 105 IDH1 (82.0%) and 6 IDH2 mutations (4.7%) in 128 oligodendrogliomas WHO grade II, 121 IDH1 (69.5%) and 9 IDH2 mutations (5.2%) in 174 anaplastic oligodendrogliomas WHO grade III, 62 IDH1 (81.6%) and 1 IDH2 mutations (1.3%) in 76 oligoastrocytomas WHO grade II and 117 IDH1 (66.1%) and 11 IDH2 mutations (6.2%) in 177 anaplastic oligoastrocytomas WHO grade III.
  • IDH1 mutations of the R132C type are strongly associated with astrocytoma, while IDH2 mutations predominantly occur in oligodendroglial tumors.
  • In addition, patients with anaplastic glioma harboring IDH1 mutations were on average 6 years younger than those without these alterations.
  • [MeSH-major] Brain Neoplasms / genetics. Glioma / genetics. Isocitrate Dehydrogenase / genetics
  • [MeSH-minor] Adult. Age Factors. Brain / pathology. Cell Differentiation. DNA Mutational Analysis. Female. Humans. Male. Middle Aged. Mutation. Prognosis. Tumor Cells, Cultured

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19554337.001).
  • [ISSN] 1432-0533
  • [Journal-full-title] Acta neuropathologica
  • [ISO-abbreviation] Acta Neuropathol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Germany
  • [Chemical-registry-number] EC 1.1.1.41 / Isocitrate Dehydrogenase
  •  go-up   go-down


84. Simon M, Neuloh G, von Lehe M, Meyer B, Schramm J: Insular gliomas: the case for surgical management. J Neurosurg; 2009 Apr;110(4):685-95
MedlinePlus Health Information. consumer health - Childhood Brain Tumors.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • For example, in neurologically intact patients < or = 40 years of age with WHO Grade I-III tumors, good outcomes (Karnofsky Performance Scale Score 80-100) were seen in 91% of cases.
  • Surprisingly good survival rates were seen after surgery for anaplastic gliomas.
  • The median survival for patients with anaplastic astrocytomas (WHO Grade III) was 5 years, and the 5-year survival rate for those with anaplastic oligodendroglial tumors was 80%.
  • Independent predictors of survival included younger age, favorable histological features (WHO Grade I and oligodendroglial tumors), Yaşargil Type 5A/B tumors with frontal extensions, and more extensive resections.
  • In view of the oncological benefits of resective surgery, our data would therefore argue for microsurgery as the primary treatment for most patients with a presumed WHO Grade I-III tumor.
  • [MeSH-major] Brain Neoplasms / surgery. Cerebral Cortex. Glioma / surgery
  • [MeSH-minor] Adolescent. Adult. Age Factors. Aged. Astrocytoma / surgery. Child. Female. Humans. Male. Middle Aged. Postoperative Complications. Survival Rate. Treatment Outcome

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19099379.001).
  • [ISSN] 0022-3085
  • [Journal-full-title] Journal of neurosurgery
  • [ISO-abbreviation] J. Neurosurg.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


85. Uematsu M, Ohsawa I, Aokage T, Nishimaki K, Matsumoto K, Takahashi H, Asoh S, Teramoto A, Ohta S: Prognostic significance of the immunohistochemical index of survivin in glioma: a comparative study with the MIB-1 index. J Neurooncol; 2005 May;72(3):231-8
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • METHODS: We prepared polyclonal anti-survivin serum to establish a survivin index for stained sections, using an immunohistochemical procedure, according to the method used for scoring MIB-1 index, and then stained 29 paraffin-embedded sections from surgical specimens of 29 patients who were classified into three grades of World Health Organization with the mean age of low grade astocytoma (grade II) being 34.7; anaplastic astrocytoma (grade III), 48.8; and glioblastoma multiform (grade IV), 58.4.
  • The mean percentage of immunoreactive cells in each specimen was 70.0 (SD 18.2) in grade II, 81.3 (16.5) in grade III, and 85.0 (13.6) in grade IV.
  • Then we compared the survivin index to the MIB-1 index and found that in low-grade gliomas (grade II and III), the difference in survival times between the high and low survivin indexes was significant (P=0.007), whereas that between the high and low MIB-1 indexes was not significant (P=0.092).
  • ONCLUSION: Survivin is more sensitive marker than MIB-1 for the evaluation of low-grade gliomas in that it helps to predict patient survival.
  • [MeSH-major] Brain Neoplasms / metabolism. Glioma / metabolism. Ki-67 Antigen / analysis. Microtubule-Associated Proteins / metabolism

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Int J Radiat Oncol Biol Phys. 2002 Mar 15;52(4):996-1001 [11958894.001]
  • [Cites] Cancer Res. 1987 Jul 15;47(14):3847-50 [3594441.001]
  • [Cites] Oncogene. 2000 Feb 3;19(5):617-23 [10698506.001]
  • [Cites] Cancer Res. 1999 Dec 15;59(24):6097-102 [10626797.001]
  • [Cites] J Neurooncol. 1997 Aug;34(1):31-5 [9210051.001]
  • [Cites] Clin Lab Med. 1999 Dec;19(4):833-47 [10572718.001]
  • [Cites] Pathol Oncol Res. 2001;7(4):267-78 [11882906.001]
  • [Cites] Acta Neurochir (Wien). 2002 Feb;144(2):151-5; discussion 155-6 [11862515.001]
  • [Cites] J Clin Oncol. 2002 Feb 15;20(4):1063-8 [11844831.001]
  • [Cites] J Invest Dermatol. 1999 Sep;113(3):415-8 [10469343.001]
  • [Cites] Nature. 1998 Dec 10;396(6711):580-4 [9859993.001]
  • [Cites] Cancer. 2001 Nov 15;92(10):2720-6 [11745208.001]
  • [Cites] J Neurochem. 2001 Oct;79(2):426-36 [11677271.001]
  • [Cites] Cancer Res. 2002 Aug 1;62(15):4364-8 [12154041.001]
  • [Cites] Neurochirurgie. 1998 Mar;44(1):25-30 [9757314.001]
  • [Cites] J Cell Sci. 2002 Feb 1;115(Pt 3):575-85 [11861764.001]
  • [Cites] Mol Hum Reprod. 2000 Jun;6(6):529-34 [10825370.001]
  • [Cites] J Biol Chem. 1998 May 1;273(18):11177-82 [9556606.001]
  • [Cites] Cancer. 2002 Jul 15;95(2):249-57 [12124823.001]
  • [Cites] Oncogene. 1999 Oct 21;18(43):5870-8 [10557074.001]
  • [Cites] Med Electron Microsc. 2001 Dec;34(4):207-12 [11956993.001]
  • [Cites] J Neurooncol. 1999;44(3):255-66 [10720205.001]
  • [Cites] J Exp Clin Cancer Res. 1997 Jun;16(2):153-7 [9261740.001]
  • [Cites] Blood. 2000 Feb 15;95(4):1435-42 [10666222.001]
  • (PMID = 15937645.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antibodies; 0 / BIRC5 protein, human; 0 / Biomarkers, Tumor; 0 / DNA, Complementary; 0 / Inhibitor of Apoptosis Proteins; 0 / Ki-67 Antigen; 0 / Microtubule-Associated Proteins; 0 / Neoplasm Proteins
  •  go-up   go-down


86. Yang SH, Hong YK, Yoon SC, Kim BS, Lee YS, Lee TK, Lee KS, Jeun SS, Kim MC, Park CK: Radiotherapy plus concurrent and adjuvant procarbazine, lomustine, and vincristine chemotherapy for patients with malignant glioma. Oncol Rep; 2007 Jun;17(6):1359-64
Hazardous Substances Data Bank. PROCARBAZINE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • From 1998 to 2004, 39 patients, 22 with glioblastoma (GM), nine with anaplastic astrocytoma (AA), 7 with anaplastic oligodendroglioma (AO) and 1 with anaplastic oligodendro-astrocytoma (AOA) were enrolled in this study.
  • Grade III/IV hematological toxicity was reduced from 25.6 to 13% after reduction of the dose of CCNU (75 mg/m(2)).
  • The median interval from the completion of radiotherapy to the diagnosis of necrosis was 19 weeks.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / adverse effects. Brain Neoplasms / drug therapy. Glioma / drug therapy

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • Hazardous Substances Data Bank. LOMUSTINE .
  • Hazardous Substances Data Bank. VINCRISTINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17487391.001).
  • [ISSN] 1021-335X
  • [Journal-full-title] Oncology reports
  • [ISO-abbreviation] Oncol. Rep.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Greece
  • [Chemical-registry-number] 35S93Y190K / Procarbazine; 5J49Q6B70F / Vincristine; 7BRF0Z81KG / Lomustine
  •  go-up   go-down


87. Mutter N, Stupp R: Temozolomide: a milestone in neuro-oncology and beyond? Expert Rev Anticancer Ther; 2006 Aug;6(8):1187-204
SciCrunch. DrugBank: Data: Chemical .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The orally available prodrug with the capacity of crossing the blood-brain barrier received accelerated US FDA approval in 1999.
  • Three pivotal Phase II trials showed modest activity in the treatment of recurrent anaplastic astrocytoma glioblastoma.
  • In 2005, the FDA and the European Agency for the Evaluation of Medicinal Products approved temozolomide for use in newly diagnosed glioblastoma, in conjunction with radiotherapy, based on an European Organisation for Research and Treatment of Cancer/National Cancer Institute of Canada Phase III trial.
  • Temozolomide is under investigation for other disease entities, in particular lower-grade glioma, brain metastases and melanoma.
  • [MeSH-major] Antineoplastic Agents, Alkylating / therapeutic use. Brain Neoplasms / drug therapy. Dacarbazine / analogs & derivatives. Glioma / drug therapy

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • ClinicalTrials.gov. clinical trials - ClinicalTrials.gov .
  • Hazardous Substances Data Bank. DACARBAZINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16925485.001).
  • [ISSN] 1744-8328
  • [Journal-full-title] Expert review of anticancer therapy
  • [ISO-abbreviation] Expert Rev Anticancer Ther
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide
  • [Number-of-references] 143
  •  go-up   go-down


88. Hau P, Jachimczak P, Bogdahn U: Treatment of malignant gliomas with TGF-beta2 antisense oligonucleotides. Expert Rev Anticancer Ther; 2009 Nov;9(11):1663-74
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • In this review, we describe the development of AS-ODNs, including their modifications, pharmacokinetics and toxicity in animal models and humans, and their preclinical and clinical development in the therapy of human high-grade gliomas.
  • The most advanced AS-ODN for the therapy of high-grade gliomas is a phosphorothioate-modified AS-ODN, AP 12009 (trabedersen), which targets mRNA encoding TGF-beta2.
  • A randomized, controlled international Phase III study was initiated in March 2009 and will compare trabedersen 10 microM versus conventional alkylating chemotherapy in patients with recurrent or refractory anaplastic astrocytoma after standard radio- and chemotherapy.
  • [MeSH-minor] Animals. Brain Neoplasms / drug therapy. Brain Neoplasms / metabolism. Clinical Trials as Topic. Humans. Injections, Intralesional

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19895249.001).
  • [ISSN] 1744-8328
  • [Journal-full-title] Expert review of anticancer therapy
  • [ISO-abbreviation] Expert Rev Anticancer Ther
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Oligodeoxyribonucleotides; 0 / Oligonucleotides, Antisense; 0 / Thionucleotides; 0 / Trabedersen; 0 / Transforming Growth Factor beta2
  • [Number-of-references] 87
  •  go-up   go-down


89. Salmaggi A, Fariselli L, Milanesi I, Lamperti E, Silvani A, Bizzi A, Maccagnano E, Trevisan E, Laguzzi E, Rudà R, Boiardi A, Soffietti R, Associazione Italiana di Neuro-oncologia: Natural history and management of brainstem gliomas in adults. A retrospective Italian study. J Neurol; 2008 Feb;255(2):171-7
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • In 21 of the patients histology was obtained and in 20 it was informative (2 pilocytic astrocytoma, 9 low-grade astrocytoma, 8 anaplastic astrocytoma and 1 glioblastoma).
  • In all of the 9 patients who were investigated with MR spectroscopy, the Cho/NAA ratio was elevated at diagnosis.
  • In 8 of the patients, an initial watch and wait policy was adopted, while 24 were treated shortly after diagnosis with either radiotherapy alone [4] or radiotherapy and chemotherapy [20] (mostly temozolomide).
  • Grade III or IV myelotoxicity was observed in 6 patients.
  • Investigation of putative prognostically relevant parameters showed that a short time between disease onset and diagnosis was related to a shorter survival.
  • [MeSH-major] Brain Stem Neoplasms / pathology. Brain Stem Neoplasms / therapy. Glioma / pathology. Glioma / therapy
  • [MeSH-minor] Adolescent. Adult. Aged. Antineoplastic Agents / adverse effects. Antineoplastic Agents / therapeutic use. Brain / pathology. Disease Progression. Female. Fluorodeoxyglucose F18. Humans. Image Processing, Computer-Assisted. Italy. Magnetic Resonance Imaging. Male. Middle Aged. Positron-Emission Tomography. Prognosis. Radiopharmaceuticals. Retrospective Studies. Spinal Cord / pathology. Survival Analysis. Treatment Outcome

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neurosurg. 2006 Feb;104(2 Suppl):108-14 [16506498.001]
  • [Cites] Curr Opin Neurol. 2001 Dec;14(6):711-5 [11723378.001]
  • [Cites] Neurosurg Rev. 2005 Oct;28(4):330-2 [16001287.001]
  • [Cites] Acta Neurochir Suppl (Wien). 1991;53:148-58 [1803873.001]
  • [Cites] Brain. 2001 Dec;124(Pt 12):2528-39 [11701605.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2005 May 1;62(1):20-31 [15850898.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1993 Jan 15;25(2):235-41 [8420871.001]
  • [Cites] J Clin Oncol. 1990 Jul;8(7):1277-80 [2358840.001]
  • [Cites] J Clin Oncol. 2006 Mar 10;24(8):1266-72 [16525181.001]
  • [Cites] Neurology. 1998 Oct;51(4):1136-9 [9781543.001]
  • [Cites] Acta Neurochir (Wien). 1986;79(2-4):67-73 [3962745.001]
  • [Cites] Cancer. 2005 Jan 1;103(1):133-9 [15565574.001]
  • [Cites] Neurochirurgie. 1989;35(1):41-6 [2654682.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1991 Apr;20(4):757-60 [2004952.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10 ):987-96 [15758009.001]
  • (PMID = 18293027.001).
  • [ISSN] 0340-5354
  • [Journal-full-title] Journal of neurology
  • [ISO-abbreviation] J. Neurol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Radiopharmaceuticals; 0Z5B2CJX4D / Fluorodeoxyglucose F18
  •  go-up   go-down


90. Jung CS, Foerch C, Schänzer A, Heck A, Plate KH, Seifert V, Steinmetz H, Raabe A, Sitzer M: Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain; 2007 Dec;130(Pt 12):3336-41
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • A serum marker for malignant cerebral astrocytomas could improve both differential diagnosis and clinical management of brain tumour patients.
  • To evaluate whether the serum concentration of glial fibrillary acidic protein (GFAP) may indicate glioblastoma multiforme (GBM) in patients with single supratentorial space-occupying lesions, we prospectively examined 50 consecutive patients with histologically proven GBM, World Health Organization (WHO) grade IV, 14 patients with anaplastic astrocytoma (WHO grade III), 4 patients with anaplastic oligodendroglioma, 13 patients with diffuse astrocytoma (WHO grade II), 17 patients with a single cerebral metastasis and 50 healthy controls.
  • A serum GFAP level of >0.05 microg/l was 76% sensitive and 100% specific for the diagnosis of GBM in patients with a single supratentorial mass lesion in this series.
  • [MeSH-major] Biomarkers, Tumor / blood. Brain Neoplasms / diagnosis. Glial Fibrillary Acidic Protein / blood. Glioblastoma / diagnosis

  • Genetic Alliance. consumer health - Glioblastoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17998256.001).
  • [ISSN] 1460-2156
  • [Journal-full-title] Brain : a journal of neurology
  • [ISO-abbreviation] Brain
  • [Language] eng
  • [Publication-type] Evaluation Studies; Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Glial Fibrillary Acidic Protein; 0 / Neoplasm Proteins
  •  go-up   go-down


91. Reddy SP, Britto R, Vinnakota K, Aparna H, Sreepathi HK, Thota B, Kumari A, Shilpa BM, Vrinda M, Umesh S, Samuel C, Shetty M, Tandon A, Pandey P, Hegde S, Hegde AS, Balasubramaniam A, Chandramouli BA, Santosh V, Kondaiah P, Somasundaram K, Rao MR: Novel glioblastoma markers with diagnostic and prognostic value identified through transcriptome analysis. Clin Cancer Res; 2008 May 15;14(10):2978-87
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • PURPOSE: Current methods of classification of astrocytoma based on histopathologic methods are often subjective and less accurate.
  • EXPERIMENTAL DESIGN: We carried out transcriptome analysis of 25 diffusely infiltrating astrocytoma samples [WHO grade II--diffuse astrocytoma, grade III--anaplastic astrocytoma, and grade IV--glioblastoma (GBM)] using cDNA microarrays containing 18,981 genes.
  • RESULTS: We identified several differentially regulated grade-specific genes.
  • Further, identification of the grade-specific expression of GADD45alpha and FSTL1 by immunohistochemical staining reinforced our findings.
  • [MeSH-major] Biomarkers, Tumor / genetics. Brain Neoplasms / diagnosis. Brain Neoplasms / genetics. Gene Expression Profiling. Glioblastoma / diagnosis. Glioblastoma / genetics

  • Genetic Alliance. consumer health - Glioblastoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18483363.001).
  • [ISSN] 1078-0432
  • [Journal-full-title] Clinical cancer research : an official journal of the American Association for Cancer Research
  • [ISO-abbreviation] Clin. Cancer Res.
  • [Language] eng
  • [Grant] United Kingdom / Wellcome Trust / /
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor
  •  go-up   go-down


92. Assimakopoulou M, Kondyli M, Gatzounis G, Maraziotis T, Varakis J: Neurotrophin receptors expression and JNK pathway activation in human astrocytomas. BMC Cancer; 2007;7:202
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue.
  • METHODS: Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment.
  • RESULTS: Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (approximately 1%) in some tumors.
  • Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor grade-dependent manner (p < 0.05).
  • CONCLUSION: In the context of astrocytomas, Trk receptors (TrkA, TrkB, TrkC) expression may promote tumor growth independently of grade.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Gene Expression Regulation, Enzymologic. Gene Expression Regulation, Neoplastic. MAP Kinase Kinase 4 / metabolism. Nerve Tissue Proteins / biosynthesis. Nerve Tissue Proteins / genetics. Receptors, Nerve Growth Factor / biosynthesis. Receptors, Nerve Growth Factor / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Clin Oncol. 2000 Mar;18(5):1027-35 [10694553.001]
  • [Cites] Mol Cell Neurosci. 2007 Feb;34(2):271-9 [17188890.001]
  • [Cites] Curr Opin Neurobiol. 2000 Jun;10(3):381-91 [10851172.001]
  • [Cites] Cell. 2000 Oct 13;103(2):239-52 [11057897.001]
  • [Cites] Curr Opin Neurobiol. 2001 Jun;11(3):272-80 [11399424.001]
  • [Cites] Cancer Lett. 2001 Aug 28;169(2):107-14 [11431098.001]
  • [Cites] Curr Opin Pharmacol. 2001 Aug;1(4):398-403 [11710739.001]
  • [Cites] Cancer Res. 2003 Jan 1;63(1):250-5 [12517805.001]
  • [Cites] Nat Rev Cancer. 2003 Mar;3(3):203-16 [12612655.001]
  • [Cites] J Biosci. 2003 Mar;28(2):181-8 [12711810.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14421-6 [14614136.001]
  • [Cites] Nat Rev Neurosci. 2003 Apr;4(4):299-309 [12671646.001]
  • [Cites] J Clin Oncol. 2004 Jan 1;22(1):133-42 [14638850.001]
  • [Cites] Nat Rev Drug Discov. 2004 May;3(5):430-46 [15136790.001]
  • [Cites] Childs Nerv Syst. 2004 Jun;20(6):412-9 [15138791.001]
  • [Cites] Brain Res. 2004 Aug 13;1017(1-2):53-60 [15261099.001]
  • [Cites] Neurochem Int. 1997 Apr-May;30(4-5):347-74 [9106250.001]
  • [Cites] J Neurosci. 1997 Jan 15;17(2):530-42 [8987776.001]
  • [Cites] Acta Neuropathol. 1998 Apr;95(4):325-32 [9560008.001]
  • [Cites] Acta Neuropathol. 1998 Oct;96(4):357-64 [9797000.001]
  • [Cites] Eur J Neurosci. 2005 Jan;21(2):363-77 [15673436.001]
  • [Cites] J Neurooncol. 2004 Nov;70(2):137-60 [15674475.001]
  • [Cites] J Neurosci. 2005 Jun 1;25(22):5455-63 [15930396.001]
  • [Cites] Anat Sci Int. 2005 Dec;80(4):223-8 [16333918.001]
  • [Cites] Curr Alzheimer Res. 2006 Feb;3(1):19-24 [16472198.001]
  • [Cites] J Neurosci. 2006 Jul 19;26(29):7756-66 [16855103.001]
  • [Cites] J Neurooncol. 1999;45(1):1-8 [10728904.001]
  • (PMID = 17971243.001).
  • [ISSN] 1471-2407
  • [Journal-full-title] BMC cancer
  • [ISO-abbreviation] BMC Cancer
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / NGFR protein, human; 0 / Nerve Tissue Proteins; 0 / Receptors, Nerve Growth Factor; 0 / bcl-2-Associated X Protein; EC 2.7.10.1 / Receptor, trkA; EC 2.7.10.1 / Receptor, trkB; EC 2.7.10.1 / Receptor, trkC; EC 2.7.12.2 / MAP Kinase Kinase 4
  • [Other-IDs] NLM/ PMC2180182
  •  go-up   go-down


93. Jeannin S, Lebrun C, Van Den Bos F, Olschwang S, Bourg V, Frenay M: [Turcot's syndrome confirmed by molecular biological tests]. Rev Neurol (Paris); 2006 Jun;162(6-7):741-6
MedlinePlus Health Information. consumer health - Colorectal Cancer.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Transliterated title] Syndrome de Turcot confirmé par biologie moléculaire.
  • INTRODUCTION: Turcot's syndrome is characterized clinically by the concurrence of a primary brain tumor and a familial adenomatous polyposis or a hereditary nonpolyposis colorectal cancer.
  • OBSERVATION: We report a case of a 45-year-old woman who underwent in 1995 neuro-oncological treatment for an anaplastic astrocytoma (grade III according to the World Health Organization classification).
  • Eight years after the diagnosis, the patient developed a gliomatosis cerebri and died.
  • CONCLUSION: Relevant personal and familial history can provide the clue to the diagnosis of Turcot's syndrome.
  • Molecular diagnosis may contribute to appropriate care of affected patients.
  • [MeSH-major] Adenomatous Polyps / complications. Adenomatous Polyps / genetics. Brain Neoplasms / complications. Carrier Proteins / genetics. Colorectal Neoplasms / complications. Colorectal Neoplasms / genetics. DNA Mutational Analysis / methods. Glioma / complications. MutS Homolog 2 Protein / genetics. Nuclear Proteins / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16840983.001).
  • [ISSN] 0035-3787
  • [Journal-full-title] Revue neurologique
  • [ISO-abbreviation] Rev. Neurol. (Paris)
  • [Language] fre
  • [Publication-type] Case Reports; English Abstract; Journal Article
  • [Publication-country] France
  • [Chemical-registry-number] 0 / Adaptor Proteins, Signal Transducing; 0 / Carrier Proteins; 0 / MLH1 protein, human; 0 / Nuclear Proteins; EC 3.6.1.3 / MSH2 protein, human; EC 3.6.1.3 / MutS Homolog 2 Protein
  •  go-up   go-down


94. Kashyap R, Ryan C, Sharma R, Maloo MK, Safadjou S, Graham M, Tretheway D, Jain A, Orloff M: Liver grafts from donors with central nervous system tumors: a single-center perspective. Liver Transpl; 2009 Oct;15(10):1204-8
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • However, it has become a common practice to accept organs from donors that have low-grade tumors or tumors with low metastatic potential.
  • Twenty (47.6%) of the CNS tumors were glioblastoma multiforme (astrocytoma grade IV), 11 (26.2%) were other astrocytomas, and 1 (2.4%) was an anaplastic ependymoma.
  • Twenty (62.5%) neoplasms were grade IV tumors, 8 (25%) were grade II tumors, and 4 (12.5%) were grade III tumors.
  • Over 80% of the patients had at least 1 kind of invasive procedure violating the blood-brain barrier.
  • In conclusion, in our experience, despite violation of the blood-brain barrier and high-grade CNS tumors, recurrence was uncommon.
  • [MeSH-major] Central Nervous System Neoplasms / diagnosis. Liver Diseases / therapy. Liver Transplantation / methods. Tissue and Organ Procurement / methods
  • [MeSH-minor] Adult. Blood-Brain Barrier. Female. Humans. Male. Middle Aged. Neoplasm Metastasis. Retrospective Studies. Time Factors. Tissue Donors. Treatment Outcome

  • MedlinePlus Health Information. consumer health - Liver Diseases.
  • MedlinePlus Health Information. consumer health - Liver Transplantation.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright 2009 AASLD
  • [CommentIn] Liver Transpl. 2010 Jul;16(7):916 [20583090.001]
  • [CommentIn] Liver Transpl. 2010 Jul;16(7):914-5 [20583288.001]
  • (PMID = 19790151.001).
  • [ISSN] 1527-6473
  • [Journal-full-title] Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society
  • [ISO-abbreviation] Liver Transpl.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


95. Fiorentini G, Giovanis P, Rossi S, Dentico P, Paola R, Turrisi G, Bernardeschi P: A phase II clinical study on relapsed malignant gliomas treated with electro-hyperthermia. In Vivo; 2006 Nov-Dec;20(6A):721-4
Hazardous Substances Data Bank. DACARBAZINE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Eight patients had glioblastoma multiforme, two had anaplastic astrocytoma grade III and two had anaplastic oligodendroglioma.
  • [MeSH-major] Brain Neoplasms / therapy. Electric Stimulation Therapy. Glioma / therapy. Hyperthermia, Induced. Neoplasm Recurrence, Local / therapy

  • Genetic Alliance. consumer health - Malignant hyperthermia.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17203754.001).
  • [ISSN] 0258-851X
  • [Journal-full-title] In vivo (Athens, Greece)
  • [ISO-abbreviation] In Vivo
  • [Language] eng
  • [Publication-type] Clinical Trial; Clinical Trial, Phase II; Journal Article
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide
  •  go-up   go-down


96. Vordermark D, Kölbl O, Ruprecht K, Vince GH, Bratengeier K, Flentje M: Hypofractionated stereotactic re-irradiation: treatment option in recurrent malignant glioma. BMC Cancer; 2005;5:55
Hazardous Substances Data Bank. TENIPOSIDE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • METHODS: Between 1997 and 2003, 19 patients with recurrent malignant glioma (14 glioblastoma on most recent histology, 5 anaplastic astrocytoma) were treated with HFSRT.
  • RESULTS: The median overall survival (OS) was 9.3 (1.9-77.6+) months from the time of HFSRT, 15.4 months for grade III and 7.9 months for grade IV tumors (p = 0.029, log-rank test).
  • [MeSH-major] Brain Neoplasms / surgery. Dose Fractionation. Glioma / surgery. Radiosurgery / methods. Radiotherapy / methods

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Radiation Therapy.
  • ClinicalTrials.gov. clinical trials - ClinicalTrials.gov .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Am J Clin Oncol. 2000 Apr;23(2):155-9 [10776976.001]
  • [Cites] Cancer Treat Rev. 2000 Dec;26(6):397-409 [11139371.001]
  • [Cites] Am J Clin Oncol. 2002 Dec;25(6):606-11 [12478010.001]
  • [Cites] J Clin Oncol. 2003 Sep 1;21(17):3276-84 [12947063.001]
  • [Cites] Cancer. 2003 Dec 15;98(12):2678-86 [14669289.001]
  • [Cites] Lancet. 1995 Apr 22;345(8956):1008-12 [7723496.001]
  • [Cites] Bull Cancer. 2004 Nov;91(11):883-9 [15582893.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1999 Dec 1;45(5):1133-41 [10613305.001]
  • [Cites] Radiother Oncol. 1999 Oct;53(1):53-7 [10624854.001]
  • [Cites] Am J Clin Oncol. 1997 Jun;20(3):226-9 [9167741.001]
  • [Cites] Radiother Oncol. 1997 Oct;45(1):83-8 [9364636.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1999 Jan 15;43(2):293-8 [10030252.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1997 Jan 15;37(2):393-8 [9069312.001]
  • (PMID = 15924621.001).
  • [ISSN] 1471-2407
  • [Journal-full-title] BMC cancer
  • [ISO-abbreviation] BMC Cancer
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0S726V972K / Nimustine; 957E6438QA / Teniposide
  • [Other-IDs] NLM/ PMC1156875
  •  go-up   go-down


97. Ashamalla H, Zaki B, Mokhtar B, Lewis L, Lavaf A, Nasr H, Colella F, Dosik D, Krishnamurthy M, Saad N, Guriguis A: Fractionated stereotactic radiotherapy boost and weekly paclitaxel in malignant gliomas clinical and pharmacokinetics results. Technol Cancer Res Treat; 2007 Jun;6(3):169-76
Hazardous Substances Data Bank. PHENYTOIN .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Twenty-three Glioblastoma Multiforme and two Anaplastic Astrocytoma were studied.
  • The median survival for RPA prognostic classes III, IV, V, and VI were 20, 14, 12, and 11 months.
  • No grade 4 CTCAE (version 3.0) toxicities were observed.
  • ii) the regimen resulted in improvement of survival of RPA classes IV, V, VI; and iii) the use of FSRT boost may be studied with other chemotherapeutic agents to see if superior results can be attained.
  • [MeSH-major] Antineoplastic Agents, Phytogenic / pharmacokinetics. Brain Neoplasms / therapy. Glioma / therapy. Paclitaxel / pharmacokinetics. Radiosurgery / methods

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. TAXOL .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17535024.001).
  • [ISSN] 1533-0346
  • [Journal-full-title] Technology in cancer research & treatment
  • [ISO-abbreviation] Technol. Cancer Res. Treat.
  • [Language] eng
  • [Publication-type] Clinical Trial; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Anticonvulsants; 0 / Antineoplastic Agents, Phytogenic; 6158TKW0C5 / Phenytoin; P88XT4IS4D / Paclitaxel
  •  go-up   go-down






Advertisement