[X] Close
You are about to erase all the values you have customized, search history, page format, etc.
Click here to RESET all values       Click here to GO BACK without resetting any value
Items 1 to 100 of about 202
1. Miwa T, Hirose Y, Sasaki H, Ikeda E, Yoshida K, Kawase T: Genetic characterization of adult infratentorial gliomas. J Neurooncol; 2009 Feb;91(3):251-5
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Genetic characterization of adult infratentorial gliomas.
  • Adult infratentorial gliomas are rare and have not been well studied.
  • We therefore conducted genetic analysis of those tumors to see if there was any characteristic that could be relevant in clinical management and understanding of tumorigenesis.
  • Nineteen adult infratentorial gliomas were analyzed for chromosomal aberration by comparative genomic hybridization, and for expression of p53 and epidermal growth factor receptor (EGFR) by immunohistochemistry.
  • However, the gain of 7q, the characteristic abnormality of supratentorial astrocytomas commonly associated with the gaining of 7p, was observed only in 1 of 11 adult infratentorial astrocytic tumors.
  • Our findings might suggest the presence of distinct tumorigenic pathway in adult infratentorial gliomas.
  • [MeSH-major] Brain Neoplasms / genetics. Frontal Lobe / pathology. Glioma / genetics. Receptor, Epidermal Growth Factor / genetics. Tumor Suppressor Protein p53 / genetics
  • [MeSH-minor] Adult. Aged. Chromosome Aberrations. Chromosome Deletion. Chromosomes, Human, Pair 1 / genetics. Chromosomes, Human, Pair 19 / genetics. Chromosomes, Human, Pair 7 / genetics. Comparative Genomic Hybridization. Female. Humans. Loss of Heterozygosity. Male. Middle Aged. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Keio J Med. 2006 Jun;55(2):52-8 [16823260.001]
  • [Cites] Cancer Res. 2001 Sep 15;61(18):6713-5 [11559541.001]
  • [Cites] Am J Pathol. 2001 Jul;159(1):359-67 [11438483.001]
  • [Cites] J Neurooncol. 2005 Sep;74(2):151-4 [16193385.001]
  • [Cites] Cancer Genet Cytogenet. 2003 Apr 1;142(1):1-7 [12660025.001]
  • [Cites] Am J Pathol. 2001 Mar;158(3):1137-43 [11238062.001]
  • [Cites] J Natl Cancer Inst. 1998 Oct 7;90(19):1473-9 [9776413.001]
  • [Cites] Am J Pathol. 2002 Jul;161(1):313-9 [12107116.001]
  • [Cites] J Neuropathol Exp Neurol. 1996 Jul;55(7):822-31 [8965097.001]
  • [Cites] J Neurooncol. 1998 Feb;36(3):247-57 [9524103.001]
  • [Cites] J Mol Diagn. 2001 May;3(2):62-7 [11333301.001]
  • (PMID = 18941867.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Tumor Suppressor Protein p53; EC 2.7.10.1 / Receptor, Epidermal Growth Factor
  •  go-up   go-down


2. Woodworth G, McGirt MJ, Samdani A, Garonzik I, Olivi A, Weingart JD: Accuracy of frameless and frame-based image-guided stereotactic brain biopsy in the diagnosis of glioma: comparison of biopsy and open resection specimen. Neurol Res; 2005 Jun;27(4):358-62
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Accuracy of frameless and frame-based image-guided stereotactic brain biopsy in the diagnosis of glioma: comparison of biopsy and open resection specimen.
  • OBJECTIVES: Tissue heterogeneity and rapid tumor progression may decrease the accuracy a prognostic value of stereotactic brain biopsy in the diagnosis of gliomas.
  • Correct tumor grading is therefore dependent on the accuracy of biopsy needle placement.
  • There has been a dramatic increase in the utilization of frameless image-guided stereotactic brain biopsy; however, its accuracy in the diagnosis of glioma remains unstudied.
  • METHODS: The diagnoses of 21 astrocytic brain tumors were derived using image-guided stereotactic biopsy (12 frame-based, nine frameless) and followed by open resection of the lesion 1.5 (0.5-4) months later.
  • The histologic diagnoses yielded by the biopsy were compared with subsequent histologic diagnosis from open tumor resection.
  • In three (14%) cases, biopsy specimens were adequate to diagnose glioma; however, histology was insufficient for definitive tumor grading.
  • Tumors <50 cm(3) were 8-fold less likely to accurately represent the grade of the entire lesion at resection compared with lesions <50 cm(3) (OR, 8.8; 95% CI, 0.9-100, p=0.05).
  • DISCUSSION: Both frameless and frame-based MRI-guided stereotactic brain biopsy are safe and accurately represent the larger glioma mass sufficiently to guide subsequent therapy.
  • Large tumor volume had a higher incidence of non-concordance.
  • Increasing the number of specimens taken through the long dimension of large tumors may improve diagnostic accuracy.
  • [MeSH-major] Brain Neoplasms / pathology. Glioma / pathology. Magnetic Resonance Imaging. Stereotaxic Techniques
  • [MeSH-minor] Adult. Biopsy. Female. Humans. Image Processing, Computer-Assisted / methods. Male. Middle Aged. Neurosurgical Procedures / methods. Reproducibility of Results. Retrospective Studies. Sensitivity and Specificity. Surgery, Computer-Assisted / methods

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - MRI Scans.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15949232.001).
  • [ISSN] 0161-6412
  • [Journal-full-title] Neurological research
  • [ISO-abbreviation] Neurol. Res.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] England
  •  go-up   go-down


3. Weber RG, Hoischen A, Ehrler M, Zipper P, Kaulich K, Blaschke B, Becker AJ, Weber-Mangal S, Jauch A, Radlwimmer B, Schramm J, Wiestler OD, Lichter P, Reifenberger G: Frequent loss of chromosome 9, homozygous CDKN2A/p14(ARF)/CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xanthoastrocytomas. Oncogene; 2007 Feb 15;26(7):1088-97
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The molecular pathogenesis of pleomorphic xanthoastrocytoma (PXA), a rare astrocytic brain tumor with a relatively favorable prognosis, is still poorly understood.
  • We characterized 50 PXAs by comparative genomic hybridization (CGH) and found the most common imbalance to be loss on chromosome 9 in 50% of tumors.
  • Two tumors demonstrated amplifications mapping to 2p23-p25, 4p15, 12q13, 12q21, 21q21 and 21q22.
  • Analysis of 10 PXAs with available high molecular weight DNA by high-resolution array-based CGH indicated homozygous 9p21.3 deletions involving the CDKN2A/p14(ARF)/CDKN2B loci in six tumors (60%).
  • Interphase fluorescence in situ hybridization to tissue sections confirmed the presence of tumor cells with homozygous 9p21.3 deletions.
  • Taken together, our study identifies loss of chromosome 9 as the most common chromosomal imbalance in PXAs and suggests important roles for homozygous CDKN2A/p14(ARF)/CDKN2B deletion as well as low TSC1 mRNA expression in these tumors.
  • [MeSH-major] Astrocytoma / genetics. Chromosome Deletion. Chromosomes, Human, Pair 9 / genetics. Cyclin-Dependent Kinase Inhibitor p15 / genetics. Cyclin-Dependent Kinase Inhibitor p16 / genetics. Gene Deletion. Tumor Suppressor Protein p14ARF / genetics. Tumor Suppressor Proteins / deficiency
  • [MeSH-minor] Adolescent. Adult. Child. Child, Preschool. Female. Homozygote. Humans. Male. Middle Aged. RNA, Messenger / biosynthesis

  • Genetic Alliance. consumer health - Chromosome 9.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16909113.001).
  • [ISSN] 0950-9232
  • [Journal-full-title] Oncogene
  • [ISO-abbreviation] Oncogene
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / CDKN2B protein, human; 0 / Cyclin-Dependent Kinase Inhibitor p15; 0 / Cyclin-Dependent Kinase Inhibitor p16; 0 / RNA, Messenger; 0 / Tumor Suppressor Protein p14ARF; 0 / Tumor Suppressor Proteins; 0 / tuberous sclerosis complex 1 protein
  •  go-up   go-down


Advertisement
4. Stojic J, Hagemann C, Haas S, Herbold C, Kühnel S, Gerngras S, Roggendorf W, Roosen K, Vince GH: Expression of matrix metalloproteinases MMP-1, MMP-11 and MMP-19 is correlated with the WHO-grading of human malignant gliomas. Neurosci Res; 2008 Jan;60(1):40-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Glioblastomas (GBM) are the most prevalent type of malignant primary brain tumor in adults.
  • Tumor progression is facilitated by an increased activity of proteolytic enzymes such as matrix metalloproteinases (MMPs).
  • Elevated levels of several MMPs were found in glioblastomas compared to LGA and normal brain (NB).
  • We examined the expression of MMP-1, MMP-9, MMP-11 and MMP-19 in NB, LGA and GBM by semiquantitative RT-PCR, Western blotting and immunohistochemistry and found an enhanced expression of these MMPs in GBM compared to LGA or NB in signal strength and in the percentage of tumors displaying MMP expression.
  • Therefore, MMP-1, MMP-11 and MMP-19 might be of importance for the development of high-grade astrocytic tumors and may be promising targets for therapy.
  • [MeSH-major] Brain Neoplasms / diagnosis. Brain Neoplasms / enzymology. Glioma / diagnosis. Glioma / enzymology. Matrix Metalloproteinase 1 / metabolism. Matrix Metalloproteinase 11 / metabolism. Matrix Metalloproteinases, Secreted / metabolism
  • [MeSH-minor] Adolescent. Adult. Aged. Biomarkers, Tumor / analysis. Biomarkers, Tumor / metabolism. Child. Child, Preschool. Disease Progression. Female. Gene Expression Regulation, Enzymologic / genetics. Gene Expression Regulation, Neoplastic / genetics. Humans. Male. Matrix Metalloproteinase 9 / genetics. Middle Aged. Neoplasm Invasiveness / genetics. Predictive Value of Tests. Prognosis. RNA, Messenger / analysis. RNA, Messenger / metabolism. World Health Organization

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17980449.001).
  • [ISSN] 0168-0102
  • [Journal-full-title] Neuroscience research
  • [ISO-abbreviation] Neurosci. Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Ireland
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / RNA, Messenger; EC 3.4.24.- / Matrix Metalloproteinase 11; EC 3.4.24.- / Matrix Metalloproteinases, Secreted; EC 3.4.24.- / matrix metalloproteinase 19; EC 3.4.24.35 / Matrix Metalloproteinase 9; EC 3.4.24.7 / Matrix Metalloproteinase 1
  •  go-up   go-down


5. Quiñones-Hinojosa A, Sanai N, Gonzalez-Perez O, Garcia-Verdugo JM: The human brain subventricular zone: stem cells in this niche and its organization. Neurosurg Clin N Am; 2007 Jan;18(1):15-20, vii
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The human brain subventricular zone: stem cells in this niche and its organization.
  • The human brain harbors stem cells in the subventricular zone (SVZ).
  • The authors have collected postmortem and intraoperative tissue from adult human patients and found that it contains a unique ribbon of astrocytes that proliferate in vivo and can function as neural stem cells in vitro.
  • With immunohistochemistry, the authors mapped a proliferative glial fibrillary acidic protein (GFAP)--positive ribbon of astrocytic cells in the human SVZ.
  • In this article, the authors report on four main types of SVZ walls in the human brain.
  • Understanding the organization of the adult human SVZ represents a necessary first step in understanding cellular proliferation, precursor migration, and the neurogenic niche of the largest known germinal region in the adult human brain.
  • [MeSH-major] Adult Stem Cells / cytology. Cerebral Ventricles / cytology

  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17244550.001).
  • [ISSN] 1042-3680
  • [Journal-full-title] Neurosurgery clinics of North America
  • [ISO-abbreviation] Neurosurg. Clin. N. Am.
  • [Language] eng
  • [Grant] United States / NINDS NIH HHS / NS / 1F32NS047011; United States / NINDS NIH HHS / NS / K08NS055851
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] United States
  • [Number-of-references] 20
  •  go-up   go-down


6. Chen Z, Ma L, Lou X, Zhou Z: Diagnostic value of minimum apparent diffusion coefficient values in prediction of neuroepithelial tumor grading. J Magn Reson Imaging; 2010 Jun;31(6):1331-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Diagnostic value of minimum apparent diffusion coefficient values in prediction of neuroepithelial tumor grading.
  • PURPOSE: To retrospectively evaluate the diagnostic accuracy of diffusion weighted image (DWI) in the prediction of neuroepithelial tumors grading, and to appraise the apparent diffusion coefficient (ADC) value of neuroepithelial tumors with histologic findings as a reference standard.
  • MATERIALS AND METHODS: ADC values in 110 patients with pathologically proved neuroepithelial tumors, including 77 astrocytic tumors, 16 oligodendroglial tumors, 11 oligoastrocytic tumors, and 6 ependymal tumors, were investigated retrospectively.
  • The minimum ADC (MinADC) value of tumors was measured postoperatively on ADC maps, avoiding cystic, necrotic, or hemorrhagic components.
  • The area under the ROC curve (AUC) was 0.809, and the cutoff MinADC value of 0.900 x 10(-3) mm(2)/s for the differentiation between high and low grade neuroepithelial tumors provided the best combination of sensitivity (85.4%) and specificity (71.0%).
  • CONCLUSION: MinADC value may be a simple and effective optional tool for the prediction of neuroepithelial tumor grading.
  • [MeSH-minor] Adolescent. Adult. Aged. Child. Child, Preschool. Diffusion. Female. Humans. Ki-67 Antigen / biosynthesis. Male. Middle Aged. ROC Curve. Reproducibility of Results. Retrospective Studies. Sensitivity and Specificity

  • MedlinePlus Health Information. consumer health - MRI Scans.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentIn] J Magn Reson Imaging. 2011 Mar;33(3):755; author reply 756 [21563262.001]
  • (PMID = 20512884.001).
  • [ISSN] 1522-2586
  • [Journal-full-title] Journal of magnetic resonance imaging : JMRI
  • [ISO-abbreviation] J Magn Reson Imaging
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Ki-67 Antigen
  •  go-up   go-down


7. Fernandez A, Karavitaki N, Ansorge O, Fazal-Sanderson V, Wass JA: Acromegaly and anaplastic astrocytoma: coincidence or pathophysiological relation? Pituitary; 2008;11(3):325-30
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • In astrocytic-cell tumors, the role of autocrine and paracrine IGF-I expression in enhancing tumoral progression is well established.
  • However, the influence of systemic IGF-I levels on the clinical behavior of astrocytic neoplasms remains an open subject of research.
  • The coexistence of systemic IGF-I hypersecretion with a quick progression in the histopathological grade of the astrocytoma raises the compelling question of whether the clinical behavior of the astrocytic tumor was influenced by the acromegalic status.
  • The role of IGF-I signaling in the pathogenesis of astrocytic-cell tumors and the experience with therapeutic strategies addressing this pathway in astrocytomas are also discussed.
  • [MeSH-major] Acromegaly / complications. Astrocytoma / complications. Brain Neoplasms / complications
  • [MeSH-minor] Adult. Cranial Irradiation. Craniotomy. Disease Progression. Ergolines / therapeutic use. Humans. Insulin-Like Growth Factor I / metabolism. Magnetic Resonance Imaging. Male. Neoplasm Staging. Peptides, Cyclic / therapeutic use. Somatostatin / analogs & derivatives. Somatostatin / therapeutic use. Treatment Outcome. Up-Regulation

  • Genetic Alliance. consumer health - Acromegaly.
  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Brain Pathol. 1993 Jul;3(3):255-68 [8293185.001]
  • [Cites] Horm Metab Res. 1999 Feb-Mar;31(2-3):114-9 [10226790.001]
  • [Cites] Cancer Res. 1991 Oct 1;51(19):5107-12 [1717138.001]
  • [Cites] Ann Neurol. 1992 Apr;31(4):431-6 [1586143.001]
  • [Cites] Neurosurgery. 1998 Jan;42(1):172-8 [9442520.001]
  • [Cites] J Neurooncol. 1997 Aug;34(1):31-5 [9210051.001]
  • [Cites] Eur J Endocrinol. 2003 Nov;149(5):377-92 [14585082.001]
  • [Cites] Cancer Res. 1994 Apr 15;54(8):2218-22 [8174129.001]
  • [Cites] J Neurooncol. 1997 Dec;35(3):315-25 [9440028.001]
  • [Cites] J Clin Oncol. 2002 Apr 15;20(8):2076-84 [11956268.001]
  • [Cites] Neurosurgery. 1992 Oct;31(4):636-42; discussion 642 [1407448.001]
  • [Cites] BMC Cancer. 2002 May 31;2:15 [12057025.001]
  • [Cites] Neuro Oncol. 1999 Apr;1(2):109-19 [11550306.001]
  • [Cites] Lancet. 2004 Apr 24;363(9418):1346-53 [15110491.001]
  • [Cites] Clin Endocrinol (Oxf). 2001 Dec;55(6):731-3 [11895213.001]
  • [Cites] Growth Horm IGF Res. 2001 Apr;11(2):84-91 [11472074.001]
  • [Cites] J Clin Endocrinol Metab. 1990 Jul;71(1):199-209 [2164527.001]
  • [Cites] Endocr Rev. 2005 Dec;26(7):916-43 [16131630.001]
  • [Cites] J Neuropathol Exp Neurol. 2004 Jan;63(1):13-9 [14748557.001]
  • [Cites] J Clin Endocrinol Metab. 2006 Dec;91(12):4769-75 [16968795.001]
  • [Cites] Clin Cancer Res. 1999 May;5(5):1025-33 [10353735.001]
  • [Cites] Exp Cell Res. 1988 Jun;176(2):336-43 [2837402.001]
  • [Cites] J Clin Endocrinol Metab. 2000 Dec;85(12):4444-9 [11134091.001]
  • [Cites] Cancer Res. 1987 Nov 1;47(21):5758-64 [2889527.001]
  • [Cites] Endocr Rev. 2004 Feb;25(1):102-52 [14769829.001]
  • [Cites] Neurosurgery. 2003 Jun;52(6):1391-9; discussion 1399 [12762884.001]
  • [Cites] Neurosurgery. 1996 Dec;39(6):1243-5; discussion 1245-6 [8938782.001]
  • [Cites] Neurobiol Dis. 2000 Dec;7(6 Pt B):657-65 [11114263.001]
  • [Cites] J Clin Endocrinol Metab. 2002 Jul;87(7):3136-41 [12107213.001]
  • [Cites] Endocr Rev. 2000 Jun;21(3):215-44 [10857553.001]
  • [Cites] Brain Res Dev Brain Res. 2002 Mar 31;134(1-2):115-22 [11947942.001]
  • (PMID = 18000757.001).
  • [ISSN] 1386-341X
  • [Journal-full-title] Pituitary
  • [ISO-abbreviation] Pituitary
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Ergolines; 0 / Peptides, Cyclic; 0G3DE8943Y / lanreotide; 51110-01-1 / Somatostatin; 67763-96-6 / Insulin-Like Growth Factor I; LL60K9J05T / cabergoline
  •  go-up   go-down


8. Katoh N, Shirato H, Aoyama H, Onimaru R, Suzuki K, Hida K, Miyasaka K, Iwasaki Y: Hypofractionated radiotherapy boost for dose escalation as a treatment option for high-grade spinal cord astrocytic tumor. J Neurooncol; 2006 May;78(1):63-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Hypofractionated radiotherapy boost for dose escalation as a treatment option for high-grade spinal cord astrocytic tumor.
  • PURPOSE: To retrospectively analyze the outcome of post-operative radiotherapy for spinal cord glioma with the emphasis on the hypofractionated radiotherapy boost for dose escalation as a treatment option for high-grade spinal cord astrocytic tumors.
  • There were 12 low-grade astrocytic tumors, 11 high-grade astrocytic tumors, 16 low-grade ependymal tumors and 2 high-grade ependymal tumors.
  • Among 11 patients with high-grade astrocytic tumors, 5 with anaplastic astrocytoma and 1 with glioblastoma received hypofractionated radiotherapy boost for dose escalation.
  • RESULTS: The Kaplan-Meier survival rates at 10 years from the date of the first surgery were 64% for the entire group, 47% for the astrocytic tumors and 84% for the ependymal tumors, respectively (P=0.009).
  • Among 11 patients with high-grade astrocytic tumors, the actuarial survival rate at 10 years was 35%.
  • DISCUSSION: The results for ependymal tumors and low-grade astrocytic tumors were comparable to those reported in the literature.
  • Hypofractionated radiotherapy boost for dose escalation may help to prolong the survival of patients with high-grade astrocytic tumors.
  • [MeSH-minor] Adolescent. Adult. Aged. Child. Female. Humans. Male. Middle Aged. Survival Analysis

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Clin Oncol. 1992 Sep;10(9):1379-85 [1325539.001]
  • [Cites] J Clin Neurosci. 2002 Mar;9(2):211-6 [11922720.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1993 Sep 30;27(2):223-9 [8407395.001]
  • [Cites] Br J Neurosurg. 2000 Aug;14(4):331-6 [11045198.001]
  • [Cites] Am J Clin Oncol. 1999 Aug;22(4):344-51 [10440187.001]
  • [Cites] J Neurooncol. 2001 Mar;52(1):85-94 [11451207.001]
  • [Cites] Radiology. 1980 May;135(2):473-9 [7367644.001]
  • [Cites] J Neurosurg. 1995 Oct;83(4):590-5 [7674006.001]
  • [Cites] J Neurooncol. 1997 Jul;33(3):205-11 [9195492.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1997 Jul 1;38(4):805-11 [9240650.001]
  • [Cites] Radiat Oncol Investig. 1998;6(6):276-80 [9885944.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1998 Dec 1;42(5):953-8 [9869215.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2000 Sep 1;48(2):421-6 [10974456.001]
  • [Cites] Childs Nerv Syst. 1997 Jul;13(7):375-82 [9298273.001]
  • [Cites] Neurosurgery. 1999 Feb;44(2):264-9 [9932879.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1989 Jun;16(6):1397-403 [2542194.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2000 Oct 1;48(3):837-42 [11020582.001]
  • [Cites] J Clin Oncol. 1995 Jul;13(7):1642-8 [7602353.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1995 Sep 30;33(2):323-8 [7673019.001]
  • [Cites] Oncol Rep. 2003 Nov-Dec;10(6):2079-82 [14534747.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2003 Jan 1;55(1):162-7 [12504049.001]
  • [Cites] J Neurosurg. 1998 Feb;88(2):215-20 [9452226.001]
  • [Cites] J Neurosurg. 1989 Jan;70(1):50-4 [2909688.001]
  • (PMID = 16314938.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


9. Pan JW, Zhan RY, Tong Y, Zhou YQ, Zhang M: Expression of endothelial nitric oxide synthase and vascular endothelial growth factor in association with neovascularization in human primary astrocytoma. J Zhejiang Univ Sci B; 2005 Jul;6(7):693-8
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • METHODS: Thirty-seven primary astrocytomas and 4 astrocytic hyperplasia samples were collected and divided into three groups according to histological grade.
  • The intensity of immunoreactivity was graded according to the percentage of positive tumor cells.
  • RESULTS: No eNOS and VEGF were expressed in the astrocytes and vascular endothelium in astrocytic hyperplasia.
  • The expressions of eNOS and VEGF were correlated with microvascular density and tumor malignancy.
  • CONCLUSION: This finding suggests that eNOS and VEGF may have cooperative effect in tumor angiogenesis and play an important role in the pathogenesis of primary astrocytoma.
  • [MeSH-major] Astrocytoma / blood supply. Astrocytoma / metabolism. Biomarkers, Tumor / metabolism. Neovascularization, Pathologic / metabolism. Vascular Endothelial Growth Factor A / metabolism
  • [MeSH-minor] Adolescent. Adult. Aged. Child. Child, Preschool. Female. Gene Expression Regulation, Neoplastic. Humans. Male. Middle Aged

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Blood. 2000 Jan 1;95(1):189-97 [10607702.001]
  • [Cites] Cardiovasc Res. 1999 Mar;41(3):773-80 [10435050.001]
  • [Cites] Circ Res. 2000 Apr 28;86(8):892-6 [10785512.001]
  • [Cites] Anal Quant Cytol Histol. 2000 Jun;22(3):267-74 [10872046.001]
  • [Cites] Br J Neurosurg. 2000 Dec;14(6):543-8 [11272032.001]
  • [Cites] Cardiovasc Res. 2001 Feb 16;49(3):568-81 [11166270.001]
  • [Cites] Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2604-9 [11226286.001]
  • [Cites] J Neurooncol. 2000 Oct-Nov;50(1-2):139-48 [11245273.001]
  • [Cites] Int J Cancer. 2001 Mar 1;91(5):607-11 [11267968.001]
  • [Cites] Am J Physiol Lung Cell Mol Physiol. 2001 Jul;281(1):L278-90 [11404271.001]
  • [Cites] Leukemia. 2001 Sep;15(9):1433-41 [11516104.001]
  • [Cites] Ann Anat. 2003 Dec;185(6):549-54 [14704000.001]
  • [Cites] J Clin Invest. 1998 Jun 1;101(11):2567-78 [9616228.001]
  • [Cites] Acta Neuropathol. 1998 Nov;96(5):453-62 [9829808.001]
  • [Cites] Nature. 1999 Jun 10;399(6736):597-601 [10376602.001]
  • [Cites] Neurosurgery. 1999 Jul;45(1):24-8; discussion 29 [10414562.001]
  • [Cites] Anticancer Res. 2000 Jan-Feb;20(1A):299-304 [10769671.001]
  • (PMID = 15973775.001).
  • [ISSN] 1673-1581
  • [Journal-full-title] Journal of Zhejiang University. Science. B
  • [ISO-abbreviation] J Zhejiang Univ Sci B
  • [Language] eng
  • [Publication-type] Clinical Trial; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] China
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Vascular Endothelial Growth Factor A
  • [Other-IDs] NLM/ PMC1389807
  •  go-up   go-down


10. Mabrouk GM, Ali EM, El-Rehany MA, El-Samoly HM: TGF-beta1, TNF-alpha and cytochrome c in human astrocytic tumors: a short-term follow up and correlation with survival. Clin Biochem; 2007 Feb;40(3-4):255-60
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] TGF-beta1, TNF-alpha and cytochrome c in human astrocytic tumors: a short-term follow up and correlation with survival.
  • DESIGN AND METHODS: We measured TGF-beta1, TNF-alpha and cytoplasmic cytochrome c in 30 astrocytic tumors Grade II, III and IV.
  • Patients with astrocytic tumors having elevated cytochrome c showed a better survival rate compared to those with less release.
  • [MeSH-major] Astrocytoma / diagnosis. Biomarkers, Tumor / analysis. Brain Neoplasms / diagnosis. Cytochromes c / analysis. Transforming Growth Factor beta1 / analysis. Tumor Necrosis Factor-alpha / analysis
  • [MeSH-minor] Adolescent. Adult. Aged. Apoptosis. Child. Child, Preschool. Female. Humans. Male. Middle Aged. Neoplasm Staging. Prognosis. Survival Rate

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17070791.001).
  • [ISSN] 0009-9120
  • [Journal-full-title] Clinical biochemistry
  • [ISO-abbreviation] Clin. Biochem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Transforming Growth Factor beta1; 0 / Tumor Necrosis Factor-alpha; 9007-43-6 / Cytochromes c
  •  go-up   go-down


11. Samaras V, Piperi C, Korkolopoulou P, Zisakis A, Levidou G, Themistocleous MS, Boviatsis EI, Sakas DE, Lea RW, Kalofoutis A, Patsouris E: Application of the ELISPOT method for comparative analysis of interleukin (IL)-6 and IL-10 secretion in peripheral blood of patients with astroglial tumors. Mol Cell Biochem; 2007 Oct;304(1-2):343-51
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Application of the ELISPOT method for comparative analysis of interleukin (IL)-6 and IL-10 secretion in peripheral blood of patients with astroglial tumors.
  • Identification of markers of aggressiveness in this tumor could represent new therapeutic targets.
  • IL-6 and IL-10 secretion levels were determined using ELISPOT methodology in peripheral blood mononuclear cells of 18 patients with astrocytic neoplasms (3 grade II and 15 grade IV), in parallel with 18 healthy controls.
  • In addition, IL-10 secretion from peripheral mononuclear and tumor cells of glioma patients was also higher as compared to healthy controls (P = 0.0002).
  • Based on immunohistochemical staining, IL-6 expression was localized in tumor cells and macrophages as well as in areas of large ischemic necrosis, while the major source of IL-10 expression in glioblastomas was the microglia/macrophage cells.
  • [MeSH-major] Astrocytoma / blood. Brain Neoplasms / blood. Enzyme-Linked Immunosorbent Assay / methods. Interleukin-10 / blood. Interleukin-10 / secretion. Interleukin-6 / blood. Interleukin-6 / secretion
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Case-Control Studies. Female. Glioblastoma / blood. Humans. Leukocytes / secretion. Male. Middle Aged

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer Res. 1992 Nov 1;52(21):6020-4 [1394227.001]
  • [Cites] J Neurochem. 1998 Nov;71(5):1837-45 [9798907.001]
  • [Cites] Neuroimmunomodulation. 1998 May-Aug;5(3-4):214-9 [9730688.001]
  • [Cites] Am J Pathol. 1995 Feb;146(2):317-22 [7856743.001]
  • [Cites] J Immunol Methods. 1988 Nov 25;115(1):31-7 [3057075.001]
  • [Cites] Int J Cancer. 1999 Jul 2;82(1):12-6 [10360813.001]
  • [Cites] J Clin Immunol. 1992 Jul;12(4):239-47 [1512298.001]
  • [Cites] Br J Cancer. 2001 Aug 17;85(4):518-22 [11506489.001]
  • [Cites] J Neurochem. 1994 Sep;63(3):980-7 [7519668.001]
  • [Cites] J Immunol. 1999 Apr 15;162(8):4882-92 [10202033.001]
  • [Cites] Neurosurgery. 1995 Dec;37(6):1160-6; discussion 1166-7 [8584157.001]
  • [Cites] J Clin Neurosci. 2005 Nov;12(8):930-3 [16326273.001]
  • [Cites] J Neurosurg. 2001 Jan;94(1):97-101 [11147905.001]
  • [Cites] J Exp Med. 1991 Oct 1;174(4):915-24 [1655948.001]
  • [Cites] J Immunol. 2001 Jan 1;166(1):121-9 [11123284.001]
  • [Cites] Ann N Y Acad Sci. 1993 Jun 23;685:713-39 [8363277.001]
  • [Cites] Neurosurgery. 1994 Apr;34(4):669-72; discussion 672-3 [8008165.001]
  • [Cites] Oncogene. 2004 Apr 22;23(19):3308-16 [15064729.001]
  • [Cites] J Neurooncol. 2002 Jan;56(1):29-34 [11949824.001]
  • [Cites] Cancer Res. 1990 Oct 15;50(20):6683-8 [2208133.001]
  • [Cites] Acta Neuropathol. 2002 Feb;103(2):171-8 [11810184.001]
  • [Cites] J Immunol. 1992 Feb 15;148(4):1143-8 [1737931.001]
  • [Cites] Anticancer Res. 1997 Sep-Oct;17(5A):3217-24 [9413151.001]
  • [Cites] J Immunol Methods. 1997 Dec 29;210(2):149-66 [9520298.001]
  • [Cites] Int J Cancer. 2005 Jun 10;115(2):202-13 [15688401.001]
  • [Cites] Pathol Oncol Res. 1999;5(1):56-60 [10079380.001]
  • [Cites] Semin Oncol. 2000 Jun;27(3 Suppl 6):1-10 [10866344.001]
  • [Cites] J Neurosurg. 1992 Aug;77(2):265-73 [1625016.001]
  • [Cites] J Exp Med. 1993 Feb 1;177(2):523-7 [8426121.001]
  • [Cites] J Cell Physiol. 1997 Dec;173(3):335-42 [9369946.001]
  • [Cites] Brain Res. 1994 Jun 27;649(1-2):122-8 [7953624.001]
  • [Cites] J Immunol. 1992 Oct 1;149(7):2358-66 [1382099.001]
  • [Cites] J Immunol. 1994 Mar 15;152(6):2720-8 [8144879.001]
  • [Cites] J Neurooncol. 1998 Nov;40(2):113-22 [9892093.001]
  • [Cites] J Immunol. 1992 May 15;148(10):3133-9 [1578140.001]
  • [Cites] J Neuroimmunol. 1998 Dec 1;92(1-2):50-9 [9916879.001]
  • [Cites] Clin Chem Lab Med. 2002 Sep;40(9):903-10 [12435107.001]
  • [Cites] Surg Neurol. 1980 Mar;13(3):161-3 [7368063.001]
  • [Cites] J Biol Chem. 1995 May 12;270(19):11463-71 [7744784.001]
  • (PMID = 17551671.001).
  • [ISSN] 0300-8177
  • [Journal-full-title] Molecular and cellular biochemistry
  • [ISO-abbreviation] Mol. Cell. Biochem.
  • [Language] eng
  • [Publication-type] Comparative Study; Evaluation Studies; Journal Article
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / IL10 protein, human; 0 / IL6 protein, human; 0 / Interleukin-6; 130068-27-8 / Interleukin-10
  •  go-up   go-down


12. Murakami R, Hirai T, Sugahara T, Fukuoka H, Toya R, Nishimura S, Kitajima M, Okuda T, Nakamura H, Oya N, Kuratsu J, Yamashita Y: Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one- versus two-parameter pilot method. Radiology; 2009 Jun;251(3):838-45
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one- versus two-parameter pilot method.
  • PURPOSE: To assess the utility of both minimum apparent diffusion coefficients (ADCs) and ADC difference values for grading astrocytic tumors at magnetic resonance imaging.
  • Fifty patients (23 male patients, 27 female patients; median age, 53 years) with newly diagnosed astrocytic tumors were evaluated.
  • Two observers blinded to clinical information independently measured the ADCs by manually placing three to five regions of interest (40-60 mm(2)) within the solid tumor either with or without contrast material-enhanced components and calculated the average ADC.
  • These ADC values were used as the parameters for tumor grading and were compared by using the Kruskal-Wallis test and receiver operating characteristic (ROC) curve analysis.
  • RESULTS: According to ROC analyses for distinguishing tumor grade, minimum ADCs showed the largest areas under the ROC curve.
  • Minimum ADCs optimally helped distinguish grade 1 from higher-grade tumors at a cutoff value of 1.47 x 10(-3) mm(2)/sec and grade 4 from lower-grade tumors at a cutoff value of 1.01 x 10(-3) mm(2)/sec (P < .001 for both).
  • ADC difference values helped distinguish grade 2 from grade 3 tumors at a cutoff value of 0.31 x 10(-3) mm(2)/sec (P < .001).
  • When tumors were graded by using the combined minimum ADC and ADC difference cutoff values mentioned above (the two-parameter method), the following positive predictive values were obtained: grade 1 tumors, 73% (eight of 11); grade 2 tumors, 100% (five of five); grade 3 tumors, 67% (eight of 12); and grade 4 tumors, 91% (20 of 22).
  • CONCLUSION: Using a combination of minimum ADCs and ADC difference values (the two-parameter method) facilitates the accurate grading of astrocytic tumors.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Diffusion Magnetic Resonance Imaging / methods
  • [MeSH-minor] Adolescent. Adult. Aged. Child. Child, Preschool. Contrast Media. Female. Gadolinium DTPA. Humans. Image Interpretation, Computer-Assisted. Male. Middle Aged. Neoplasm Staging. Pilot Projects. ROC Curve. Retrospective Studies

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. GADOPENTETATE DIMEGLUMINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19318585.001).
  • [ISSN] 1527-1315
  • [Journal-full-title] Radiology
  • [ISO-abbreviation] Radiology
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Contrast Media; K2I13DR72L / Gadolinium DTPA
  •  go-up   go-down


13. Ellert-Miklaszewska A, Grajkowska W, Gabrusiewicz K, Kaminska B, Konarska L: Distinctive pattern of cannabinoid receptor type II (CB2) expression in adult and pediatric brain tumors. Brain Res; 2007 Mar 16;1137(1):161-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Distinctive pattern of cannabinoid receptor type II (CB2) expression in adult and pediatric brain tumors.
  • The efficacy of cannabinoids against high-grade glioma in animal models, mediated by two specific receptors, CB1 and CB2, raised promises for targeted treatment of the most frequent and malignant primary brain tumors.
  • Unlike the abundantly expressed CB1, the CB2 receptor shows a restricted distribution in normal brain.
  • Although brain tumors constitute the second most common malignancy in children and the prevalence of histological types of brain tumors vary significantly between the adult and pediatric populations, cannabinoid receptor expression in pediatric tumors remains unknown.
  • In the present study, we compared the expression of the CB2 receptor in paraffin-embedded sections from primary brain tumors of adult and pediatric patients.
  • Most glioblastomas expressed very high levels of CB2 receptors and the expression correlated with tumor grade.
  • Interestingly, some benign pediatric astrocytic tumors, such as subependymal giant cell astrocytoma (SEGA), which may occasionally cause mortality owing to progressive growth, also displayed high CB2 immunoreactivity.
  • The high levels of CB2 expression would predestine those tumors to be vulnerable to cannabinoid treatment.
  • In contrast, all examined cases of embryonal tumors (medulloblastoma and S-PNET), the most frequently diagnosed malignant brain tumors in childhood, showed no or trace CB2 immunoreactivity.
  • Our results suggest that the CB2 receptor expression depends primarily on the histopathological origin of the brain tumor cells and differentiation state, reflecting the tumor grade.
  • [MeSH-major] Brain Neoplasms / metabolism. Gene Expression Regulation, Neoplastic / physiology. Receptor, Cannabinoid, CB2 / metabolism
  • [MeSH-minor] Adolescent. Adult. Age Factors. Astrocytoma / metabolism. Child. Glioblastoma / metabolism. Histocompatibility Antigens / metabolism. Humans. Immunohistochemistry. Reverse Transcriptase Polymerase Chain Reaction / methods

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17239827.001).
  • [ISSN] 0006-8993
  • [Journal-full-title] Brain research
  • [ISO-abbreviation] Brain Res.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Histocompatibility Antigens; 0 / Receptor, Cannabinoid, CB2
  •  go-up   go-down


14. McCarthy BJ, Propp JM, Davis FG, Burger PC: Time trends in oligodendroglial and astrocytic tumor incidence. Neuroepidemiology; 2008;30(1):34-44
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Time trends in oligodendroglial and astrocytic tumor incidence.
  • BACKGROUND: We hypothesized that the incidences of oligodendrogliomas, anaplastic oligodendrogliomas, and mixed gliomas have significantly increased from the early 1990 s forward, while the incidences of anaplastic and grade II astrocytic tumors have significantly decreased.
  • METHODS: Data for the years 1973-2004 from the Surveillance, Epidemiology and End Results (SEER) public-use data and for 1985-2004 from six collaborating registries of the Central Brain Tumor Registry of the US (CBTRUS) were obtained.
  • CONCLUSIONS: This study has demonstrated that increases in oligodendroglial tumor incidence correspond to decreases in astrocytic tumor incidence over the same time period.
  • Minimizing misclassification of glial tumors will be essential for accurately assessing incidence, survival, and mortality rates, as well as for identifying homogeneous subgroups for epidemiologic and treatment studies.
  • [MeSH-major] Astrocytoma / epidemiology. Brain Neoplasms / epidemiology. Glioma / epidemiology. Oligodendroglioma / epidemiology
  • [MeSH-minor] Adolescent. Adult. Age Distribution. Aged. Child. Child, Preschool. Humans. Incidence. Infant. Infant, Newborn. Middle Aged. Registries / statistics & numerical data. Time. United States / epidemiology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2008 S. Karger AG, Basel.
  • (PMID = 18259099.001).
  • [ISSN] 1423-0208
  • [Journal-full-title] Neuroepidemiology
  • [ISO-abbreviation] Neuroepidemiology
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Switzerland
  •  go-up   go-down


15. Ardeleanu C, Ceauşu M, Butur G, Grămadă ZF, Dănăilă L, Hălălău F, Arsene D: p53 protein and bcl-2 expression in glioblastomas. Pathological correlations in a comprehensive series. Rom J Morphol Embryol; 2005;46(4):275-8
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • p53 and bcl-2 are two well-known antiapoptotic factors associated with gliomas, and mostly astrocytic tumors.
  • The correlations between their expression and several tumor-related factors (age, location, recurrence, proliferating potential) were investigated.
  • [MeSH-major] Glioblastoma / chemistry. Glioblastoma / pathology. Proto-Oncogene Proteins c-bcl-2 / analysis. Tumor Suppressor Protein p53 / analysis
  • [MeSH-minor] Adult. Aged. Aging. Female. Humans. Immunohistochemistry. Ki-67 Antigen / analysis. Male. Middle Aged

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16688362.001).
  • [ISSN] 1220-0522
  • [Journal-full-title] Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie
  • [ISO-abbreviation] Rom J Morphol Embryol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Romania
  • [Chemical-registry-number] 0 / Ki-67 Antigen; 0 / Proto-Oncogene Proteins c-bcl-2; 0 / Tumor Suppressor Protein p53
  •  go-up   go-down


16. Khayal IS, Nelson SJ: Characterization of low-grade gliomas using RGB color maps derived from ADC histograms. J Magn Reson Imaging; 2009 Jul;30(1):209-13
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • RESULTS: Color maps of oligodendroglial tumor regions were generally visualized in pink, while color maps of astrocytic tumor regions showed various shades of blue.
  • CONCLUSION: This technique allows for the visualization of biologically different regions within the whole tumor mass, which may aid in directing image-guided biopsies.
  • This can be used to ensure that the biopsy is directed to regions that can more accurately define the dominant tumor characteristics.
  • [MeSH-major] Brain Neoplasms / pathology. Glioma / pathology. Magnetic Resonance Imaging / methods
  • [MeSH-minor] Adolescent. Adult. Brain Mapping / methods. Contrast Media. Diffusion Magnetic Resonance Imaging / methods. Echo-Planar Imaging / methods. Female. Gadolinium. Humans. Image Enhancement / methods. Image Processing, Computer-Assisted / methods. Imaging, Three-Dimensional / methods. Male. Middle Aged. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - MRI Scans.
  • Hazardous Substances Data Bank. GADOLINIUM, ELEMENTAL .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2009 Wiley-Liss, Inc.
  • (PMID = 19557741.001).
  • [ISSN] 1053-1807
  • [Journal-full-title] Journal of magnetic resonance imaging : JMRI
  • [ISO-abbreviation] J Magn Reson Imaging
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Contrast Media; AU0V1LM3JT / Gadolinium
  •  go-up   go-down


17. Basto D, Trovisco V, Lopes JM, Martins A, Pardal F, Soares P, Reis RM: Mutation analysis of B-RAF gene in human gliomas. Acta Neuropathol; 2005 Feb;109(2):207-10
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Up-regulation of this pathway due to RAS mutations is found in approximately 30% of human tumors.
  • Gliomas are the most frequent primary central nervous system tumors and the molecular mechanisms that underlie the development and progression of these tumors are far from being completely understood.
  • The purpose of this study was to clarify the incidence of B-RAF mutations and their possible relation with tumor progression in a series of 82 human gliomas, including 49 astrocytic and 33 oligodendroglial tumors.
  • [MeSH-minor] Adult. Aged. Blotting, Northern / methods. DNA Mutational Analysis / methods. Exons. Female. Humans. Male. Middle Aged

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15791479.001).
  • [ISSN] 0001-6322
  • [Journal-full-title] Acta neuropathologica
  • [ISO-abbreviation] Acta Neuropathol.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Germany
  • [Chemical-registry-number] EC 2.7.11.1 / BRAF protein, human; EC 2.7.11.1 / Proto-Oncogene Proteins B-raf
  •  go-up   go-down


18. Sbalchiero E, Azzalin A, Palumbo S, Barbieri G, Arias A, Simonelli L, Ferretti L, Comincini S: Altered cellular distribution and sub-cellular sorting of doppel (Dpl) protein in human astrocytoma cell lines. Cell Oncol; 2008;30(4):337-47
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Nevertheless, in astrocytomas, a particular kind of glial tumors, the doppel encoding gene (PRND) is over-expressed and the corresponding protein product (Dpl) is ectopically localized in the cytoplasm of the tumor cells.
  • Noticeably, none of the examined tumor cells showed a membrane-Dpl localization.
  • Altogether, these results indicated that in the astrocytic tumor cells Dpl has an altered biosynthetic trafficking, likely derived from abnormal post-translational processes: these modifications do not permit the localization of Dpl in correspondence of the plasma membrane and lead to its intracellular accumulation in the lysosomes.
  • In these proteolytic compartments, the astrocytic tumor cells might provide to the degradation of the excess of a potentially cytotoxic Dpl product.
  • [MeSH-major] Astrocytes / metabolism. Brain Neoplasms / metabolism. Glioblastoma / metabolism. Oligodendroglioma / metabolism. Prions / metabolism
  • [MeSH-minor] Adult. Ammonium Chloride / pharmacology. Cell Compartmentation. Cell Culture Techniques. Cell Membrane / metabolism. Cell Membrane / ultrastructure. GPI-Linked Proteins. Gene Expression Regulation, Neoplastic. Glycosylation. Glycosylphosphatidylinositols / genetics. Glycosylphosphatidylinositols / metabolism. HeLa Cells. Humans. Lysosomes / metabolism. Lysosomes / ultrastructure. Male. Mutant Proteins / analysis. Mutant Proteins / genetics. Mutant Proteins / metabolism. Protein Transport. Recombinant Proteins / analysis. Recombinant Proteins / genetics. Recombinant Proteins / metabolism. Transfection

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. AMMONIUM CHLORIDE .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18607068.001).
  • [ISSN] 1570-5870
  • [Journal-full-title] Cellular oncology : the official journal of the International Society for Cellular Oncology
  • [ISO-abbreviation] Cell. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / GPI-Linked Proteins; 0 / Glycosylphosphatidylinositols; 0 / Mutant Proteins; 0 / PRND protein, human; 0 / Prions; 0 / Recombinant Proteins; 01Q9PC255D / Ammonium Chloride
  • [Other-IDs] NLM/ PMC4618817
  •  go-up   go-down


19. Xiong J, Liu Y, Wang Y, Ke RH, Mao Y, Ye ZR: Chromosome 1p/19q status combined with expression of p53 protein improves the diagnostic and prognostic evaluation of oligodendrogliomas. Chin Med J (Engl); 2010 Dec;123(24):3566-73
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • RESULTS: Both oligodendrogliomas and astrocytic gliomas exhibited frequent methylation of MGMT.
  • [MeSH-major] Brain Neoplasms / genetics. Chromosome Deletion. Chromosomes, Human, Pair 19. Oligodendroglioma / genetics. Tumor Suppressor Protein p53 / analysis
  • [MeSH-minor] Adolescent. Adult. Aged. Astrocytoma / genetics. Child. Chromosomes, Human, Pair 1. DNA Methylation. DNA Modification Methylases / genetics. DNA Repair Enzymes / genetics. Disease-Free Survival. Female. Gene Expression Regulation, Neoplastic. Humans. Loss of Heterozygosity. Male. Middle Aged. Prognosis. Tumor Suppressor Proteins / genetics

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 22166632.001).
  • [ISSN] 0366-6999
  • [Journal-full-title] Chinese medical journal
  • [ISO-abbreviation] Chin. Med. J.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] China
  • [Chemical-registry-number] 0 / TP53 protein, human; 0 / Tumor Suppressor Protein p53; 0 / Tumor Suppressor Proteins; EC 2.1.1.- / DNA Modification Methylases; EC 2.1.1.63 / MGMT protein, human; EC 6.5.1.- / DNA Repair Enzymes; Chromosome 1, monosomy 1p
  •  go-up   go-down


20. Haapasalo JA, Nordfors KM, Hilvo M, Rantala IJ, Soini Y, Parkkila AK, Pastoreková S, Pastorek J, Parkkila SM, Haapasalo HK: Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis. Clin Cancer Res; 2006 Jan 15;12(2):473-7
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis.
  • Ectopic CA IX expression has been observed in several tumors, whose normal counterparts do not express this enzyme.
  • Normal human brain tissue shows only slight or no expression of CA IX.
  • RESULTS: CA IX immunopositivity was observed in 284 cases of 362 (78%) tumors.
  • The CA IX immunoreactivity showed strong association with tumor malignancy grades (P < 0.0001).
  • Our results suggest that CA IX is a useful biomarker for predicting poor prognosis of astrocytic tumors.
  • [MeSH-major] Antigens, Neoplasm / metabolism. Astrocytoma / enzymology. Biomarkers, Tumor / metabolism. Brain Neoplasms / enzymology. Carbonic Anhydrases / metabolism
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. Apoptosis. Cell Proliferation. Female. Gene Expression Regulation, Neoplastic. Humans. Immunoenzyme Techniques. Male. Middle Aged. Neoplasm Recurrence, Local / enzymology. Neoplasm Recurrence, Local / genetics. Neoplasm Recurrence, Local / pathology. Prognosis. RNA, Messenger / genetics. RNA, Messenger / metabolism. Receptor, Epidermal Growth Factor / metabolism. Survival Rate. Tumor Suppressor Protein p53 / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16428489.001).
  • [ISSN] 1078-0432
  • [Journal-full-title] Clinical cancer research : an official journal of the American Association for Cancer Research
  • [ISO-abbreviation] Clin. Cancer Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, Neoplasm; 0 / Biomarkers, Tumor; 0 / RNA, Messenger; 0 / Tumor Suppressor Protein p53; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 4.2.1.1 / CA9 protein, human; EC 4.2.1.1 / Carbonic Anhydrases
  •  go-up   go-down


21. Fathi AR, Vassella E, Arnold M, Curschmann J, Reinert M, Vajtai I, Weis J, Deiana G, Mariani L: Objective response to radiation therapy and long-term survival of patients with WHO grade II astrocytic gliomas with known LOH 1p/19q status. Strahlenther Onkol; 2007 Sep;183(9):517-22
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Objective response to radiation therapy and long-term survival of patients with WHO grade II astrocytic gliomas with known LOH 1p/19q status.
  • However, little is known about tumor response and its potential impact on long-term survival.
  • The volumetric tumor response after RT was assessed based on magnetic resonance imaging and graded according to standard criteria as complete, partial (PR, >or= 50%), or minor (MR, 25% to <50%).
  • The vast majority of the tumors had no loss of heterozygosity (LOH) 1p and/or 19q (86%).
  • CONCLUSION: Approximately 50% of patients with astrocytic WHO grade II gliomas respond to RT despite the absence of LOH for 1p/19q.
  • [MeSH-minor] Adult. Aged. Female. Follow-Up Studies. Humans. Kaplan-Meier Estimate. Magnetic Resonance Imaging. Male. Microsatellite Repeats. Middle Aged. Neoplasm Staging. Radiotherapy Dosage. Retrospective Studies. Survival Analysis

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17762927.001).
  • [ISSN] 0179-7158
  • [Journal-full-title] Strahlentherapie und Onkologie : Organ der Deutschen Röntgengesellschaft ... [et al]
  • [ISO-abbreviation] Strahlenther Onkol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  •  go-up   go-down


22. Juhász C, Chugani DC, Muzik O, Wu D, Sloan AE, Barger G, Watson C, Shah AK, Sood S, Ergun EL, Mangner TJ, Chakraborty PK, Kupsky WJ, Chugani HT: In vivo uptake and metabolism of alpha-[11C]methyl-L-tryptophan in human brain tumors. J Cereb Blood Flow Metab; 2006 Mar;26(3):345-57
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] In vivo uptake and metabolism of alpha-[11C]methyl-L-tryptophan in human brain tumors.
  • Abnormal metabolism of tryptophan has been implicated in modulation of tumor cell proliferation and immunoresistance. alpha-[(11)C]Methyl-L-tryptophan (AMT) is a PET tracer to measure cerebral tryptophan metabolism in vivo.
  • In the present study, we have measured tumor tryptophan uptake in 40 patients with primary brain tumors using AMT PET and standard uptake values (SUV).
  • All grade II to IV gliomas and glioneuronal tumors showed increased AMT SUV, including all recurrent/residual tumors.
  • Gadolinium enhancement on MRI was associated with high VD' values, suggesting impaired blood-brain barrier, while k(3)' values were not related to contrast enhancement.
  • Low-grade astrocytic gliomas showed increased tryptophan metabolism, as measured by k(3)'.
  • In astrocytic tumors, low grade was associated with high k(3)' and lower VD', while high-grade tumors showed the reverse pattern.
  • The findings show high AMT uptake in primary and residual/recurrent gliomas and glioneuronal tumors.
  • Increased AMT uptake can be due to increased metabolism of tryptophan and/or high volume of distribution, depending on tumor type and grade.
  • High tryptophan metabolic rates in low-grade tumors may indicate activation of the kynurenine pathway, a mechanism regulating tumor cell growth.
  • AMT PET might be a useful molecular imaging method to guide therapeutic approaches aimed at controlling tumor cell proliferation by acting on tryptophan metabolism.
  • [MeSH-major] Brain Neoplasms / metabolism. Cerebral Cortex / metabolism. Tryptophan / analogs & derivatives
  • [MeSH-minor] Adolescent. Adult. Aged. Carbon Radioisotopes. Child. Child, Preschool. Electroencephalography / methods. Electroencephalography / standards. Female. Gadolinium. Glucose / metabolism. Humans. Infant. Magnetic Resonance Imaging / methods. Magnetic Resonance Imaging / standards. Male. Middle Aged. Neoplasm Staging. Positron-Emission Tomography / methods. Positron-Emission Tomography / standards. Seizures / metabolism. Sensitivity and Specificity

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. GLUCOSE .
  • Hazardous Substances Data Bank. (L)-Tryptophan .
  • Hazardous Substances Data Bank. GADOLINIUM, ELEMENTAL .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16079785.001).
  • [ISSN] 0271-678X
  • [Journal-full-title] Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
  • [ISO-abbreviation] J. Cereb. Blood Flow Metab.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Carbon Radioisotopes; 13510-08-2 / alpha-methyltryptophan; 8DUH1N11BX / Tryptophan; AU0V1LM3JT / Gadolinium; IY9XDZ35W2 / Glucose
  •  go-up   go-down


23. Sawada T, Kato Y, Kobayashi M: Expression of aquaporine-4 in central nervous system tumors. Brain Tumor Pathol; 2007;24(2):81-4
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of aquaporine-4 in central nervous system tumors.
  • Cerebral edema is associated with common brain tumors.
  • To elucidate the characterization of the expression of AQP4 and the relationship of the expression of VEGF, we investigated the expression of AQP4 in tumors of the central nervous system immunohistochemically.
  • Brain tumors and nontumorous cerebral tissue for control were evaluated by immunohistochemical staining using anti-AQP4, VEGF, CD34, and MIB-1.
  • In tumor cells, only glial tumor cells showed a positive reaction for AQP4.
  • Although endothelial cells were negative and/or weakly positive for AQP4, the positive relationship suggested the expression of VEGF in endothelial cells in neovasculature and that of AQP 4 in tumor cells.
  • APQ4 expression increased in human astrocytic tumors and edematous cerebral tissue.
  • Upregulation of APQ4 by tumor cells and reactive astroglia were major factors of cerebral edema.
  • [MeSH-major] Aquaporin 4 / biosynthesis. Brain Neoplasms / metabolism. Brain Neoplasms / pathology
  • [MeSH-minor] Adult. Aged. Astrocytes / metabolism. Brain Edema / etiology. Brain Edema / metabolism. Female. Gene Expression. Humans. Immunohistochemistry. Male. Middle Aged. Receptors, Vascular Endothelial Growth Factor / biosynthesis. Up-Regulation. Vascular Endothelial Growth Factor A / biosynthesis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18095136.001).
  • [ISSN] 1433-7398
  • [Journal-full-title] Brain tumor pathology
  • [ISO-abbreviation] Brain Tumor Pathol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Japan
  • [Chemical-registry-number] 0 / AQP4 protein, human; 0 / Aquaporin 4; 0 / Vascular Endothelial Growth Factor A; EC 2.7.10.1 / Receptors, Vascular Endothelial Growth Factor
  •  go-up   go-down


24. Yao Y, Tang X, Li S, Mao Y, Zhou L: Brain tumor stem cells: view from cell proliferation. Surg Neurol; 2009 Mar;71(3):274-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Brain tumor stem cells: view from cell proliferation.
  • A small population of TSCs, which form neurospheres and possess the capacity for self-renewal, has been recently identified in adult and pediatric brain tumors.
  • They differentiate into phenotypically diverse populations, including neuronal, astrocytic, and oligodendroglial cells in vitro and recapitulate original tumors in vivo.
  • The understanding of brain TSCs has been greatly advanced by the knowledge of cell proliferation, which contributes to initiate and sustain the malignant phenotype.
  • In this article, the authors summarized the evidence of the presence of TSCs in human brain tumors and emphasized the significance of the proliferative status of TSCs.
  • Finally, the preliminary evidence that TSCs in malignant brain tumors have more proliferative capacity than stem/progenitor cells in benign brain tumors was discussed.
  • [MeSH-major] Adult Stem Cells / pathology. Brain Neoplasms / pathology. Neoplastic Stem Cells / pathology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19249579.001).
  • [ISSN] 0090-3019
  • [Journal-full-title] Surgical neurology
  • [ISO-abbreviation] Surg Neurol
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] United States
  • [Number-of-references] 40
  •  go-up   go-down


25. Yamasaki F, Kurisu K, Satoh K, Arita K, Sugiyama K, Ohtaki M, Takaba J, Tominaga A, Hanaya R, Yoshioka H, Hama S, Ito Y, Kajiwara Y, Yahara K, Saito T, Thohar MA: Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology; 2005 Jun;235(3):985-91
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Apparent diffusion coefficient of human brain tumors at MR imaging.
  • PURPOSE: To determine if apparent diffusion coefficient (ADC) can be used to differentiate brain tumors at magnetic resonance (MR) imaging.
  • MR images were reviewed retrospectively in 275 patients with brain tumors: 147 males and 128 females 1-81 years old, treated between September 1997 and July 2003.
  • Regions of interest were placed manually in tumor regions on MR images, and ADC was calculated with a five-point regression method at b values of 0, 250, 500, 750, and 1000 sec/mm2.
  • ADC values were average values in tumor.
  • All brain tumor subgroups were analyzed.
  • Logistic discriminant analysis was performed by using ADC, age, and patient sex as independent variables to discriminate among tumor groups.
  • RESULTS: A significant negative correlation existed between ADC and astrocytic tumors of World Health Organization grades 2-4 (grade 2 vs grades 3 and 4, accuracy of 91.3% [P < .01]; grade 3 vs 4, accuracy of 82.4% [P < .01]).
  • ADC of dysembryoplastic neuroepithelial tumors (DNTs) was higher than that of astrocytic grade 2 tumors (accuracy, 100%) and other glioneuronal tumors.
  • ADC of malignant lymphomas was lower than that of glioblastomas and metastatic tumors (accuracy, 83.6%; P < .01).
  • ADC of primitive neuroectodermal tumors (PNETs) was lower than that of ependymomas (accuracy, 100%).
  • ADC of epidermoid tumors was lower than that of chordomas (accuracy, 100%).
  • CONCLUSION: ADC is useful for differentiation of some human brain tumors, particularly DNT, malignant lymphomas versus glioblastomas and metastatic tumors, and ependymomas versus PNETs.
  • [MeSH-major] Brain Neoplasms / pathology. Magnetic Resonance Imaging
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. Child. Child, Preschool. Diagnosis, Differential. Female. Humans. Infant. Male. Middle Aged. Retrospective Studies

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • MedlinePlus Health Information. consumer health - MRI Scans.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright RSNA, 2005.
  • (PMID = 15833979.001).
  • [ISSN] 0033-8419
  • [Journal-full-title] Radiology
  • [ISO-abbreviation] Radiology
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


26. Park S, Suh YL, Nam DH, Kim ST: Gliomatosis cerebri: clinicopathologic study of 33 cases and comparison of mass forming and diffuse types. Clin Neuropathol; 2009 Mar-Apr;28(2):73-82
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • OBJECTIVE: Gliomatosis cerebri (GC) is defined as a diffuse neoplastic glial cell infiltration of the brain with the preservation of anatomical architecture and the sparing of neurons and can be classified into Type 1 (diffuse) and Type 2 (mass forming) GCs macroscopically.
  • METHODS: Clinical information included patients' age, sex, tumor extent, treatment modality and survival.
  • Pathologic features included the amount of rod cells and cytologic anaplasia such as multinucleated tumor giant cells, endothelial cell proliferation, or mitosis.
  • Immunohistochemical results demonstrated that the infiltrating tumor cells were undifferentiated cells with astrocytic or oligodendroglial differentiation.
  • [MeSH-major] Brain / pathology. Neoplasms, Neuroepithelial / pathology. Neoplasms, Neuroepithelial / physiopathology
  • [MeSH-minor] Adult. Anaplasia. Astrocytes / pathology. Astrocytes / physiology. Cell Proliferation. Endothelial Cells / pathology. Female. Giant Cells / pathology. Glial Fibrillary Acidic Protein / metabolism. Humans. Immunohistochemistry. Ki-67 Antigen / metabolism. Magnetic Resonance Imaging. Male. Middle Aged. Oligodendroglia / pathology. Oligodendroglia / physiology. Survival Analysis. Tumor Suppressor Protein p53 / metabolism

  • Genetic Alliance. consumer health - Gliomatosis Cerebri.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19353837.001).
  • [ISSN] 0722-5091
  • [Journal-full-title] Clinical neuropathology
  • [ISO-abbreviation] Clin. Neuropathol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Glial Fibrillary Acidic Protein; 0 / Ki-67 Antigen; 0 / Tumor Suppressor Protein p53
  •  go-up   go-down


27. Landriscina M, Schinzari G, Di Leonardo G, Quirino M, Cassano A, D'Argento E, Lauriola L, Scerrati M, Prudovsky I, Barone C: S100A13, a new marker of angiogenesis in human astrocytic gliomas. J Neurooncol; 2006 Dec;80(3):251-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] S100A13, a new marker of angiogenesis in human astrocytic gliomas.
  • We investigated the expression of S100A13 in human astrocytic gliomas in relation to tumour grading and vascularization.
  • A series of 26 astrocytic gliomas was studied to evaluate microvessel density and to assess FGF1, S100A13 and VEGF-A expression.
  • Moreover, both S100A13 and VEGF-A expression significantly correlated with microvessel density and tumour grading.
  • These data suggest that the up-regulation of S100A13 and VEGF-A expression correlates with the activation of angiogenesis in high-grade human astrocytic gliomas.
  • [MeSH-major] Astrocytoma / blood supply. Biomarkers, Tumor / metabolism. Brain Neoplasms / blood supply. Neovascularization, Pathologic / metabolism. S100 Proteins / metabolism. Vascular Endothelial Growth Factor A / metabolism
  • [MeSH-minor] Adult. Aged. Female. Fibroblast Growth Factors / metabolism. Humans. Male. Middle Aged. Severity of Illness Index. Statistics, Nonparametric. Up-Regulation

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Anticancer Res. 2004 Jul-Aug;24(4):2511-4 [15330206.001]
  • [Cites] J Cell Biol. 2002 Jul 22;158(2):201-8 [12135982.001]
  • [Cites] Adv Exp Med Biol. 2003;530:593-601 [14562756.001]
  • [Cites] Neuropathol Appl Neurobiol. 2000 Feb;26(1):76-90 [10736069.001]
  • [Cites] Acta Neurochir Suppl. 2003;88:169-77 [14531575.001]
  • [Cites] J Biol Chem. 1995 Jan 6;270(1):33-6 [7529229.001]
  • [Cites] Anticancer Res. 2001 Jan-Feb;21(1A):77-88 [11299793.001]
  • [Cites] N Engl J Med. 2004 Jun 3;350(23 ):2335-42 [15175435.001]
  • [Cites] J Biol Chem. 1998 Aug 28;273(35):22217-23 [9712835.001]
  • [Cites] Reprod Biol. 2005 Mar;5(1):51-67 [15821778.001]
  • [Cites] J Biol Chem. 1998 Aug 28;273(35):22224-31 [9712836.001]
  • [Cites] Oncology. 2003;64(4):374-9 [12759535.001]
  • [Cites] J Neurosurg. 1998 Mar;88(3):513-20 [9488306.001]
  • [Cites] Anal Quant Cytol Histol. 2000 Jun;22(3):267-74 [10872046.001]
  • [Cites] Q J Nucl Med. 2003 Sep;47(3):149-61 [12897707.001]
  • [Cites] Integr Cancer Ther. 2002 Dec;1(4):327-37 [14664727.001]
  • [Cites] Br J Cancer. 1998 Sep;78(6):765-70 [9743297.001]
  • [Cites] J Biol Chem. 1998 Aug 28;273(35):22209-16 [9712834.001]
  • [Cites] Cancer Res. 2003 Oct 15;63(20):6613-25 [14583454.001]
  • [Cites] J Neurooncol. 2000 Oct-Nov;50(1-2):165-72 [11245275.001]
  • [Cites] J Biol Chem. 1985 Sep 25;260(21):11389-92 [3900060.001]
  • [Cites] Oncogene. 2003 Sep 29;22(42):6549-56 [14528279.001]
  • [Cites] Neurochem Int. 2006 Aug;49(3):294-303 [16519964.001]
  • [Cites] Pancreas. 1998 Aug;17(2):169-75 [9700949.001]
  • [Cites] Oncogene. 2001 Aug 2;20(34):4685-95 [11498791.001]
  • [Cites] Exp Toxicol Pathol. 1995 May;47(2-3):89-94 [7580112.001]
  • [Cites] J Neurooncol. 2004 May;67(3):345-9 [15164991.001]
  • [Cites] Biochim Biophys Acta. 2002 Nov 4;1600(1-2):74-83 [12445462.001]
  • [Cites] J Neurooncol. 2000 Oct-Nov;50(1-2):189-200 [11245279.001]
  • [Cites] J Cell Physiol. 1995 Mar;162(3):388-99 [7860646.001]
  • [Cites] Anticancer Res. 2002 Jul-Aug;22(4):2179-84 [12174901.001]
  • [Cites] J Biol Chem. 2001 Jul 6;276(27):25549-57 [11432880.001]
  • [Cites] Thromb Haemost. 1999 Aug;82(2):748-54 [10605778.001]
  • [Cites] Cancer. 2003 Jun 1;97(11):2806-13 [12767094.001]
  • [Cites] Semin Oncol. 2002 Dec;29(6 Suppl 16):15-8 [12516034.001]
  • [Cites] Int J Cancer. 1999 Oct 29;83(3):415-23 [10495436.001]
  • [Cites] Int J Biochem Cell Biol. 2001 Jul;33(7):637-68 [11390274.001]
  • [Cites] Structure. 2000 Feb 15;8(2):175-84 [10673436.001]
  • [Cites] J Biol Chem. 2001 Jun 22;276(25):22544-52 [11410600.001]
  • [Cites] J Cell Biol. 1990 Apr;110(4):1417-26 [1691192.001]
  • [Cites] Am J Hematol. 2002 Apr;69(4):247-54 [11921018.001]
  • [Cites] Front Biosci. 2003 Jan 01;8:d100-16 [12456339.001]
  • [Cites] Int J Cancer. 1996 Nov 4;68(3):325-32 [8903474.001]
  • [Cites] Brain Pathol. 2003 Apr;13(2):133-43 [12744467.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 May 27;100(11):6700-5 [12754378.001]
  • [Cites] J Clin Oncol. 2002 Nov 1;20(21):4368-80 [12409337.001]
  • (PMID = 16773219.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Grant] United States / NHLBI NIH HHS / HL / HL32348; United States / NHLBI NIH HHS / HL / HL35627; United States / NCRR NIH HHS / RR / RR1555
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / S100 Proteins; 0 / S100A13 protein, human; 0 / Vascular Endothelial Growth Factor A; 62031-54-3 / Fibroblast Growth Factors
  •  go-up   go-down


28. Jeuken JW, van der Maazen RW, Wesseling P: Molecular diagnostics as a tool to personalize treatment in adult glioma patients. Technol Cancer Res Treat; 2006 Jun;5(3):215-29
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Molecular diagnostics as a tool to personalize treatment in adult glioma patients.
  • Gliomas, the most frequent primary brain tumors in humans, form a heterogeneous group, encompassing many different histological types and malignancy grades.
  • The major representatives in this subgroup are the diffuse astrocytic, oligodendroglial, and mixed oligo-astrocytic tumors.
  • After summarizing the most relevant genetic aberrations and pathways in these tumors detected up till now, this review will discuss the clinical relevance of this information.
  • [MeSH-major] Biomarkers, Tumor / genetics. Brain Neoplasms / genetics. Glioma / genetics. Molecular Diagnostic Techniques
  • [MeSH-minor] Cell Cycle Proteins / genetics. DNA Methylation. DNA Repair. Gene Dosage. Humans. Neovascularization, Pathologic. Receptor Protein-Tyrosine Kinases / genetics. Retinoblastoma Protein / genetics. Tumor Suppressor Protein p53 / genetics

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16700618.001).
  • [ISSN] 1533-0346
  • [Journal-full-title] Technology in cancer research & treatment
  • [ISO-abbreviation] Technol. Cancer Res. Treat.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Cell Cycle Proteins; 0 / Retinoblastoma Protein; 0 / Tumor Suppressor Protein p53; EC 2.7.10.1 / Receptor Protein-Tyrosine Kinases
  • [Number-of-references] 94
  •  go-up   go-down


29. Yorgancılar E, Yıldırım M, Gün R, Büyükbayram H, Meriç F: Ganglioglioma in the nasal cavity: a case report. Kulak Burun Bogaz Ihtis Derg; 2010 Sep-Oct;20(5):267-70
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Ganglioglioma is a tumor containing both astrocytic and neuronal components.
  • Gangliogliomas may also manifest as a nasal glial heterotopia, and neurogenic tumors should be considered in the presence of a nasal mass.
  • [MeSH-minor] Endoscopy. Female. Humans. Nasal Cavity / enzymology. Nasal Cavity / surgery. Nasolacrimal Duct / surgery. Phosphopyruvate Hydratase / analysis. S100 Proteins / analysis. Young Adult

  • Genetic Alliance. consumer health - Ganglioglioma.
  • MedlinePlus Health Information. consumer health - Nasal Cancer.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20815807.001).
  • [ISSN] 1300-7475
  • [Journal-full-title] Kulak burun boğaz ihtisas dergisi : KBB = Journal of ear, nose, and throat
  • [ISO-abbreviation] Kulak Burun Bogaz Ihtis Derg
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Turkey
  • [Chemical-registry-number] 0 / S100 Proteins; EC 4.2.1.11 / Phosphopyruvate Hydratase
  •  go-up   go-down


30. Wiencke JK, Aldape K, McMillan A, Wiemels J, Moghadassi M, Miike R, Kelsey KT, Patoka J, Long J, Wrensch M: Molecular features of adult glioma associated with patient race/ethnicity, age, and a polymorphism in O6-methylguanine-DNA-methyltransferase. Cancer Epidemiol Biomarkers Prev; 2005 Jul;14(7):1774-83
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Molecular features of adult glioma associated with patient race/ethnicity, age, and a polymorphism in O6-methylguanine-DNA-methyltransferase.
  • BACKGROUND: Risk factors for adult glioma in the San Francisco Bay Area include well-known demographic features such as age and race/ethnicity, and our previous studies indicated that these characteristics are associated with the TP53 mutation status of patients' tumors.
  • METHODS: Molecular analyses were carried out on 556 incident astrocytic tumors.
  • RESULTS: The tumor data confirm the inverse relationships between TP53 mutation and MDM2 (P = 0.04) or EGFR (P = 0.004) amplification and that patients whose tumors contain TP53 mutations are younger than those without (P < 0.001).
  • Carriers of the MGMT variant 84Phe allele were significantly less likely to have tumors with TP53 overexpression (odds ratio, 0.30; 95% confidence interval, 0.13-0.71) and somewhat less likely to have tumors with any TP53 mutation (odds ratio, 0.47; 95% confidence interval, 0.13-1.69) after adjusting for age, gender, and ethnicity.
  • The data on MGMT show that an inherited factor involving the repair of methylation and other alkylation damage, specifically to the O6 position of guanine, may be associated with the development of tumors that proceed in their development without TP53 mutations or accumulation of TP53 protein and possibly also those that do not involve amplification of the EGFR locus.
  • [MeSH-minor] Biomarkers, Tumor / genetics. Ethnic Groups. Female. Gene Amplification. Genes, p53. Humans. Male. Middle Aged. Prevalence. Proto-Oncogene Proteins c-mdm2. San Francisco / epidemiology. Tumor Suppressor Protein p53 / genetics

  • Genetic Alliance. consumer health - Glioma.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16030116.001).
  • [ISSN] 1055-9965
  • [Journal-full-title] Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
  • [ISO-abbreviation] Cancer Epidemiol. Biomarkers Prev.
  • [Language] eng
  • [Grant] United States / NIEHS NIH HHS / ES / ES04705; United States / NIEHS NIH HHS / ES / ES06717; United States / NCI NIH HHS / CA / P50CA097257; United States / NCI NIH HHS / CA / R01CA52689
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, P.H.S.
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Nuclear Proteins; 0 / Proto-Oncogene Proteins; 0 / Tumor Suppressor Protein p53; EC 2.1.1.63 / O(6)-Methylguanine-DNA Methyltransferase; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 6.3.2.19 / MDM2 protein, human; EC 6.3.2.19 / Proto-Oncogene Proteins c-mdm2
  •  go-up   go-down


31. Anan M, Inoue R, Ishii K, Abe T, Fujiki M, Kobayashi H, Goya T, Nakazato Y: A rosette-forming glioneuronal tumor of the spinal cord: the first case of a rosette-forming glioneuronal tumor originating from the spinal cord. Hum Pathol; 2009 Jun;40(6):898-901
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] A rosette-forming glioneuronal tumor of the spinal cord: the first case of a rosette-forming glioneuronal tumor originating from the spinal cord.
  • Rosette-forming glioneuronal tumors of the fourth ventricle are rare brain tumors, and only 19 such lesions have been previously reported.
  • This report presents the first case of a rosette-forming glioneuronal tumors arising from the spinal cord.
  • Magnetic resonance imaging demonstrated a mass in the cervicothoracic spinal cord that suggested an intramedullary spinal tumor.
  • A total gross resection of the tumor was performed.
  • As is typical of rosette-forming glioneuronal tumors of the fourth ventricle, this spinal cord example manifested neurocytic and astrocytic components.
  • The astrocytic component showed characteristic features of a pilocytic astrocytoma, as is often the case in the fourth ventricle examples.
  • [MeSH-minor] Adult. Astrocytoma / pathology. Female. Humans. Rosette Formation

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentIn] Hum Pathol. 2009 Oct;40(10):1510; author reply 1510 [19616823.001]
  • (PMID = 19269010.001).
  • [ISSN] 1532-8392
  • [Journal-full-title] Human pathology
  • [ISO-abbreviation] Hum. Pathol.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


32. Preusser M, Hoischen A, Novak K, Czech T, Prayer D, Hainfellner JA, Baumgartner C, Woermann FG, Tuxhorn IE, Pannek HW, Bergmann M, Radlwimmer B, Villagrán R, Weber RG, Hans VH: Angiocentric glioma: report of clinico-pathologic and genetic findings in 8 cases. Am J Surg Pathol; 2007 Nov;31(11):1709-18
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Angiocentric glioma has recently been described as a novel epilepsy associated tumor with distinct clinico-pathologic features.
  • We report the clinical and pathologic findings in 8 additional cases of this rare tumor type and extend its characterization by genomic profiling.
  • Cortico-subcortical tumors were located in the temporal and parietal lobes.
  • Histologically, the tumors were characterized by diffuse growth and prominent perivascular tumor cell arrangements with features of astrocytic/ependymal differentiation, but lacking neoplastic neuronal features.
  • All patients are seizure free and without evidence of tumor recurrence at follow-up times ranging from 1/2 to 6.9 years.
  • Our findings support 2 previous reports proposing that angiocentric glioma is a novel glial tumor entity of low-grade malignancy.
  • [MeSH-major] Brain Neoplasms / genetics. Brain Neoplasms / ultrastructure. Epilepsy / genetics. Gene Expression Regulation, Neoplastic. Glioma / genetics. Glioma / ultrastructure
  • [MeSH-minor] Adolescent. Adult. Aged. Astrocytes / pathology. Cell Differentiation. Cell Proliferation. Child. Child, Preschool. Chromosome Deletion. Chromosomes, Human, Pair 11. Chromosomes, Human, Pair 6. Ependyma / pathology. Europe. Female. Follow-Up Studies. Gene Dosage. Gene Expression Profiling / methods. Glial Fibrillary Acidic Protein / analysis. Humans. Magnetic Resonance Imaging. Male. Membrane Glycoproteins / analysis. Middle Aged. Mucin-1 / analysis. Nerve Growth Factors / analysis. Nucleic Acid Hybridization. Oligonucleotide Array Sequence Analysis. Receptor-Like Protein Tyrosine Phosphatases, Class 3 / genetics. S100 Calcium Binding Protein beta Subunit. S100 Proteins / analysis. Time Factors. Treatment Outcome. Vimentin / analysis

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • MedlinePlus Health Information. consumer health - Epilepsy.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18059228.001).
  • [ISSN] 0147-5185
  • [Journal-full-title] The American journal of surgical pathology
  • [ISO-abbreviation] Am. J. Surg. Pathol.
  • [Language] eng
  • [Publication-type] Journal Article; Multicenter Study; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Glial Fibrillary Acidic Protein; 0 / Membrane Glycoproteins; 0 / Mucin-1; 0 / Nerve Growth Factors; 0 / PDPN protein, human; 0 / S100 Calcium Binding Protein beta Subunit; 0 / S100 Proteins; 0 / S100B protein, human; 0 / Vimentin; EC 3.1.3.48 / PTPRJ protein, human; EC 3.1.3.48 / Receptor-Like Protein Tyrosine Phosphatases, Class 3
  •  go-up   go-down


33. Levidou G, El-Habr E, Saetta AA, Bamias C, Katsouyanni K, Patsouris E, Korkolopoulou P: P53 immunoexpression as a prognostic marker for human astrocytomas: a meta-analysis and review of the literature. J Neurooncol; 2010 Dec;100(3):363-71
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • During the past few decades, researchers have been looking for parameters with an impact on the prognosis of patients with astrocytic tumors. p53 is one of the most widely investigated molecules in human gliomas.
  • A meta-analysis was performed on the studies that applied Cox models and had adjusted the hazard ratio of p53 expression with tumor grade and patients' age.
  • A second meta-analysis performed only on glioblastomas showed that the overall risk of mortality in these tumors was -0.123 (-0.346 to 0.100) and was not statistically significant.
  • After almost 20 years of research, published evidence does not substantiate the usefulness of p53 immunohistochemical expression as a prognostic marker in patients with astrocytic neoplasms.
  • [MeSH-major] Astrocytoma / diagnosis. Astrocytoma / metabolism. Tumor Suppressor Protein p53 / metabolism
  • [MeSH-minor] Adult. Biomarkers / metabolism. Biomarkers, Tumor / metabolism. Female. Humans. Linear Models. Male. Middle Aged. Predictive Value of Tests. Prognosis

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [ErratumIn] J Neurooncol. 2010 Dec;100(3):373. Katsougiannis, Klea [corrected to Katsouyanni, Klea]
  • [Cites] Neuropathol Appl Neurobiol. 1998 Oct;24(5):381-8 [9821169.001]
  • [Cites] Pathol Res Pract. 1998;194(12):831-6 [9894248.001]
  • [Cites] Cancer Res. 1994 Sep 15;54(18):4855-78 [8069852.001]
  • [Cites] Clin Cancer Res. 2006 Jan 15;12 (2):473-7 [16428489.001]
  • [Cites] Br J Cancer. 2004 Apr 19;90(8):1572-6 [15083187.001]
  • [Cites] Pediatr Neurosurg. 2005 Nov-Dec;41(6):292-9 [16293948.001]
  • [Cites] Cancer. 1999 Aug 15;86(4):672-83 [10440696.001]
  • [Cites] J Pathol. 1992 Apr;166(4):329-30 [1517889.001]
  • [Cites] Br J Cancer. 1994 Mar;69(3):586-91 [8123492.001]
  • [Cites] Adv Cancer Res. 2000;77:81-137 [10549356.001]
  • [Cites] Cancer Res. 2001 Feb 1;61(3):1122-8 [11221842.001]
  • [Cites] Clin Neuropathol. 2000 Sep-Oct;19(5):230-4 [11048748.001]
  • [Cites] Clin Cancer Res. 2002 Jan;8(1):180-7 [11801556.001]
  • [Cites] Stat Med. 1998 Dec 30;17(24):2815-34 [9921604.001]
  • [Cites] J Natl Cancer Inst. 1994 Jun 1;86(11):829-35 [8182763.001]
  • [Cites] Br J Cancer. 1997;75(9):1269-78 [9155045.001]
  • [Cites] Genes Dev. 2007 Nov 1;21(21):2683-710 [17974913.001]
  • [Cites] Clin Neuropathol. 1996 Mar-Apr;15(2):67-73 [8925599.001]
  • [Cites] Diagn Mol Pathol. 1994 Dec;3(4):240-5 [7866633.001]
  • [Cites] Oncol Rep. 2002 Jul-Aug;9(4):703-7 [12066196.001]
  • [Cites] Anticancer Res. 2006 Mar-Apr;26(2B):1351-7 [16619544.001]
  • [Cites] Appl Immunohistochem Mol Morphol. 2006 Mar;14(1):91-6 [16540738.001]
  • [Cites] Neuropathol Appl Neurobiol. 1999 Apr;25(2):134-42 [10216001.001]
  • [Cites] Kaohsiung J Med Sci. 1998 Oct;14(10):607-15 [9819502.001]
  • [Cites] J Neurooncol. 2006 Jun;78(2):123-7 [16614946.001]
  • [Cites] Cancer. 2003 Feb 15;97(4):1063-71 [12569607.001]
  • [Cites] JAMA. 1994 Jul 20;272(3):234-7 [8022043.001]
  • [Cites] J Neurooncol. 2001 Dec;55(3):195-204 [11859975.001]
  • [Cites] Nat Clin Pract Urol. 2005 Aug;2(8):416-22 [16482653.001]
  • [Cites] J Clin Oncol. 2004 Mar 15;22(6):975-7 [14981108.001]
  • [Cites] Acta Neuropathol. 2007 Aug;114(2):97-109 [17618441.001]
  • [Cites] Eur Respir J. 2001 Oct;18(4):705-19 [11716177.001]
  • [Cites] Br J Neurosurg. 2002 Aug;16(4):335-42 [12389885.001]
  • [Cites] Lancet. 1993 Feb 13;341(8842):418-22 [8094183.001]
  • [Cites] Clin Cancer Res. 1995 Dec;1(12):1617-22 [9815964.001]
  • [Cites] Health Technol Assess. 2003;7(5):1-162 [12633526.001]
  • [Cites] Br J Cancer. 1992 Aug;66(2):373-85 [1503912.001]
  • [Cites] Neurosurgery. 1998 Apr;42(4):724-9 [9574635.001]
  • [Cites] Clin Neuropathol. 1997 Jul-Aug;16(4):220-6 [9266149.001]
  • [Cites] Br J Neurosurg. 1995 Apr;9(2):143-9 [7632359.001]
  • [Cites] J Clin Pathol. 2001 Nov;54(11):860-5 [11684721.001]
  • [Cites] J Clin Oncol. 2001 Mar 15;19(6):1865-78 [11251019.001]
  • [Cites] Br J Cancer. 2004 Nov 1;91(9):1678-86 [15494720.001]
  • [Cites] Cancer. 2003 Feb 1;97(3):644-8 [12548606.001]
  • [Cites] APMIS. 1994 Oct;102(10):786-92 [7826609.001]
  • [Cites] J Neurooncol. 2002 Jul;58(3):217-36 [12187957.001]
  • [Cites] Zentralbl Neurochir. 2003;64(1):30-6 [12582944.001]
  • [Cites] Clin Cancer Res. 2002 May;8(5):1117-24 [12006527.001]
  • [Cites] Arq Neuropsiquiatr. 2004 Jun;62(2A):262-70 [15235729.001]
  • [Cites] Int J Cancer. 1994 Feb 1;56(3):347-53 [7906253.001]
  • [Cites] J Neurosurg. 1997 Jan;86(1):121-30 [8988090.001]
  • [Cites] Mol Cell. 2004 Mar 26;13(6):879-86 [15053880.001]
  • [Cites] Cancer. 1997 Jul 15;80(2):242-9 [9217037.001]
  • [Cites] Brain Pathol. 2006 Oct;16(4):273-86 [17107596.001]
  • [Cites] J Neurol Neurosurg Psychiatry. 1995 Oct;59(4):413-9 [7561922.001]
  • [Cites] Clin Neuropathol. 1997 Nov-Dec;16(6):332-6 [9401801.001]
  • [Cites] J Neurooncol. 2002 Jul;58(3):203-15 [12187956.001]
  • [Cites] Neurosurgery. 1995 Aug;37(2):246-54 [7477776.001]
  • [Cites] Lancet Oncol. 2005 Sep;6(9):678-86 [16129368.001]
  • [Cites] Cancer Treat Rev. 2000 Feb;26(1):67-73 [10660492.001]
  • [Cites] Br J Neurosurg. 1998 Aug;12(4):318-24 [10070423.001]
  • [Cites] Crit Rev Neurosurg. 1998 Sep 14;8(5):269-74 [9732540.001]
  • [Cites] Nature. 2000 Nov 16;408(6810):307-10 [11099028.001]
  • [Cites] J Neurooncol. 1997 Oct;35(1):13-28 [9266437.001]
  • [Cites] J Neurooncol. 2006 Oct;80(1):49-55 [16645716.001]
  • (PMID = 20461443.001).
  • [ISSN] 1573-7373
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article; Meta-Analysis; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers; 0 / Biomarkers, Tumor; 0 / Tumor Suppressor Protein p53
  •  go-up   go-down


34. Schittenhelm J, Mittelbronn M, Nguyen TD, Meyermann R, Beschorner R: WT1 expression distinguishes astrocytic tumor cells from normal and reactive astrocytes. Brain Pathol; 2008 Jul;18(3):344-53
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] WT1 expression distinguishes astrocytic tumor cells from normal and reactive astrocytes.
  • Particularly in small brain biopsies, it might be difficult to distinguish reactive astrogliosis from low-grade or infiltration zones of high-grade astrocytomas.
  • Recently, the over-expression of Wilms' tumor gene product WT1 was reported in astrocytic tumor cells.
  • Therefore, we investigated WT1 expression in paraffin-embedded brain sections from 28 controls, 48 cases with astrogliosis of various etiology and 219 astrocytomas [World Health Organization (WHO) grades I-IV] by immunohistochemistry.
  • In astrocytomas, WT1-positive tumor cells were found in pilocytic astrocytomas (66.7% of cases), diffuse astrocytomas (52.7%) WHO grade II (52.7%), anaplastic astrocytomas (83.4%) and glioblastomas (98.1%).
  • Overall, the majority of all astrocytic neoplasms (84.5%) expressed WT1.
  • Establishing a cut-off value of 0% immunoreactive tumor cells served to recognize neoplastic astrocytes with 100% specificity and 68% sensitivity and was associated with positive and negative predictive values of 1 and 0.68, respectively.
  • [MeSH-major] Astrocytes / metabolism. Astrocytoma / metabolism. Brain Neoplasms / metabolism. Gliosis / metabolism. WT1 Proteins / biosynthesis
  • [MeSH-minor] Adult. Aged. Biomarkers, Tumor / analysis. Endothelial Cells / metabolism. Female. Gene Expression. Humans. Immunohistochemistry. Male. Middle Aged

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18371184.001).
  • [ISSN] 1015-6305
  • [Journal-full-title] Brain pathology (Zurich, Switzerland)
  • [ISO-abbreviation] Brain Pathol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / WT1 Proteins
  •  go-up   go-down


35. Srinivas BH, Uppin MS, Panigrahi MK, Vijaya Saradhi M, Jyotsna Rani Y, Challa S: Pleomorphic xanthoastrocytoma of the pineal region. J Clin Neurosci; 2010 Nov;17(11):1439-41
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Pleomorphic xanthoastrocytomas are indolent, astrocytic tumors usually located in the superficial cerebral cortex.
  • We describe a patient with an astrocytic tumor arising in the pineal region that fulfilled all of the morphologic and immunohistochemical criteria of a pleomorphic xanthoastrocytoma.
  • [MeSH-minor] Adult. Diagnosis, Differential. Headache / diagnosis. Headache / etiology. Humans. Magnetic Resonance Imaging / methods. Male. Ocular Motility Disorders / diagnosis. Ocular Motility Disorders / etiology. Postoperative Complications / diagnosis. Postoperative Complications / etiology. Tomography, X-Ray Computed / methods. Treatment Outcome

  • Genetic Alliance. consumer health - Pleomorphic xanthoastrocytoma.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2010 Elsevier Ltd. All rights reserved.
  • (PMID = 20655751.001).
  • [ISSN] 1532-2653
  • [Journal-full-title] Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
  • [ISO-abbreviation] J Clin Neurosci
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Scotland
  •  go-up   go-down


36. Waha A, Felsberg J, Hartmann W, von dem Knesebeck A, Mikeska T, Joos S, Wolter M, Koch A, Yan PS, Endl E, Wiestler OD, Reifenberger G, Pietsch T, Waha A: Epigenetic downregulation of mitogen-activated protein kinase phosphatase MKP-2 relieves its growth suppressive activity in glioma cells. Cancer Res; 2010 Feb 15;70(4):1689-99
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Critical tumor suppression pathways in brain tumors have yet to be fully defined.
  • In 83 astrocytic gliomas and 5 glioma cell lines examined, hypermethylation of the MKP-2 promoter was found to occur relatively more frequently in diffuse or anaplastic astrocytomas and secondary glioblastomas relative to primary glioblastomas.
  • [MeSH-major] Brain Neoplasms / pathology. Cell Proliferation. Dual-Specificity Phosphatases / genetics. Epigenesis, Genetic / physiology. Glioma / pathology. Mitogen-Activated Protein Kinase Phosphatases / genetics
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Cell Line, Tumor. DNA Methylation. Down-Regulation / physiology. Female. Gene Expression Regulation, Neoplastic / physiology. Gene Silencing / physiology. Genes, Tumor Suppressor / physiology. Humans. Male. Middle Aged

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20124482.001).
  • [ISSN] 1538-7445
  • [Journal-full-title] Cancer research
  • [ISO-abbreviation] Cancer Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] EC 3.1.3.- / Mitogen-Activated Protein Kinase Phosphatases; EC 3.1.3.48 / DUSP4 protein, human; EC 3.1.3.48 / Dual-Specificity Phosphatases
  •  go-up   go-down


37. Arslantas A, Artan S, Oner U, Müslümanoglu MH, Ozdemir M, Durmaz R, Arslantas D, Vural M, Cosan E, Atasoy MA: Genomic alterations in low-grade, anaplastic astrocytomas and glioblastomas. Pathol Oncol Res; 2007;13(1):39-46
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • To extend our understanding of potential stepwise genetic alterations that may underlie tumor progression from low-grade astrocytomas to glioblastomas, histopathologic and comparative genomic hybridization analyses were performed on tumor specimens from 68 primary lesions, including 40 glioblastomas, 10 anaplastic and 18 low-grade astrocytomas.
  • The number of aberrations per case increased towards the higher grade tumors (grade II: 1.66+/-1.49; grade III: 2.80+/-1.68; grade IV: 3.02+/-1.07; F=6.955, p=0.002).
  • Chromosome 10/10q deletion and combination of 1p, 19q and 17p deletions were specific to high-grade astrocytic tumors.
  • [MeSH-major] Astrocytoma / genetics. Brain Neoplasms / genetics. Chromosome Aberrations. Chromosome Deletion. Glioblastoma / genetics
  • [MeSH-minor] Adult. Aged. Female. Humans. Male. Middle Aged. Prognosis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Acta Neurol Belg. 2002 Jun;102(2):53-62 [12161900.001]
  • [Cites] Am J Pathol. 1999 Aug;155(2):375-86 [10433931.001]
  • [Cites] Cancer Res. 1994 Mar 15;54(6):1397-401 [8137236.001]
  • [Cites] Neurol Med Chir (Tokyo). 2003 Jan;43(1):12-8; discussion 19 [12568317.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Apr;61(4):321-8 [11939587.001]
  • [Cites] Mol Carcinog. 2003 Jan;36(1):6-14 [12503074.001]
  • [Cites] Hum Genet. 1993 Sep;92(2):169-74 [8370584.001]
  • [Cites] Front Biosci. 2003 May 01;8:e281-8 [12700122.001]
  • [Cites] Genes Chromosomes Cancer. 1998 Apr;21(4):340-6 [9559346.001]
  • [Cites] Cancer Genet Cytogenet. 2003 Apr 1;142(1):1-7 [12660025.001]
  • [Cites] Nat Genet. 1997 Sep;17(1):32-9 [9288095.001]
  • [Cites] Anticancer Res. 1994 Mar-Apr;14(2A):577-9 [8017863.001]
  • [Cites] J Natl Cancer Inst. 1998 Oct 7;90(19):1473-9 [9776413.001]
  • [Cites] Cancer Res. 2004 Oct 1;64(19):6892-9 [15466178.001]
  • [Cites] Cancer Res. 2001 Oct 15;61(20):7683-8 [11606412.001]
  • [Cites] Genes Chromosomes Cancer. 2005 Jan;42(1):68-77 [15472895.001]
  • [Cites] Cancer Res. 1999 Apr 15;59(8):1820-4 [10213484.001]
  • [Cites] Clin Neurol Neurosurg. 1997 May;99(2):117-23 [9213056.001]
  • [Cites] Neurosurg Rev. 2004 Jan;27(1):58-64 [12845540.001]
  • [Cites] Am J Pathol. 1994 Jun;144(6):1203-18 [8203461.001]
  • [Cites] Oncogene. 1997 Jun 19;14(24):2927-33 [9205099.001]
  • [Cites] Cancer Lett. 1999 Jan 8;135(1):61-6 [10077222.001]
  • [Cites] Br J Cancer. 1996 Feb;73(4):424-8 [8595154.001]
  • [Cites] Int J Cancer. 1999 Apr 20;84(2):150-4 [10096247.001]
  • [Cites] Int J Oncol. 2002 Nov;21(5):1141-50 [12370766.001]
  • [Cites] Br J Cancer. 2005 Jul 11;93(1):124-30 [15970925.001]
  • [Cites] Hum Pathol. 2000 May;31(5):608-14 [10836301.001]
  • [Cites] Virchows Arch. 1995;427(2):113-8 [7582239.001]
  • [Cites] Cancer Res. 1994 Dec 15;54(24):6353-8 [7987828.001]
  • (PMID = 17387387.001).
  • [ISSN] 1219-4956
  • [Journal-full-title] Pathology oncology research : POR
  • [ISO-abbreviation] Pathol. Oncol. Res.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  •  go-up   go-down


38. Kitai R, Horita R, Sato K, Yoshida K, Arishima H, Higashino Y, Hashimoto N, Takeuchi H, Kubota T, Kikuta K: Nestin expression in astrocytic tumors delineates tumor infiltration. Brain Tumor Pathol; 2010 Apr;27(1):17-21
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Nestin expression in astrocytic tumors delineates tumor infiltration.
  • Nestin is an intermediate filament protein expressed in undifferentiated cells during central nervous system development, and glioma is known to be a highly infiltrative tumor.
  • We determined whether nestin was expressed in astrocytic tumors and could identify infiltrating tumor cells.
  • We screened 65 archival, paraffin-embedded adult astrocytic tumors using immunohistochemical staining and computerized overlaid photographs.
  • Normal biopsied brains and metastatic brain tumors were also examined.
  • The intensity of nestin expression corresponded to the tumor grade.
  • Overlaid images showed that nestin immunostaining delineated tumor invasion into adjacent gray and white matter.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Glioblastoma / pathology. Intermediate Filament Proteins / metabolism. Intermediate Filament Proteins / physiology. Nerve Tissue Proteins / metabolism. Nerve Tissue Proteins / physiology
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. Biomarkers, Tumor / analysis. Child. Female. Humans. Male. Middle Aged. Neoplasm Invasiveness. Neoplasm Staging. Nestin. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20425043.001).
  • [ISSN] 1861-387X
  • [Journal-full-title] Brain tumor pathology
  • [ISO-abbreviation] Brain Tumor Pathol
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Japan
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Intermediate Filament Proteins; 0 / NES protein, human; 0 / Nerve Tissue Proteins; 0 / Nestin
  •  go-up   go-down


39. Kaloshi G, Mokhtari K, Carpentier C, Taillibert S, Lejeune J, Marie Y, Delattre JY, Godbout R, Sanson M: FABP7 expression in glioblastomas: relation to prognosis, invasion and EGFR status. J Neurooncol; 2007 Sep;84(3):245-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Nuclear expression of FABP7 was more specifically related to EGFR amplification and more invasive tumors.
  • These data, although they need to be confirmed by further studies, support the relation between FABP7, astrocytic features, invasion and poor prognosis and suggests that EGFR amplification is associated with nuclear translocation of FABP7.
  • [MeSH-major] Biomarkers, Tumor / analysis. Brain Neoplasms / pathology. Carrier Proteins / biosynthesis. Glioblastoma / pathology. Receptor, Epidermal Growth Factor / metabolism. Tumor Suppressor Proteins / biosynthesis
  • [MeSH-minor] Adult. Aged. Cell Nucleus / metabolism. Cytoplasm / metabolism. Fatty Acid-Binding Protein 7. Female. Gene Amplification. Humans. Kaplan-Meier Estimate. Male. Middle Aged. Neoplasm Invasiveness / pathology. Prognosis. Protein Transport / physiology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neuropathol Exp Neurol. 2001 Sep;60(9):863-71 [11556543.001]
  • [Cites] BMC Clin Pathol. 2005 Jul 15;5:6 [16018821.001]
  • [Cites] Cancer Cell. 2006 Mar;9(3):157-73 [16530701.001]
  • [Cites] BMC Cancer. 2006 Apr 19;6:97 [16623952.001]
  • [Cites] Oncogene. 2007 Apr 26;26(19):2695-706 [17057735.001]
  • [Cites] Cancer. 2006 May 15;106(10 ):2218-23 [16568472.001]
  • [Cites] Oncogene. 1998 Apr 16;16(15):1955-62 [9591779.001]
  • [Cites] Prog Lipid Res. 2004 Jul;43(4):328-49 [15234551.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5814-9 [15827123.001]
  • [Cites] Genes Dev. 2005 May 1;19(9):1028-33 [15879553.001]
  • [Cites] Neuron. 1994 Apr;12 (4):895-908 [8161459.001]
  • (PMID = 17415524.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Carrier Proteins; 0 / FABP7 protein, human; 0 / Fatty Acid-Binding Protein 7; 0 / Tumor Suppressor Proteins; EC 2.7.10.1 / Receptor, Epidermal Growth Factor
  •  go-up   go-down


40. Abou-Ghazal M, Yang DS, Qiao W, Reina-Ortiz C, Wei J, Kong LY, Fuller GN, Hiraoka N, Priebe W, Sawaya R, Heimberger AB: The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas. Clin Cancer Res; 2008 Dec 15;14(24):8228-35
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas.
  • RESULTS: We did not detect p-STAT3 expression in normal brain tissues or low-grade astrocytomas.
  • We observed significant differences in the incidence of p-STAT3 expression between the different grades of astrocytomas and different pathologic glioma types. p-STAT3 expression was associated with the population of tumor-infiltrating immune cells but not with that of T regulatory cells.
  • CONCLUSIONS: p-STAT3 expression is common within gliomas of both the astrocytic and oligodendroglial lineages and portends poor survival in patients with anaplastic astrocytomas. p-STAT3 expression differs significantly between gliomas of different pathologic types and grades and correlated with the degree of immune infiltration.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer Res. 2002 Jun 15;62(12):3351-5 [12067972.001]
  • [Cites] Clin Cancer Res. 2006 Sep 15;12(18):5423-34 [17000676.001]
  • [Cites] J Immunol. 2002 Sep 1;169(5):2253-63 [12193690.001]
  • [Cites] Cancer Res. 2003 Mar 15;63(6):1270-9 [12649187.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4138-43 [12640143.001]
  • [Cites] Clin Cancer Res. 2003 Sep 1;9(10 Pt 1):3692-9 [14506160.001]
  • [Cites] Cancer Res. 2003 Nov 1;63(21):7443-50 [14612544.001]
  • [Cites] Nat Rev Cancer. 2004 Feb;4(2):97-105 [14964307.001]
  • [Cites] Anticancer Res. 2004 Jan-Feb;24(1):37-42 [15015573.001]
  • [Cites] J Clin Oncol. 2004 May 1;22(9):1682-8 [15117990.001]
  • [Cites] Lab Invest. 2004 Aug;84(8):941-51 [15184909.001]
  • [Cites] Nat Med. 2004 Sep;10(9):942-9 [15322536.001]
  • [Cites] J Clin Invest. 2004 Sep;114(5):720-8 [15343391.001]
  • [Cites] Biochem Biophys Res Commun. 2004 Sep 3;321(4):828-34 [15358102.001]
  • [Cites] Cancer Chemother Rep. 1966 Mar;50(3):163-70 [5910392.001]
  • [Cites] Ann Neurol. 1978 Sep;4(3):219-24 [718133.001]
  • [Cites] J Neurosurg. 1984 Jun;60(6):1138-47 [6374063.001]
  • [Cites] Endocrinology. 1995 Mar;136(3):897-902 [7867598.001]
  • [Cites] Stroke. 1995 Aug;26(8):1393-8 [7631343.001]
  • [Cites] EMBO J. 1998 Feb 16;17(4):1006-18 [9463379.001]
  • [Cites] Immunity. 1999 Jan;10(1):39-49 [10023769.001]
  • [Cites] Clin Cancer Res. 2005 Jan 1;11(1):267-72 [15671555.001]
  • [Cites] Oncogene. 2005 Feb 3;24(6):1053-65 [15558012.001]
  • [Cites] Oncogene. 2005 Feb 3;24(6):970-9 [15592503.001]
  • [Cites] Clin Cancer Res. 2005 Dec 1;11(23):8288-94 [16322287.001]
  • [Cites] Nat Med. 2005 Dec;11(12):1314-21 [16288283.001]
  • [Cites] Int J Biol Markers. 2006 Jul-Sep;21(3):175-83 [17013800.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 Dec;65(12):1181-8 [17146292.001]
  • [Cites] Nat Rev Immunol. 2007 Jan;7(1):41-51 [17186030.001]
  • [Cites] J Clin Pathol. 2007 Feb;60(2):173-9 [17264243.001]
  • [Cites] Clin Cancer Res. 2007 Feb 1;13(3):902-11 [17289884.001]
  • [Cites] Lung Cancer. 2007 Mar;55(3):349-55 [17161498.001]
  • [Cites] Clin Cancer Res. 2007 Mar 1;13(5):1362-6 [17332277.001]
  • [Cites] Clin Cancer Res. 2007 Apr 1;13(7):2075-81 [17404089.001]
  • [Cites] Oncogene. 2007 Apr 12;26(17):2435-44 [17043651.001]
  • [Cites] J Immunother. 2007 Feb-Mar;30(2):131-9 [17471161.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 May 1;104(18):7391-6 [17463090.001]
  • [Cites] J Clin Pathol. 2007 Jun;60(6):642-8 [16901975.001]
  • [Cites] Clin Cancer Res. 2007 Jun 15;13(12):3559-67 [17575219.001]
  • [Cites] J Clin Oncol. 2007 Jun 20;25(18):2586-93 [17577038.001]
  • [Cites] Cancer Res. 2007 Oct 15;67(20):9630-6 [17942891.001]
  • [Cites] Clin Cancer Res. 2008 Aug 15;14(16):5166-72 [18698034.001]
  • [Cites] Clin Cancer Res. 2008 Sep 15;14(18):5759-68 [18794085.001]
  • [Cites] J Neurotrauma. 2001 Mar;18(3):351-9 [11284554.001]
  • [Cites] Clin Cancer Res. 2005 Feb 15;11(4):1386-93 [15746037.001]
  • [Cites] Clin Cancer Res. 2005 Feb 15;11(4):1462-6 [15746047.001]
  • [Cites] World J Gastroenterol. 2005 Jun 14;11(22):3385-91 [15948243.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9589-94 [15976028.001]
  • [Cites] J Clin Pathol. 2005 Aug;58(8):833-8 [16049285.001]
  • [Cites] Gynecol Oncol. 2005 Sep;98(3):446-52 [16005944.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18538-43 [16344461.001]
  • [Cites] Ai Zheng. 2006 Mar;25(3):269-74 [16536977.001]
  • [Cites] Cancer Res. 2006 Mar 15;66(6):3188-96 [16540670.001]
  • [Cites] Clin Cancer Res. 2006 Jun 1;12(11 Pt 1):3355-60 [16740757.001]
  • [Cites] Neuro Oncol. 2006 Jul;8(3):261-79 [16775224.001]
  • [Cites] Blood. 2006 Sep 1;108(5):1571-9 [16645171.001]
  • [Cites] J Urol. 2002 Aug;168(2):762-5 [12131365.001]
  • (PMID = 19088040.001).
  • [ISSN] 1078-0432
  • [Journal-full-title] Clinical cancer research : an official journal of the American Association for Cancer Research
  • [ISO-abbreviation] Clin. Cancer Res.
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / CA120813-01A1; United States / NCI NIH HHS / CA / R01 CA120813; United States / NCI NIH HHS / CA / R01 CA120813-01A1
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / STAT3 Transcription Factor; 0 / STAT3 protein, human
  • [Other-IDs] NLM/ NIHMS78715; NLM/ PMC2605668
  •  go-up   go-down


41. Söling A, Sackewitz M, Volkmar M, Schaarschmidt D, Jacob R, Holzhausen HJ, Rainov NG: Minichromosome maintenance protein 3 elicits a cancer-restricted immune response in patients with brain malignancies and is a strong independent predictor of survival in patients with anaplastic astrocytoma. Clin Cancer Res; 2005 Jan 1;11(1):249-58
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Minichromosome maintenance protein 3 elicits a cancer-restricted immune response in patients with brain malignancies and is a strong independent predictor of survival in patients with anaplastic astrocytoma.
  • PURPOSE: The identification of new molecular markers in astrocytic tumors may help to understand the biology of these tumors in more detail.
  • Informative tumor markers may represent prognostic factors for response to therapy and outcome as well as potential targets for novel anticancer therapies.
  • EXPERIMENTAL DESIGN: Tumor-associated antigens were identified by immunoscreening of a human glioma cDNA expression library with allogeneic sera from patients with diffuse astrocytoma (WHO grades 2-4).
  • In addition, 98 serum specimens from patients with primary and secondary brain malignancies and 30 serum specimens from healthy controls were examined by serologic immunoscreening for immunoreactivity with MCM3.
  • RESULTS: MCM3 is overexpressed in human astrocytic tumors and elicits a cancer-restricted humoral immune response in 9.3% (9 of 97) of patients with brain tumors (n = 95) and brain metastases (n = 2) but not in healthy controls.
  • [MeSH-major] Astrocytoma / immunology. Astrocytoma / mortality. Brain Neoplasms / immunology. Brain Neoplasms / mortality. DNA-Binding Proteins / physiology. Gene Expression Regulation, Neoplastic. Nuclear Proteins / physiology. Transcription Factors / physiology
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Astrocytes / metabolism. Cell Cycle Proteins. DNA, Complementary / metabolism. Disease-Free Survival. Escherichia coli / metabolism. Female. Gene Library. Glioma / metabolism. Humans. Immunohistochemistry. Ki-67 Antigen / biosynthesis. Male. Middle Aged. Minichromosome Maintenance Complex Component 3. Neoplasm Metastasis. Oligonucleotide Array Sequence Analysis. Prognosis. Proportional Hazards Models. Recurrence. Time Factors. Treatment Outcome

  • Genetic Alliance. consumer health - Anaplastic Astrocytoma.
  • Genetic Alliance. consumer health - Brain Cancer.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15671553.001).
  • [ISSN] 1078-0432
  • [Journal-full-title] Clinical cancer research : an official journal of the American Association for Cancer Research
  • [ISO-abbreviation] Clin. Cancer Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Cell Cycle Proteins; 0 / DNA, Complementary; 0 / DNA-Binding Proteins; 0 / Ki-67 Antigen; 0 / MCM3 protein, human; 0 / Nuclear Proteins; 0 / Transcription Factors; EC 3.6.4.12 / Minichromosome Maintenance Complex Component 3
  •  go-up   go-down


42. Kotoula V, Cheva A, Barbanis S, Papadimitriou CS, Karkavelas G: hTERT immunopositivity patterns in the normal brain and in astrocytic tumors. Acta Neuropathol; 2006 Jun;111(6):569-78
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] hTERT immunopositivity patterns in the normal brain and in astrocytic tumors.
  • Accumulating data about the impact of hTERT in astrocytic tumor carcinogenesis and recent evidence about its association with disease outcome prompt the evaluation of this molecule with methods applicable in routine pathology practice.
  • In this study, we investigated hTERT protein expression with immunohistochemistry (IHC) and the NCL-hTERT antibody in 49 astrocytic tumors.
  • Low- and high-grade astrocytic tumors were found positive for hTERT in 74 and 85% of cases, respectively.
  • Heterogeneity in the distribution of hTERT-positive cells was observed in all tumors.
  • Positive endothelial cells were found in astrocytic tumors of all grades, even when tumor cells showed no hTERT immunoreactivity.
  • A subset of mature normal neurons was positive for hTERT (pattern As), suggesting a role for this molecule in neuronal maintenance in the adult brain.
  • The nuclear hTERT IPs described here may reflect the functional status of non-neoplastic brain and neoplastic astrocytic cells and support the model of a continuum in the development of glioblastomas from diffuse fibrillary astrocytomas.
  • [MeSH-major] Astrocytes / metabolism. Astrocytoma / metabolism. Brain Chemistry / physiology. Brain Neoplasms / metabolism. Telomerase / genetics. Telomerase / metabolism
  • [MeSH-minor] Adult. Aged. Child. Endothelial Cells / pathology. Female. Fixatives. Formaldehyde. Humans. Immunohistochemistry. In Situ Hybridization. Male. Middle Aged. Paraffin Embedding. RNA, Messenger / biosynthesis. RNA, Messenger / genetics. RNA, Neoplasm / biosynthesis. RNA, Neoplasm / genetics. Reverse Transcriptase Polymerase Chain Reaction

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • Hazardous Substances Data Bank. FORMALDEHYDE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16614861.001).
  • [ISSN] 0001-6322
  • [Journal-full-title] Acta neuropathologica
  • [ISO-abbreviation] Acta Neuropathol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Fixatives; 0 / RNA, Messenger; 0 / RNA, Neoplasm; 1HG84L3525 / Formaldehyde; EC 2.7.7.49 / Telomerase
  •  go-up   go-down


43. Jha P, Suri V, Jain A, Sharma MC, Pathak P, Jha P, Srivastava A, Suri A, Gupta D, Chosdol K, Chattopadhyay P, Sarkar C: O6-methylguanine DNA methyltransferase gene promoter methylation status in gliomas and its correlation with other molecular alterations: first Indian report with review of challenges for use in customized treatment. Neurosurgery; 2010 Dec;67(6):1681-91
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • BACKGROUND: O6-methylguanine methyltransferase (MGMT) promoter methylation in adult glioblastomas (glioblastoma multiforme) is considered a promising molecular alteration, predictive of better response to temozolomide therapy and longer overall survival.
  • OBJECTIVE: To look at the frequency of MGMT methylation in glial tumors of all grades and types, and correlate this alteration with loss of heterozygosity 1p/19q, TP53 gene mutations, epidermal growth factor receptor (EGFR) amplification, and isocitrate dehydrogenase 1 (IDH1) mutations.
  • RESULTS: There was an inverse correlation of MGMT promoter methylation frequency with tumor grade, observed in 79.4%, 70.8%, and 56.8% of grade II, grade III, and grade IV gliomas, respectively.
  • The difference was statistically significant in grade II vs IV tumors (P=.036).
  • In astrocytic tumors, there was no correlation of MGMT methylation with TP53 mutation or EGFR amplification.
  • [MeSH-major] Brain Neoplasms / genetics. DNA Methylation / genetics. Gene Expression Regulation, Neoplastic / genetics. Glioma / genetics. O(6)-Methylguanine-DNA Methyltransferase / genetics. Promoter Regions, Genetic / genetics
  • [MeSH-minor] Adult. Antineoplastic Agents, Alkylating / therapeutic use. Chromosomes, Human, Pair 1 / genetics. Dacarbazine / analogs & derivatives. Dacarbazine / therapeutic use. Designer Drugs. Female. Humans. India. Isocitrate Dehydrogenase / genetics. Isocitrate Dehydrogenase / metabolism. Male. Middle Aged. Mutation / genetics. Receptor, Epidermal Growth Factor / genetics. Receptor, Epidermal Growth Factor / metabolism. Retrospective Studies. Tumor Suppressor Protein p53 / genetics. Tumor Suppressor Protein p53 / metabolism. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • Hazardous Substances Data Bank. DACARBAZINE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 21107199.001).
  • [ISSN] 1524-4040
  • [Journal-full-title] Neurosurgery
  • [ISO-abbreviation] Neurosurgery
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 0 / Designer Drugs; 0 / TP53 protein, human; 0 / Tumor Suppressor Protein p53; 7GR28W0FJI / Dacarbazine; 85622-93-1 / temozolomide; EC 1.1.1.41 / Isocitrate Dehydrogenase; EC 1.1.1.42. / IDH1 protein, human; EC 2.1.1.63 / O(6)-Methylguanine-DNA Methyltransferase; EC 2.7.10.1 / EGFR protein, human; EC 2.7.10.1 / Receptor, Epidermal Growth Factor
  •  go-up   go-down


44. Ren XH, Cui XL, Lin S, Wang ZC: [The correlation between combining 1p/19q LOH and pathology in gliomas]. Zhonghua Yi Xue Za Zhi; 2010 Jul 6;90(25):1781-4
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • METHODS: Tumor samples from 127 glioma patients were collected.
  • RESULTS: The frequencies of combining 1p/19q LOH in astrocytic, oligoastrocytic and oligodendroglial tumors were 19.30%, 50.00% and 80.77% respectively.
  • The frequencies of combining 1p/19q LOH in oligoastrocytic and oligodendroglial tumors were higher than those in astrocytic tumors (P < 0.01) and the frequencies of combining 1p/19q LOH in oligodendroglial tumors was higher than those in oligoastrocytic tumors (P < 0.05).
  • The frequencies of 1p/19q LOH in astrocytic, oligoastrocytic and oligodendroglial tumors were 12.28%, 11.36 and 0 respectively.
  • [MeSH-minor] Adolescent. Adult. Aged. Chromosomes, Human, Pair 1. Chromosomes, Human, Pair 19. Female. Humans. Male. Middle Aged. Oligodendroglia / pathology. Oligodendroglioma / genetics. Oligodendroglioma / pathology. Young Adult

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20979900.001).
  • [ISSN] 0376-2491
  • [Journal-full-title] Zhonghua yi xue za zhi
  • [ISO-abbreviation] Zhonghua Yi Xue Za Zhi
  • [Language] chi
  • [Publication-type] English Abstract; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] China
  •  go-up   go-down


45. Comincini S, Paolillo M, Barbieri G, Palumbo S, Sbalchiero E, Azzalin A, Russo MA, Schinelli S: Gene expression analysis of an EGFR indirectly related pathway identified PTEN and MMP9 as reliable diagnostic markers for human glial tumor specimens. J Biomed Biotechnol; 2009;2009:924565
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Gene expression analysis of an EGFR indirectly related pathway identified PTEN and MMP9 as reliable diagnostic markers for human glial tumor specimens.
  • In this study the mRNA levels of five EGFR indirectly related genes, EGFR, HB-EGF, ADAM17, PTEN, and MMP9, have been assessed by Real-time PCR in a panel of 37 glioblastoma multiforme specimens and in 5 normal brain samples; as a result, in glioblastoma, ADAM17 and PTEN expression was significantly lower than in normal brain samples, and, in particular, a statistically significant inverse correlation was found between PTEN and MMP9 mRNA levels.
  • To verify if this correlation was conserved in gliomas, PTEN and MMP9 expression was further investigated in an additional panel of 16 anaplastic astrocytoma specimens and, in parallel, in different human normal and astrocytic tumor cell lines.
  • In conclusion, this gene expression survey highlighted that the combined measurement of PTEN and MMP9 transcripts might represent a novel reliable tool for the differential diagnosis of high-grade gliomas, and it also suggested a functional link involving these genes in glial tumors.
  • [MeSH-major] Biomarkers, Tumor / genetics. Gene Expression Regulation, Neoplastic. Glioma / diagnosis. Glioma / enzymology. Matrix Metalloproteinase 9 / metabolism. PTEN Phosphohydrolase / metabolism. Receptor, Epidermal Growth Factor / metabolism
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Female. Gene Expression Profiling. Humans. Male. Middle Aged. Neoplasm Proteins / genetics. Neoplasm Proteins / metabolism. RNA, Messenger / genetics. RNA, Messenger / metabolism. Young Adult

  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Genome Biol. 2001;2(1):RESEARCH0003 [11178280.001]
  • [Cites] Cancer Res. 2008 May 1;68(9):3286-94 [18451155.001]
  • [Cites] Cancer Res. 2001 Sep 15;61(18):6885-91 [11559565.001]
  • [Cites] Brain Pathol. 2002 Jan;12(1):108-16 [11771519.001]
  • [Cites] Neuro Oncol. 2002 Jul;4(3):196-211 [12084351.001]
  • [Cites] Anal Biochem. 2002 Oct 15;309(2):293-300 [12413463.001]
  • [Cites] Biotechniques. 2004 Jan;36(1):84-6, 88, 90-1 [14740490.001]
  • [Cites] Science. 2004 Feb 20;303(5661):1179-81 [14976311.001]
  • [Cites] Cancer Res. 2004 Mar 15;64(6):1943-50 [15026328.001]
  • [Cites] Curr Opin Oncol. 1999 May;11(3):162-7 [10328589.001]
  • [Cites] J Neurooncol. 2004 Nov;70(2):137-60 [15674475.001]
  • [Cites] Brain Tumor Pathol. 2004;21(3):105-12 [15696970.001]
  • [Cites] Cancer Res. 2005 Feb 1;65(3):686-91 [15705860.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5814-9 [15827123.001]
  • [Cites] Biochim Biophys Acta. 2005 Aug 1;1751(1):110-7 [16054021.001]
  • [Cites] N Engl J Med. 2005 Nov 10;353(19):2012-24 [16282176.001]
  • [Cites] Cancer Res. 2006 Jan 15;66(2):867-74 [16424019.001]
  • [Cites] Cancer Sci. 2006 May;97(5):341-7 [16630129.001]
  • [Cites] Int J Oncol. 2006 Jul;29(1):73-81 [16773187.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 May;65(5):516-27 [16772875.001]
  • [Cites] J Neurooncol. 2006 Aug;79(1):1-7 [16557350.001]
  • [Cites] Curr Med Chem. 2006;13(29):3483-92 [17168718.001]
  • [Cites] Oncogene. 2007 Mar 29;26(14):2006-16 [17001310.001]
  • [Cites] Am J Pathol. 2007 May;170(5):1445-53 [17456751.001]
  • [Cites] Cancer. 2007 Jul 1;110(1):13-24 [17520692.001]
  • [Cites] BMC Genomics. 2007;8:243 [17640361.001]
  • [Cites] Cancer Res. 2007 Sep 1;67(17):7960-5 [17804702.001]
  • [Cites] Annu Rev Pathol. 2006;1:97-117 [18039109.001]
  • [Cites] Am J Pathol. 2001 Sep;159(3):779-86 [11549567.001]
  • (PMID = 19657395.001).
  • [ISSN] 1110-7251
  • [Journal-full-title] Journal of biomedicine & biotechnology
  • [ISO-abbreviation] J. Biomed. Biotechnol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Neoplasm Proteins; 0 / RNA, Messenger; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 3.1.3.48 / PTEN protein, human; EC 3.1.3.67 / PTEN Phosphohydrolase; EC 3.4.24.35 / Matrix Metalloproteinase 9
  • [Other-IDs] NLM/ PMC2718324
  •  go-up   go-down


46. Rodriguez FJ, Scheithauer BW, Jenkins R, Burger PC, Rudzinskiy P, Vlodavsky E, Schooley A, Landolfi J: Gliosarcoma arising in oligodendroglial tumors ("oligosarcoma"): a clinicopathologic study. Am J Surg Pathol; 2007 Mar;31(3):351-62
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Gliosarcoma arising in oligodendroglial tumors ("oligosarcoma"): a clinicopathologic study.
  • Gliosarcomas are morphologically biphasic tumors composed of glial and sarcomatous elements.
  • Seven patients with oligodendroglial tumors and a sarcomatous component were identified.
  • At first resection, the tumors included grade II oligodendroglioma (n=3), grade III oligodendroglioma (n=1), grade II oligoastrocytoma (n=1), and grade III oligoastrocytoma (n=2).
  • The sarcomatous component developed in recurrent/progressive tumors in 6 cases but was a focal finding at first tumor resection in 1 and included fibrosarcoma (n=5), leiomyosarcoma (n=1), or pleomorphic myogenic sarcoma (n=1).
  • Rhabdoid change was a focal finding in the sarcomatous component of 1 tumor.
  • The relatively frequent presence of 1p/19q codeletion in both glial and sarcomatous components supports the notion that the sarcomatous component represents a metaplastic change occurring in the glial element, the same mechanism active in classic astrocytic gliosarcomas.
  • [MeSH-major] Brain Neoplasms / pathology. Gliosarcoma / pathology. Neoplasms, Second Primary / pathology. Oligodendroglioma / pathology
  • [MeSH-minor] Adult. Aged. Biomarkers, Tumor / analysis. Brain / surgery. Chromosome Deletion. Chromosomes, Human, Pair 1 / genetics. Chromosomes, Human, Pair 19 / genetics. Combined Modality Therapy. Fatal Outcome. Female. Humans. Immunohistochemistry. In Situ Hybridization, Fluorescence. Male. Middle Aged. Neoplasm Recurrence, Local. Neoplasm Staging

  • Genetic Alliance. consumer health - Gliosarcoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17325476.001).
  • [ISSN] 0147-5185
  • [Journal-full-title] The American journal of surgical pathology
  • [ISO-abbreviation] Am. J. Surg. Pathol.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor
  •  go-up   go-down


47. Cui XL, Zhao ZG, Ren XH, Sui DL, Chu JS, Tang K, Zeng C, Lin S: [Characteristics of combining loss of heterozygosity of 1p/19q in glioma]. Zhonghua Wai Ke Za Zhi; 2010 Jun 1;48(11):852-5
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • METHODS: The status of 1p and 19q of 138 glioma specimen from January 2009 to December 2009 was evaluated by Fluorescence in situ hybridization (FISH) method, and the frequencies of combining LOH of 1p/19q were compared between different pathologies, brain sub-regions, genders and ages.
  • RESULTS: The frequencies of combined LOH of 1p and 19q of oligodendroglial (81.3%) and oligo astrocytic tumors (55.8%) were significantly higher than that of astrocytic tumor (22.2%) (P < 0.01), and the frequency of oligodendroglial tumor was significantly higher than that of oligo astrocytic tumor (P < 0.05).
  • CONCLUSION: Combining LOH of 1p and 19q has significant correlation with the pathologies and brain sub-regions.
  • [MeSH-major] Brain Neoplasms / genetics. Glioma / genetics. Loss of Heterozygosity
  • [MeSH-minor] Adolescent. Adult. Aged. Chromosomes, Human, Pair 1 / genetics. Chromosomes, Human, Pair 19 / genetics. Female. Humans. Male. Middle Aged. Young Adult

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 21163056.001).
  • [ISSN] 0529-5815
  • [Journal-full-title] Zhonghua wai ke za zhi [Chinese journal of surgery]
  • [ISO-abbreviation] Zhonghua Wai Ke Za Zhi
  • [Language] chi
  • [Publication-type] English Abstract; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] China
  •  go-up   go-down


48. Kim YJ, Cho YE, Kim YW, Kim JY, Lee S, Park JH: Suppression of putative tumour suppressor gene GLTSCR2 expression in human glioblastomas. J Pathol; 2008 Oct;216(2):218-24
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Suppression of putative tumour suppressor gene GLTSCR2 expression in human glioblastomas.
  • Glioma tumour-suppressor candidate region gene 2 (GLTSCR2/PICT-1) is localized within the well-known 1.4 Mb tumour-suppressive region of chromosome 19q, which is frequently altered in various human tumours, including diffuse gliomas.
  • Aside from its chromosomal localization, several lines of evidence, including PTEN-phosphorylating and cell-killing activities, suggests that GLTSCR2 participates in the suppression of tumour growth and development.
  • However, little is known about the biological functions and molecular mechanisms of GLTSCR2 as a tumour suppressor gene.
  • We investigated the pathological significance of GLTSCR2 expression in association with the development and progression of glioblastomas, the most common malignant brain tumour.
  • We used real-time PCR and western blot analysis to examine the expression levels of GLTSCR2 mRNA and protein in glioblastomas, normal brain tissue and in non-glial tumour tissue of different origin, and found that GLTSCR2 expression is down-regulated in glioblastomas.
  • Finally, our immunohistochemical study demonstrates that GLTSCR2 is sequentially down-regulated according to the histological malignant progression of the astrocytic glial tumour.
  • Taken together, our results suggest that GLTSCR2 is involved in astrocytic glioma progression.
  • [MeSH-major] Brain Neoplasms / genetics. Gene Expression Regulation, Neoplastic. Glioblastoma / genetics. Tumor Suppressor Proteins / genetics
  • [MeSH-minor] Adult. Astrocytoma / genetics. Astrocytoma / pathology. Cell Line, Tumor. Chi-Square Distribution. Female. Gene Deletion. Humans. Immunohistochemistry. In Situ Hybridization, Fluorescence. Male. Middle Aged. Mutation. Reverse Transcriptase Polymerase Chain Reaction

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18729076.001).
  • [ISSN] 1096-9896
  • [Journal-full-title] The Journal of pathology
  • [ISO-abbreviation] J. Pathol.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / GLTSCR2 protein, human; 0 / Tumor Suppressor Proteins
  •  go-up   go-down


49. Maiti AK, Ghosh K, Chatterjee U, Chakrobarti S, Chatterjee S, Basu S: Epidermal growth factor receptor and proliferating cell nuclear antigen in astrocytomas. Neurol India; 2008 Oct-Dec;56(4):456-62
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • AIMS: The involvement of various growth factors, growth factor receptors and proliferative markers in the molecular pathogenesis of astrocytic neoplasms are being studied extensively.
  • Since EGFR and proliferating cell nuclear antigen (PCNA) are involved in mitogenic signal transduction and cellular proliferation pathway, we have studied the correlation between the expression of EGFR and PCNA labeling index in astrocytic tumors.
  • MATERIALS AND METHODS: We investigated the immunohistochemical expression of EGFR and PCNA using the appropriate monoclonal antibodies in 40 cases of astrocytic tumors of which 21 cases were glioblastoma, eight cases were Grade III or anaplastic astrocytomas and six cases were Grade II or diffuse astrocytomas and five cases were Grade I or pilocytic astrocytomas.
  • These suggest that the tumor proliferation, at least in higher grades of astrocytomas is dependent in some measure on EGF and EGFR-related signaling pathways.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Proliferating Cell Nuclear Antigen / metabolism. Receptor, Epidermal Growth Factor / metabolism
  • [MeSH-minor] Adult. Aged. Female. Humans. Immunohistochemistry. Male. Middle Aged


50. Motta FJ, Valera ET, Lucio-Eterovic AK, Queiroz RG, Neder L, Scrideli CA, Machado HR, Carlotti-Junior CG, Marie SK, Tone LG: Differential expression of E-cadherin gene in human neuroepithelial tumors. Genet Mol Res; 2008;7(2):295-304
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Differential expression of E-cadherin gene in human neuroepithelial tumors.
  • This study aimed to evaluate the expression of E-cadherin and their correlation with clinical features in microdissected brain tumor samples from 81 patients, divided into 62 astrocytic tumors grades I to IV and 19 medulloblastomas, and from 5 white matter non-neoplasic brain tissue samples.
  • We observed a decrease in expression among pathological grades of neuroepithelial tumors.
  • Non-neoplasic brain tissue showed a higher expression level of CDH1 gene than did neuroepithelial tumors.
  • Expression of E-cadherin gene was higher in astrocytic than embryonal tumors (P = 0.0168).
  • Non-neoplasic brain tissue showed a higher expression level of CDH1 gene than grade I malignancy astrocytomas, considered as benign tumors (P = 0.0473).
  • These results suggest that a decrease in E-cadherin gene expression level in high-grade neuroepithelial tumors may be a hallmark of malignancy in dedifferentiated tumors and that it may be possibly correlated with their progression and dissemination.
  • [MeSH-minor] Adolescent. Adult. Brain / metabolism. Gene Expression Regulation, Neoplastic. Humans. Middle Aged. RNA, Messenger / genetics. RNA, Messenger / metabolism. Reverse Transcriptase Polymerase Chain Reaction

  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18551395.001).
  • [ISSN] 1676-5680
  • [Journal-full-title] Genetics and molecular research : GMR
  • [ISO-abbreviation] Genet. Mol. Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Brazil
  • [Chemical-registry-number] 0 / Cadherins; 0 / RNA, Messenger
  •  go-up   go-down


51. Wakabayashi T, Natsume A, Hatano H, Fujii M, Shimato S, Ito M, Ohno M, Ito S, Ogura M, Yoshida J: p16 promoter methylation in the serum as a basis for the molecular diagnosis of gliomas. Neurosurgery; 2009 Mar;64(3):455-61; discussion 461-2
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • OBJECTIVE: Deoxyribonucleic acid (DNA) methylation of tumor origin can be detected in the serum/plasma of cancer patients.
  • METHODS: The methylation-specific polymerase chain reaction was used to detect p16 methylation in the DNA extracted from 20 astrocytic tumors and 20 oligodendroglial tumors and the corresponding serum samples.
  • In addition, the serum DNA in 7 patients with a brainstem tumor (4 gliomas, 1 schwannoma, 1 cavernous angioma, and 1 ependymoma) was analyzed.
  • Similar methylations were detected in the serum of 9 (75%) of the 12 patients with aberrant methylation in the tumor tissues.
  • No methylated p16 sequences were detected in the peripheral serum of the patients having tumors without these methylation changes or in the 10 healthy controls.
  • [MeSH-major] Brain Neoplasms / diagnosis. Brain Neoplasms / genetics. Cyclin-Dependent Kinase Inhibitor p16 / genetics. DNA, Neoplasm / blood. DNA, Neoplasm / genetics. Genes, p16. Glioma / diagnosis. Glioma / genetics
  • [MeSH-minor] Adolescent. Adult. Aged. Child. DNA Methylation / genetics. Female. Genetic Predisposition to Disease / genetics. Humans. Male. Middle Aged. Reproducibility of Results. Sensitivity and Specificity. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19240607.001).
  • [ISSN] 1524-4040
  • [Journal-full-title] Neurosurgery
  • [ISO-abbreviation] Neurosurgery
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Cyclin-Dependent Kinase Inhibitor p16; 0 / DNA, Neoplasm
  •  go-up   go-down


52. Parafiniuk D, Jezewski D, Nowacki P: [Malignant astrocytoma as a recurrance of astrocytoma II WHO after 13 years. Case report and literature review]. Ann Acad Med Stetin; 2010;56(2):45-50
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Astrocytomas--neroepithelial originated tumors that belong to the big, differential group of tumors, which derive from astrocytic glial.
  • They include slow growing tumors such as fibillary astrocytoma or very malignant glioblastoma multiforme.
  • Due to this adverse event MRI was ordered and suspicion of tumor recurrence was put forward.
  • According to literature, the factors regarding remission time, tumor malignancy and therapeutic aim were analyzed.
  • [MeSH-major] Brain Neoplasms / radiotherapy. Brain Neoplasms / surgery. Neoplasm Recurrence, Local / diagnosis
  • [MeSH-minor] Adult. Astrocytoma. Female. Frontal Lobe. Humans. Reoperation. Seizures / etiology

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 21473001.001).
  • [ISSN] 1427-440X
  • [Journal-full-title] Annales Academiae Medicae Stetinensis
  • [ISO-abbreviation] Ann Acad Med Stetin
  • [Language] pol
  • [Publication-type] Case Reports; English Abstract; Journal Article; Review
  • [Publication-country] Poland
  •  go-up   go-down


53. Wang Y, Yang J, Zheng H, Tomasek GJ, Zhang P, McKeever PE, Lee EY, Zhu Y: Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell; 2009 Jun 2;15(6):514-26
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model.
  • However, the mechanisms by which alterations of these glioblastoma genes singly and cooperatively transform brain cells remain poorly understood.
  • By targeting a p53 in-frame deletion mutation to the brain, we show that p53 deficiency provides no significant growth advantage to adult brain cells, but appears to induce pleiotropic accumulation of cooperative oncogenic alterations driving gliomagenesis.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • KOMP Repository. gene/protein/disease-specific - KOMP Repository (subscription/membership/fee required).
  • Mouse Genome Informatics (MGI). Mouse Genome Informatics (MGI) .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer Res. 2004 Oct 1;64(19):7011-21 [15466194.001]
  • [Cites] Cancer Res. 2004 Oct 1;64(19):6892-9 [15466178.001]
  • [Cites] Science. 1994 Jul 15;265(5170):346-55 [8023157.001]
  • [Cites] Curr Biol. 1994 Jan 1;4(1):1-7 [7922305.001]
  • [Cites] Genes Dev. 1994 May 1;8(9):1019-29 [7926784.001]
  • [Cites] Oncogene. 1996 May 16;12(10):2121-7 [8668337.001]
  • [Cites] J Neurosci. 1997 Jul 1;17(13):5046-61 [9185542.001]
  • [Cites] Nat Genet. 1999 Jan;21(1):70-1 [9916792.001]
  • [Cites] Nature. 2004 Nov 18;432(7015):396-401 [15549107.001]
  • [Cites] Cancer Cell. 2005 Aug;8(2):119-30 [16098465.001]
  • [Cites] N Engl J Med. 2005 Aug 25;353(8):811-22 [16120861.001]
  • [Cites] Nat Neurosci. 2005 Jul;8(7):865-72 [15951811.001]
  • [Cites] Development. 2005 Dec;132(24):5577-88 [16314489.001]
  • [Cites] Development. 2006 Jan;133(2):363-9 [16368933.001]
  • [Cites] J Neurosci. 2006 Jan 25;26(4):1107-16 [16436596.001]
  • [Cites] Mol Cell. 2006 Jun 23;22(6):741-53 [16793544.001]
  • [Cites] J Neurosci. 2006 Jul 26;26(30):7907-18 [16870736.001]
  • [Cites] Curr Opin Cell Biol. 2006 Dec;18(6):704-9 [17046226.001]
  • [Cites] Cancer Cell. 2007 Jan;11(1):69-82 [17222791.001]
  • [Cites] Neuro Oncol. 2007 Oct;9(4):424-9 [17622647.001]
  • [Cites] Genes Dev. 2007 Nov 1;21(21):2683-710 [17974913.001]
  • [Cites] Neuron. 2008 Jun 26;58(6):832-46 [18579075.001]
  • [Cites] Science. 2008 Sep 26;321(5897):1807-12 [18772396.001]
  • [Cites] Nature. 2008 Oct 23;455(7216):1061-8 [18772890.001]
  • [Cites] Nature. 2008 Oct 23;455(7216):1129-33 [18948956.001]
  • [Cites] Cancer Cell. 2009 Jan 6;15(1):45-56 [19111880.001]
  • [Cites] Nat Genet. 2000 Sep;26(1):109-13 [10973261.001]
  • [Cites] Genesis. 2001 Oct;31(2):85-94 [11668683.001]
  • [Cites] Neuron. 2003 Mar 6;37(5):751-64 [12628166.001]
  • [Cites] Int J Oncol. 2003 Sep;23(3):641-8 [12888899.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15178-83 [14645703.001]
  • [Cites] Cancer Res. 2004 May 15;64(10):3525-32 [15150107.001]
  • [Cites] Lab Invest. 2004 Aug;84(8):941-51 [15184909.001]
  • [Cites] Nature. 1992 Mar 19;356(6366):215-21 [1552940.001]
  • (PMID = 19477430.001).
  • [ISSN] 1878-3686
  • [Journal-full-title] Cancer cell
  • [ISO-abbreviation] Cancer Cell
  • [Language] ENG
  • [Grant] United States / NINDS NIH HHS / NS / R01 NS053900-03; United States / NINDS NIH HHS / NS / R01 NS053900; United States / NINDS NIH HHS / NS / 1R01 NS053900; United States / NINDS NIH HHS / NS / R01 NS053900-01; United States / NINDS NIH HHS / NS / NS053900-01; United States / NINDS NIH HHS / NS / R01 NS053900-02; United States / NINDS NIH HHS / NS / NS053900-02; United States / NINDS NIH HHS / NS / R01 NS073762; United States / NINDS NIH HHS / NS / NS053900-03
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Tumor Suppressor Protein p53
  • [Other-IDs] NLM/ NIHMS112275; NLM/ PMC2721466
  •  go-up   go-down


54. Mennel HD, Lell B: Ganglioside (GD2) expression and intermediary filaments in astrocytic tumors. Clin Neuropathol; 2005 Jan-Feb;24(1):13-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Ganglioside (GD2) expression and intermediary filaments in astrocytic tumors.
  • The search of proliferation markers in astrocytic tumors that may serve as targets for therapeutic interventions, is in full progress.
  • Gangliosides are lipid-sugar compounds localized on the cell membrane that are thought to modify pertinent signals and, therefore, may influence a variety of functions in normal and pathologic conditions including those that act upon tumor growth.
  • Intracranial supratentorial astrocytic gliomas of the adult represent a tumor group, that may be divided into three grades of malignancy, the most anaplastic member being the glioblastoma.
  • In earlier investigations, it had been shown that there is a tendency towards formation of more simple members of the ganglioside family with ongoing malignancy of those tumors.
  • Yet, the results were only partly congruent and the correlation to tumor grades rather loose.
  • We, therefore, investigated the occurrence of triaose gangliosides within these tumors in situ by immunohistochemistry.
  • Thus, the conclusion must be drawn that the correlation of ganglioside patterns to the proliferation of astrocytic tumors is as poor as that of GFAP or vimentin expression, respectively.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Gangliosides / metabolism. Intermediate Filaments / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15696779.001).
  • [ISSN] 0722-5091
  • [Journal-full-title] Clinical neuropathology
  • [ISO-abbreviation] Clin. Neuropathol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Gangliosides; 0 / Glial Fibrillary Acidic Protein; 0 / Vimentin; 65988-71-8 / ganglioside, GD2
  •  go-up   go-down


55. Nasonkin I, Mahairaki V, Xu L, Hatfield G, Cummings BJ, Eberhart C, Ryugo DK, Maric D, Bar E, Koliatsos VE: Long-term, stable differentiation of human embryonic stem cell-derived neural precursors grafted into the adult mammalian neostriatum. Stem Cells; 2009 Oct;27(10):2414-26
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Long-term, stable differentiation of human embryonic stem cell-derived neural precursors grafted into the adult mammalian neostriatum.
  • Human embryonic stem cells (HESCs) are a rich source of neural precursors (NPs) for grafting, but have been questioned for their tendency to form tumors.
  • Here we studied the ability of HESC-derived NP grafts optimized for cell number and differentiation stage prior to transplantation, to survive and stably differentiate and integrate in the basal forebrain (neostriatum) of young adult nude rats over long periods of time (6 months).
  • NPs inoculated in white matter tracts showed a tendency toward glial (primarily astrocytic) differentiation, whereas NPs inoculated in the ventricular epithelium persisted as nestin(+) precursors.
  • Our findings demonstrate the long-term ability of noggin-derived human NPs to structurally integrate tumor-free into the mature mammalian forebrain, while maintaining some cell fate plasticity that is strongly influenced by particular central nervous system (CNS) niches.

  • MedlinePlus Health Information. consumer health - Stem Cells.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cereb Cortex. 2000 Aug;10(8):729-47 [10920046.001]
  • [Cites] Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16707-12 [18922775.001]
  • [Cites] Neuron. 2000 Dec;28(3):713-26 [11163261.001]
  • [Cites] Development. 2001 Oct;128(19):3759-71 [11585802.001]
  • [Cites] Nat Biotechnol. 2001 Dec;19(12):1129-33 [11731781.001]
  • [Cites] Nat Rev Neurosci. 2002 Apr;3(4):271-80 [11967557.001]
  • [Cites] Neuron. 2002 Aug 29;35(5):865-75 [12372282.001]
  • [Cites] J Neurosci. 2003 Jan 1;23(1):167-74 [12514213.001]
  • [Cites] BMC Neurosci. 2001;2:9 [11399205.001]
  • [Cites] J Cell Biol. 2003 Jun 9;161(5):911-21 [12796477.001]
  • [Cites] Lancet Neurol. 2003 Jul;2(7):417-24 [12849120.001]
  • [Cites] Stem Cells. 2003;21(5):521-6 [12968106.001]
  • [Cites] BMC Neurosci. 2003 Oct 22;4:27 [14572319.001]
  • [Cites] Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12543-8 [15310843.001]
  • [Cites] Neuroscience. 1986 Oct;19(2):465-93 [3022187.001]
  • [Cites] Nature. 1990 Oct 11;347(6293):556-8 [1699131.001]
  • [Cites] Prog Brain Res. 1990;82:391-9 [1705355.001]
  • [Cites] Brain Res. 1994 Dec 30;668(1-2):211-9 [7704606.001]
  • [Cites] Dev Biol. 1995 Apr;168(2):342-57 [7729574.001]
  • [Cites] Exp Neurol. 1996 Jan;137(1):15-25 [8566206.001]
  • [Cites] Mech Dev. 1996 Sep;59(1):89-102 [8892235.001]
  • [Cites] J Neurosci. 1997 Aug 1;17(15):5858-67 [9221783.001]
  • [Cites] Nature. 1997 Dec 18-25;390(6661):680-3 [9414159.001]
  • [Cites] Genes Dev. 1998 May 15;12(10):1438-52 [9585504.001]
  • [Cites] Stem Cells. 2004;22(6):925-40 [15536184.001]
  • [Cites] Nat Biotechnol. 2005 Feb;23(2):215-21 [15685164.001]
  • [Cites] Mol Cell Biol. 2005 Mar;25(6):2475-85 [15743839.001]
  • [Cites] Nat Biotechnol. 2005 May;23(5):601-6 [15852001.001]
  • [Cites] J Neurosci. 2005 May 11;25(19):4694-705 [15888645.001]
  • [Cites] Stem Cells Dev. 2005 Jun;14(3):266-9 [15969621.001]
  • [Cites] J Neurosci. 2005 Sep 21;25(38):8714-24 [16177041.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14069-74 [16172374.001]
  • [Cites] Stem Cells. 2005 Oct;23(9):1234-41 [16002783.001]
  • [Cites] Stem Cells. 2005 Oct;23(9):1242-50 [16210408.001]
  • [Cites] Neuron. 2006 Jan 5;49(1):41-53 [16387638.001]
  • [Cites] Neuron. 2006 Jan 5;49(1):55-66 [16387639.001]
  • [Cites] Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1319-24 [16432194.001]
  • [Cites] Stem Cells. 2006 Jan;24(1):125-38 [16100006.001]
  • [Cites] Stem Cells Dev. 2006 Apr;15(2):254-9 [16646671.001]
  • [Cites] Stem Cells. 2006 Jun;24(6):1583-93 [16543488.001]
  • [Cites] Stem Cells. 2006 Jun;24(6):1433-40 [16556709.001]
  • [Cites] Exp Neurol. 2006 Oct;201(2):525-9 [16806174.001]
  • [Cites] Curr Opin Genet Dev. 2006 Oct;16(5):455-62 [16920351.001]
  • [Cites] Transplantation. 2006 Oct 15;82(7):865-75 [17038899.001]
  • [Cites] Eur J Neurosci. 2006 Oct;24(7):1885-96 [17067292.001]
  • [Cites] Dev Cell. 2006 Dec;11(6):831-44 [17141158.001]
  • [Cites] Neurosurg Clin N Am. 2007 Jan;18(1):59-69, viii-ix [17244554.001]
  • [Cites] Stem Cells. 2007 Feb;25(2):411-8 [17038668.001]
  • [Cites] J Neurosci. 2007 Feb 21;27(8):1836-52 [17314281.001]
  • [Cites] Neurobiol Aging. 2007 Aug;28(8):1148-62 [16859812.001]
  • [Cites] Glia. 2007 Aug 15;55(11):1156-68 [17597119.001]
  • [Cites] Stem Cells. 2007 Aug;25(8):1931-9 [17478583.001]
  • [Cites] PLoS Med. 2007 Feb;4(2):e39 [17298165.001]
  • [Cites] J Neurosci. 2007 Nov 21;27(47):12787-96 [18032650.001]
  • [Cites] Cell. 2007 Nov 30;131(5):861-72 [18035408.001]
  • [Cites] Expert Opin Biol Ther. 2008 Feb;8(2):137-41 [18194070.001]
  • [Cites] Curr Protoc Neurosci. 2005 Nov;Chapter 3:Unit 3.18 [18428621.001]
  • [Cites] EMBO J. 2000 Oct 16;19(20):5460-72 [11032813.001]
  • (PMID = 19609935.001).
  • [ISSN] 1549-4918
  • [Journal-full-title] Stem cells (Dayton, Ohio)
  • [ISO-abbreviation] Stem Cells
  • [Language] ENG
  • [Grant] United States / NIDCD NIH HHS / DC / DC000232; United States / NINDS NIH HHS / NS / R01 NS045140; United States / NINDS NIH HHS / NS / NS45140-03; United States / NEI NIH HHS / EY / P30 EY001765; United States / NIDCD NIH HHS / DC / DC000232-23; United States / NIDCD NIH HHS / DC / R01 DC000232-23; United States / NIDCD NIH HHS / DC / DC005211-089002; United States / NIDCD NIH HHS / DC / R01 DC000232; United States / NIDCD NIH HHS / DC / P30 DC005211; United States / NINDS NIH HHS / NS / R01 NS045140-03; United States / NEI NIH HHS / EY / EY01765; United States / NINDS NIH HHS / NS / NS045140-03; United States / NIDCD NIH HHS / DC / P30 DC005211-089002
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Carrier Proteins; 0 / Phosphoproteins; 148294-77-3 / noggin protein
  • [Other-IDs] NLM/ NIHMS193803; NLM/ PMC2906132
  •  go-up   go-down


56. Lehnhardt FG, Bock C, Röhn G, Ernestus RI, Hoehn M: Metabolic differences between primary and recurrent human brain tumors: a 1H NMR spectroscopic investigation. NMR Biomed; 2005 Oct;18(6):371-82
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Metabolic differences between primary and recurrent human brain tumors: a 1H NMR spectroscopic investigation.
  • High-resolution proton magnetic resonance spectroscopy was performed on tissue specimens from 33 patients with astrocytic tumors (22 astrocytomas, 11 glioblastomas) and 13 patients with meningiomas.
  • For all patients, samples of primary tumors and their first recurrences were examined.
  • Spectroscopic features of tumor types, as determined on samples of the primary occurrences, were in good agreement with previous studies.
  • Metabolic changes of an evolving tumor were observed in recurrent astrocytomas: owing to their consecutive assessments, more indicators of malignant degeneration were detected in astrocytoma recurrences (e.g.
  • The present investigation demonstrated a correlation of the tCho-signal with tumor progression.
  • This may be related to an early stage of malignant transformation, not yet detectable morphologically, and emphasizes the high sensitivity of 1H NMR spectroscopy in elucidating characteristics of brain tumor metabolism.
  • [MeSH-major] Astrocytoma / metabolism. Biomarkers, Tumor / metabolism. Brain Neoplasms / metabolism. Glioblastoma / metabolism. Magnetic Resonance Spectroscopy / methods. Meningioma / metabolism. Neoplasm Recurrence, Local / metabolism
  • [MeSH-minor] Adult. Humans. Middle Aged. Protons

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright 2005 John Wiley & Sons, Ltd
  • (PMID = 15959923.001).
  • [ISSN] 0952-3480
  • [Journal-full-title] NMR in biomedicine
  • [ISO-abbreviation] NMR Biomed
  • [Language] eng
  • [Publication-type] Clinical Trial; Comparative Study; Controlled Clinical Trial; Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Protons
  •  go-up   go-down


57. Klink B, Schlingelhof B, Klink M, Stout-Weider K, Patt S, Schrock E: Glioblastomas with oligodendroglial component - common origin of the different histological parts and genetic subclassification. Anal Cell Pathol (Amst); 2010;33(1):37-54
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • BACKGROUND: Glioblastomas are the most common and most malignant brain tumors in adults.
  • Our objective was to genetically characterize the oligodendroglial and the astrocytic parts of GBMOs and correlate morphologic and genetic features with clinical data.
  • METHODS: The oligodendroglial and the "classic" glioblastoma parts of 13 GBMO were analyzed separately by interphase fluorescence in situ hybridization (FISH) on paraffin sections using a custom probe set (regions 1p, 1q, 7q, 10q, 17p, 19q, cen18, 21q) and by comparative genomic hybridization (CGH) of microdissected paraffin embedded tumor tissue.
  • RESULTS: We identified four distinct genetic subtypes in 13 GBMOs: an "astrocytic" subtype (9/13) characterized by +7/-10; an "oligodendroglial" subtype with -1p/-19q (1/13); an "intermediate" subtype showing +7/-1p (1/13), and an "other" subtype having none of the former aberrations typical for gliomas (2/13).
  • The different histological tumor parts of GBMO revealed common genetic changes in all tumors and showed additional aberrations specific for each part.
  • CONCLUSION: Our findings demonstrate the monoclonal origin of GBMO followed by the development of the astrocytic and oligodendroglial components.
  • [MeSH-major] Brain Neoplasms / genetics. Brain Neoplasms / pathology. Glioblastoma / genetics. Glioblastoma / pathology. Oligodendroglioma / genetics. Oligodendroglioma / pathology
  • [MeSH-minor] Adult. Aged. Female. Humans. Image Processing, Computer-Assisted. Imaging, Three-Dimensional. In Situ Hybridization, Fluorescence. Male. Middle Aged

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20966543.001).
  • [ISSN] 2210-7185
  • [Journal-full-title] Analytical cellular pathology (Amsterdam)
  • [ISO-abbreviation] Anal Cell Pathol (Amst)
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Netherlands
  • [Other-IDs] NLM/ PMC4605661
  •  go-up   go-down


58. Min HS, Kim B, Park SH: Array-based comparative genomic hybridization and immunohistochemical studies in gliomatosis cerebri. J Neurooncol; 2008 Dec;90(3):259-66
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Gliomatosis cerebri (GC) are extensively infiltrative glial tumors classified as astrocytic tumors in the current World Health Organization (WHO) classification scheme.
  • In histological and immunohistochemical review, 18 cases (64%) were of astrocytic lineage, three (11%) were of oligodendroglial lineage, and seven (25%) were of uncommitted lineage.
  • These altered genetic foci are not known to be involved in the development of conventional glial tumors, including astrocytic tumors.
  • In conclusion, despite the dominant astrocytic differentiation of GC histologically, novel genomic aberrations found in our GC cases were different from those of astrocytic tumors.
  • [MeSH-minor] Adolescent. Adult. Aged. Antigens, CD34 / metabolism. Child. Child, Preschool. Cluster Analysis. DNA Modification Methylases / metabolism. DNA Repair Enzymes / metabolism. Female. Glial Fibrillary Acidic Protein / metabolism. Humans. Infant. Infant, Newborn. Intermediate Filament Proteins / metabolism. Male. Middle Aged. Nerve Tissue Proteins / metabolism. Nestin. Receptor, Epidermal Growth Factor / metabolism. Retrospective Studies. Survival Analysis. Tumor Suppressor Proteins / metabolism. Young Adult

  • Genetic Alliance. consumer health - Gliomatosis Cerebri.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neurooncol. 2005 Apr;72 (2):115-22 [15925990.001]
  • [Cites] Nat Genet. 1998 Oct;20(2):207-11 [9771718.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Sep;61(9):806-14 [12230327.001]
  • [Cites] Hum Pathol. 1997 Oct;28(10):1166-79 [9343324.001]
  • [Cites] Acta Neurochir (Wien). 1998;140(8):755-62 [9810441.001]
  • [Cites] Nat Genet. 2005 Jun;37 Suppl:S11-7 [15920524.001]
  • [Cites] Acta Neurochir (Wien). 2000;142(4):469-72 [10883346.001]
  • [Cites] J Neurooncol. 2006 Jan;76(2):201-5 [16200347.001]
  • [Cites] Bioinformatics. 2005 Mar;21(6):821-2 [15531610.001]
  • [Cites] Neurosurgery. 2003 Aug;53(2):261-71; discussion 271 [12925240.001]
  • [Cites] J Neurooncol. 2007 Mar;82(1):23-7 [16955219.001]
  • [Cites] Genes Chromosomes Cancer. 1995 Oct;14(2):149-53 [8527397.001]
  • [Cites] Proc Natl Acad Sci U S A. 1986 May;83(9):2934-8 [3458254.001]
  • [Cites] Nucleic Acids Res. 2002 Feb 15;30(4):e15 [11842121.001]
  • [Cites] Ann Neurol. 2002 Oct;52(4):390-9 [12325066.001]
  • [Cites] Acta Neuropathol. 2003 Jun;105(6):529-36 [12734658.001]
  • [Cites] Clin Genet. 2004 Dec;66(6):488-95 [15521975.001]
  • [Cites] Acta Neuropathol. 2005 Dec;110(6):527-36 [16222524.001]
  • [Cites] Hum Pathol. 2003 Jan;34(1):102-6 [12605375.001]
  • [Cites] J Neurooncol. 2003 Jan;61(1):1-5 [12587789.001]
  • [Cites] Lab Invest. 2006 Sep;86(9):968-78 [16751780.001]
  • (PMID = 18704270.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, CD34; 0 / Glial Fibrillary Acidic Protein; 0 / Intermediate Filament Proteins; 0 / NES protein, human; 0 / Nerve Tissue Proteins; 0 / Nestin; 0 / Tumor Suppressor Proteins; EC 2.1.1.- / DNA Modification Methylases; EC 2.1.1.63 / MGMT protein, human; EC 2.7.10.1 / EGFR protein, human; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 6.5.1.- / DNA Repair Enzymes
  •  go-up   go-down


59. Faria MH, Gonçalves BP, do Patrocínio RM, de Moraes-Filho MO, Rabenhorst SH: Expression of Ki-67, topoisomerase IIalpha and c-MYC in astrocytic tumors: correlation with the histopathological grade and proliferative status. Neuropathology; 2006 Dec;26(6):519-27
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of Ki-67, topoisomerase IIalpha and c-MYC in astrocytic tumors: correlation with the histopathological grade and proliferative status.
  • Astrocytomas represent the most frequent primary tumors of the central nervous system.
  • Recently, the determination of the proliferative index of astrocytic tumors by different methods has been proposed as a valuable tool for tumor grading and also as a prognostic marker.
  • The aim of the present study was to evaluate the expression of cell proliferation-related proteins in human astrocytic tumors of different histopathological grades (WHO).
  • An immunohistochemical study of the Ki-67, Topoisomerase IIalpha (Topo IIalpha) and c-MYC proteins using the avidin-biotin-peroxidase method was performed in 55 astrocytomas (13 grade I, 14 grade II, 7 grade III and 21 grade IV) and five samples of non-tumor brain tissue (control group).
  • Ki-67, Topo IIalpha and c-MYC positive indices tended to increase according to malignant progression, were absent in non-tumor brain tissue and showed maximum values in high-grade astrocytomas (III and IV).
  • Ki-67 antigen detection in more than 8.0% of the tumor cells distinguished astrocytoma grade IV, while a labeling index between 1.5 and 8.0% characterized astrocytomas grade III and values below 1.5% discriminated low-grade tumors (I and II).
  • Moreover, Ki-67 antigen was found to be the best marker of cellular proliferation, and its expression predicts the grade of astrocytic tumors.
  • [MeSH-major] Astrocytoma / metabolism. Astrocytoma / pathology. Biomarkers, Tumor / metabolism. Brain Neoplasms / metabolism. Brain Neoplasms / pathology
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. Antigens, Neoplasm / metabolism. Cell Division. Child. Child, Preschool. DNA Topoisomerases, Type II / metabolism. DNA-Binding Proteins / metabolism. Female. Glioblastoma / metabolism. Glioblastoma / pathology. Humans. Immunohistochemistry. Infant. Ki-67 Antigen / metabolism. Male. Middle Aged. Prognosis. Proto-Oncogene Proteins c-myc / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17203587.001).
  • [ISSN] 0919-6544
  • [Journal-full-title] Neuropathology : official journal of the Japanese Society of Neuropathology
  • [ISO-abbreviation] Neuropathology
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Australia
  • [Chemical-registry-number] 0 / Antigens, Neoplasm; 0 / Biomarkers, Tumor; 0 / DNA-Binding Proteins; 0 / Ki-67 Antigen; 0 / Proto-Oncogene Proteins c-myc; EC 5.99.1.3 / DNA Topoisomerases, Type II; EC 5.99.1.3 / DNA topoisomerase II alpha
  •  go-up   go-down


60. Walton NM, Snyder GE, Park D, Kobeissy F, Scheffler B, Steindler DA: Gliotypic neural stem cells transiently adopt tumorigenic properties during normal differentiation. Stem Cells; 2009 Feb;27(2):280-9
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • An increasing body of evidence suggests that astrocytic gliomas of the central nervous system may be derived from gliotypic neural stem cells.
  • To date, the study of these tumors, particularly the identification of originating cellular population(s), has been frustrated by technical difficulties in accessing the native niche of stem cells.
  • To identify any hallmark signs of cancer in neural stem cells or their progeny, we cultured subventricular zone-derived tissue in a unique in vitro model that temporally and phenotypically recapitulates adult neurogenesis.
  • As tumorigenic characteristics in progenitor cells normally disappear with the generation of mature progeny, this suggests that developmentally intermediate progenitor cells, rather than neural stem cells, may be the origin of so-called "stem cell-derived" tumors.

  • MedlinePlus Health Information. consumer health - Stem Cells.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18988710.001).
  • [ISSN] 1549-4918
  • [Journal-full-title] Stem cells (Dayton, Ohio)
  • [ISO-abbreviation] Stem Cells
  • [Language] ENG
  • [Grant] United States / NHLBI NIH HHS / HL / R01 HL070143; United States / NICHD NIH HHS / HD / T32 HD043730; United States / NINDS NIH HHS / NS / NS055165; United States / NINDS NIH HHS / NS / NS37556; United States / NICHD NIH HHS / HD / T32HD043730; United States / NHLBI NIH HHS / HL / HL70143; United States / NINDS NIH HHS / NS / NS46384; United States / NINDS NIH HHS / NS / R01 NS037556; United States / NINDS NIH HHS / NS / R01 NS055165; United States / NINDS NIH HHS / NS / R21 NS046384
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Tubulin
  • [Other-IDs] NLM/ NIHMS686089; NLM/ PMC4425277
  •  go-up   go-down


61. Iaccheri B, Fiore T, Cagini C, Giansanti F, Androudi S, Brazitikos PD: Retinal astrocytic hamartoma with associated macular edema: report of spontaneous resolution of macular edema as a result of increasing hamartoma calcification. Semin Ophthalmol; 2007 Jul-Sep;22(3):171-3
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Retinal astrocytic hamartoma with associated macular edema: report of spontaneous resolution of macular edema as a result of increasing hamartoma calcification.
  • The purpose of this article is to report a case of retinal astrocytic hamartoma with an associated macular edema and the spontaneous resolution of the latter due to an increase in hamartoma calcification over a seven-year follow-up period.
  • We conclude that retinal astrocytic hamartomas may be associated with cystoid macular edema.
  • In some cases, the CME may resolve due to an increase in tumor calcification.
  • [MeSH-minor] Adult. Fundus Oculi. Humans. Male. Remission, Spontaneous. Tomography, Optical Coherence

  • Genetic Alliance. consumer health - Edema.
  • MedlinePlus Health Information. consumer health - Retinal Disorders.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17763239.001).
  • [ISSN] 0882-0538
  • [Journal-full-title] Seminars in ophthalmology
  • [ISO-abbreviation] Semin Ophthalmol
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


62. Ambroise MM, Khosla C, Ghosh M, Mallikarjuna VS, Annapurneswari S: The role of immunohistochemistry in predicting behavior of astrocytic tumors. Asian Pac J Cancer Prev; 2010;11(4):1079-84
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The role of immunohistochemistry in predicting behavior of astrocytic tumors.
  • The purpose of this study was to analyze the significance of p53, bcl-2 and EGFR expression in the grading and biological behavior of astrocytic tumors, especially in the Indian population.
  • Our results showed that p53 alterations is an early event in astrocytic gliomagenesis, but is not significant in the evolution of pilocytic astrocytomas.
  • EGFR protein expression correlated with the severity of tumor grade.
  • [MeSH-major] Astrocytoma / chemistry. Glioblastoma / chemistry. Nervous System Neoplasms / chemistry. Proto-Oncogene Proteins c-bcl-2 / analysis. Receptor, Epidermal Growth Factor / analysis. Tumor Suppressor Protein p53 / analysis
  • [MeSH-minor] Adult. Age Factors. Female. Genes, bcl-2. Genes, erbB-1. Genes, p53. Humans. Immunohistochemistry. India. Male. Middle Aged. Prognosis. Sex Factors

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 21133628.001).
  • [ISSN] 2476-762X
  • [Journal-full-title] Asian Pacific journal of cancer prevention : APJCP
  • [ISO-abbreviation] Asian Pac. J. Cancer Prev.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Thailand
  • [Chemical-registry-number] 0 / Proto-Oncogene Proteins c-bcl-2; 0 / Tumor Suppressor Protein p53; EC 2.7.10.1 / Receptor, Epidermal Growth Factor
  •  go-up   go-down


63. Jacobs JF, Grauer OM, Brasseur F, Hoogerbrugge PM, Wesseling P, Gidding CE, van de Rakt MW, Figdor CG, Coulie PG, de Vries IJ, Adema GJ: Selective cancer-germline gene expression in pediatric brain tumors. J Neurooncol; 2008 Jul;88(3):273-80
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Selective cancer-germline gene expression in pediatric brain tumors.
  • Cancer-germline genes (CGGs) code for immunogenic antigens that are present in various human tumors and can be targeted by immunotherapy.
  • Their expression has been studied in a wide range of human tumors in adults.
  • We measured the expression of 12 CGGs in pediatric brain tumors, to identify targets for therapeutic cancer vaccines.
  • Real Time PCR was used to quantify the expression of genes MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, MAGE-C2, NY-ESO-1 and GAGE-1,2,8 in 50 pediatric brain tumors of different histological subtypes.
  • Fifty-five percent of the medulloblastomas (n = 11), 86% of the ependymomas (n = 7), 40% of the choroid plexus tumors (n = 5) and 67% of astrocytic tumors (n = 27) expressed one or more CGGs.
  • With exception of a minority of tumors, the overall level of CGG expression in pediatric brain tumors was low.
  • CGG-encoded antigens are therefore suitable targets in a very selected group of pediatric patients with a brain tumor.
  • Interestingly, glioblastomas from adult patients expressed CGGs more often and at significantly higher levels compared to pediatric glioblastomas.
  • This observation is in line with the notion that pediatric and adult glioblastomas develop along different genetic pathways.
  • [MeSH-major] Brain Neoplasms / genetics. Gene Expression. Genes, Neoplasm
  • [MeSH-minor] Adolescent. Adult. Aged. Child. Child, Preschool. Humans. Immunohistochemistry. Infant. Middle Aged. Reverse Transcriptase Polymerase Chain Reaction

  • Genetic Alliance. consumer health - Brain Cancer.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] In Vivo. 2002 Nov-Dec;16(6):583-8 [12494904.001]
  • [Cites] Immunol Rev. 2002 Oct;188:51-64 [12445281.001]
  • [Cites] Nat Rev Immunol. 2003 Jul;3(7):569-81 [12876559.001]
  • [Cites] Clin Neuropathol. 2003 Jul-Aug;22(4):180-6 [12908754.001]
  • [Cites] J Neurooncol. 2003 Aug-Sep;64(1-2):3-11 [12952281.001]
  • [Cites] Int J Cancer. 2008 Feb 15;122(4):777-84 [17957795.001]
  • [Cites] Int Rev Immunol. 2003 Mar-Apr;22(2):113-40 [12962272.001]
  • [Cites] Science. 1991 Dec 13;254(5038):1643-7 [1840703.001]
  • [Cites] Int J Cancer. 1993 May 28;54(3):527-8 [8509230.001]
  • [Cites] Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1004-8 [8302824.001]
  • [Cites] Annu Rev Immunol. 1994;12:337-65 [8011285.001]
  • [Cites] Neurosurgery. 1994 Jun;34(6):967-72; discussion 972-3 [8084407.001]
  • [Cites] N Engl J Med. 1995 Jan 19;332(3):143-9 [7800006.001]
  • [Cites] Cancer Res. 1995 Jun 1;55(11):2236-9 [7757970.001]
  • [Cites] Mod Pathol. 1995 Apr;8(3):333-8 [7617661.001]
  • [Cites] Ther Immunol. 1995 Jun;2(3):173-81 [8885135.001]
  • [Cites] Am J Pathol. 1997 Jun;150(6):2143-52 [9176405.001]
  • [Cites] J Neuropathol Exp Neurol. 1997 Jul;56(7):782-9 [9210874.001]
  • [Cites] Biotechniques. 1997 Sep;23(3):456-60 [9298216.001]
  • [Cites] J Natl Cancer Inst. 1999 Jun 16;91(12):1051-8 [10379968.001]
  • [Cites] Nat Rev Cancer. 2005 Aug;5(8):615-25 [16034368.001]
  • [Cites] Neurol Res. 2005 Oct;27(7):692-702 [16197806.001]
  • [Cites] Int J Cancer. 2007 Jan 1;120(1):67-74 [17019710.001]
  • [Cites] Cancer Immunol Immunother. 2007 Feb;56(2):259-69 [16758204.001]
  • [Cites] Neurosurgery. 2006 Nov;59(5):988-99; discussioin 999-1000 [17143233.001]
  • [Cites] Acta Neuropathol. 2007 Aug;114(2):97-109 [17618441.001]
  • [Cites] J Exp Med. 2007 Sep 3;204(9):2023-30 [17682068.001]
  • [Cites] Int J Oncol. 2000 Jan;16(1):81-96 [10601552.001]
  • [Cites] Int J Cancer. 2000 Jun 15;86(6):835-41 [10842198.001]
  • [Cites] Transplantation. 2000 Jun 15;69(11):2366-73 [10868642.001]
  • [Cites] Clin Cancer Res. 2000 Oct;6(10):3916-22 [11051238.001]
  • [Cites] Am J Pathol. 2001 Apr;158(4):1525-32 [11290570.001]
  • [Cites] Int J Cancer. 2001 Jun 15;92(6):856-60 [11351307.001]
  • [Cites] Nature. 2001 May 17;411(6835):380-4 [11357146.001]
  • [Cites] Clin Chem. 2002 Jan;48(1):25-34 [11751535.001]
  • [Cites] Vaccine. 2003 Jan 30;21(7-8):781-6 [12531359.001]
  • (PMID = 18398575.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Netherlands
  • [Other-IDs] NLM/ PMC2440921
  •  go-up   go-down


64. Onguru O, Celasun B, Gunhan O: Desmoplastic non-infantile ganglioglioma. Neuropathology; 2005 Jun;25(2):150-2
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • It is a mixed glial and neuronal cerebral tumor.
  • Histopathological examination revealed a low-grade glial tumor with prominent desmoplasia including hypocellular collagenous areas.
  • The tumor was well demarcated with respect to the surrounding brain.
  • Ganglion cells with dysplastic features were present in the tumor and clustered in some areas.
  • Immunohistochemistry revealed glial fibrillary acidic protein positivity in the astrocytic cells hidden in the desmoplastic tissue.
  • This present case confirms that desmoplastic ganglioglioma can be present in young adult patients with its characteristic radiologic features.
  • [MeSH-major] Brain Neoplasms / pathology. Ganglioglioma / pathology


65. Holmlund C, Haapasalo H, Yi W, Raheem O, Brännström T, Bragge H, Henriksson R, Hedman H: Cytoplasmic LRIG2 expression is associated with poor oligodendroglioma patient survival. Neuropathology; 2009 Jun;29(3):242-7
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Of these, LRIG1 negatively regulates growth factor signaling and is implicated as a tumor suppressor in certain malignancies.
  • In astrocytic tumors, the subcellular distribution of LRIG proteins is associated with specific clinicopathological features and patient survival.
  • Here we used immunohistochemistry to analyze the expression of the LRIG proteins in 63 oligodendroglial tumors, and evaluated possible associations between LRIG protein expression and clinicopathological parameters.
  • [MeSH-major] Brain Neoplasms / diagnosis. Brain Neoplasms / metabolism. Cytoplasm / metabolism. Membrane Glycoproteins / metabolism. Oligodendroglioma / diagnosis. Oligodendroglioma / metabolism
  • [MeSH-minor] Adolescent. Adult. Aged. Cell Nucleus / metabolism. Female. Humans. Kaplan-Meier Estimate. Male. Membrane Proteins / metabolism. Middle Aged. Neoplasm Staging. Prognosis. Young Adult

  • Genetic Alliance. consumer health - Oligodendroglioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18992012.001).
  • [ISSN] 1440-1789
  • [Journal-full-title] Neuropathology : official journal of the Japanese Society of Neuropathology
  • [ISO-abbreviation] Neuropathology
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Australia
  • [Chemical-registry-number] 0 / LRIG1 protein, human; 0 / LRIG2 protein, human; 0 / LRIG3 protein, human; 0 / Membrane Glycoproteins; 0 / Membrane Proteins
  •  go-up   go-down


66. Rhee W, Ray S, Yokoo H, Hoane ME, Lee CC, Mikheev AM, Horner PJ, Rostomily RC: Quantitative analysis of mitotic Olig2 cells in adult human brain and gliomas: implications for glioma histogenesis and biology. Glia; 2009 Apr 1;57(5):510-23
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Quantitative analysis of mitotic Olig2 cells in adult human brain and gliomas: implications for glioma histogenesis and biology.
  • The capacity of adult human glial progenitor cells (AGPs), to proliferate and undergo multipotent differentiation, positions them as ideal candidate cells of origin for human gliomas.
  • To investigate this potential role we identified AGPs as mitotically active Olig2 cells in nonneoplastic adult human brain and gliomas.
  • Extrapolating from a mean Olig2/Mib-1 labeling index (LI) of 52% and total cell number of 100 billion, we estimated the overall prevalence of mitotic Olig2 AGPs in nonneoplastic human brain parenchyma at 10 million.
  • The vast majority of mitotic cells in Grade II and Grade III gliomas of all histologic subtypes expressed Olig2 (mean LI 75%) but rarely S100B (LI 0.6%), identifying the Olig2 cell as a distinct contributor to the proliferating cell population of human gliomas of both oligodendroglial and astrocytic lineages.
  • The novel framework provided by this quantitative and comparative analysis supports future studies to examine the histogenetic role of Olig2 AGPs in adult gliomas, their potential contribution to the tumor stroma and the molecular role of Olig2 in glioma pathogenesis.

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2008 Wiley-Liss, Inc.
  • (PMID = 18837053.001).
  • [ISSN] 1098-1136
  • [Journal-full-title] Glia
  • [ISO-abbreviation] Glia
  • [Language] ENG
  • [Grant] United States / NINDS NIH HHS / NS / T32 NS007144; United States / NINDS NIH HHS / NS / T32 NS007144-25; United States / NINDS NIH HHS / NS / T32 NS007144-28; United States / NINDS NIH HHS / NS / T32 NS 0007144
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antibodies, Antinuclear; 0 / Antibodies, Monoclonal; 0 / Basic Helix-Loop-Helix Transcription Factors; 0 / MIB-1 antibody; 0 / Nerve Growth Factors; 0 / Nerve Tissue Proteins; 0 / OLIG2 protein, human; 0 / S100 Calcium Binding Protein beta Subunit; 0 / S100 Proteins; 0 / S100B protein, human
  • [Other-IDs] NLM/ NIHMS77469; NLM/ PMC4415884
  •  go-up   go-down


67. Sepulveda Sanchez JM, Martinez Montero JC, Diez-Lobato R, Hernandez-Lain A, Cabello A, Ramos A, Gonzalez Leon P, Ricoy Campo JR: Classification of oligodendroglial tumors based on histopathology criteria is a significant predictor of survival--clinical, radiological and pathologic long-term follow-up analysis. Clin Neuropathol; 2009 Jan-Feb;28(1):11-20
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Classification of oligodendroglial tumors based on histopathology criteria is a significant predictor of survival--clinical, radiological and pathologic long-term follow-up analysis.
  • BACKGROUND: The clinical course of oligodendroglial tumors is variable and there is a lack of consensus with regard to precisely diagnose which minimal criteria are required to make a diagnosis of a high-grade oligodendrial tumor.
  • The aims of the present study are to assess pathologic factors with prognostic significance, in addiction to clinical and neuroradiologic variables, in an attempt to identify reproducible histological parameters that are useful for classification of oligodendroglial tumors.
  • METHODS: 80 oligodendroglial tumors diagnosed between 1977 and 2004 were analyzed.
  • To make a diagnosis of anaplastic tumor we used reproducible parameters: endothelial proliferation, high cellularity, increased mitotic activity and necrosis.
  • Oligoastrocytomas (mixed gliomas) were diagnosed when the astrocytic component was clearly identified as part of the neoplastic cell population.
  • CONCLUSIONS: Clear cut histopathological criteria (endothelial proliferation, high cellularity, mitotic activity and necrosis) allow to establish different oligodendroglial tumor entities with distinct survival outcome.
  • [MeSH-major] Brain Neoplasms / classification. Brain Neoplasms / pathology. Oligodendroglioma / classification. Oligodendroglioma / pathology
  • [MeSH-minor] Adolescent. Adult. Aged. Child. Female. Follow-Up Studies. Humans. Kaplan-Meier Estimate. Male. Middle Aged. Prognosis. Retrospective Studies

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [ErratumIn] Clin Neuropathol. 2009 Mar-Apr;28(2):150
  • (PMID = 19216215.001).
  • [ISSN] 0722-5091
  • [Journal-full-title] Clinical neuropathology
  • [ISO-abbreviation] Clin. Neuropathol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Germany
  •  go-up   go-down


68. Scrideli CA, Carlotti CG Jr, Mata JF, Neder L, Machado HR, Oba-Sinjo SM, Rosemberg S, Marie SK, Tone LG: Prognostic significance of co-overexpression of the EGFR/IGFBP-2/HIF-2A genes in astrocytomas. J Neurooncol; 2007 Jul;83(3):233-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • This study aimed to define the profile of their expressions, interactions and correlation with clinical features and prognostic significance in microdissected tumor samples from 84 patients with astrocytomas of different grades and from 6 white matter non-neoplasic brain tissue sample.
  • EGFR, IGFBP-2 and HIF-2A gene expression levels were analyzed by quantitative real-time PCR and differed significantly between grades I-IV astrocytic tumors (P < 0.0001, P < 0.0001 and P: 0.0013, respectively) when analyzed by the Kruskal-Wallis test.
  • Grade I astrocytomas presented gene expression levels similar to those encountered in samples of microdissected white matter of non-neoplastic brain tissue Overexpression of the EGFR, IGFBP-2 and HIF-2A genes was significantly associated with lower 2-year survival (P: 0.009, P: 0.0002 and P: 0.008, respectively).
  • [MeSH-major] Astrocytoma / genetics. Basic Helix-Loop-Helix Transcription Factors / genetics. Brain Neoplasms / genetics. Gene Expression Regulation, Neoplastic. Insulin-Like Growth Factor Binding Protein 2 / genetics. Receptor, Epidermal Growth Factor / genetics
  • [MeSH-minor] Adult. Child. Female. Humans. Male. Microdissection. Middle Aged. Neoplasm Staging. Prognosis. RNA, Messenger / genetics. RNA, Messenger / metabolism. RNA, Neoplasm / genetics. RNA, Neoplasm / metabolism. Reverse Transcriptase Polymerase Chain Reaction

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Clin Cancer Res. 2005 Nov 1;11(21):7658-63 [16278385.001]
  • [Cites] Cancer Res. 2004 Sep 15;64(18):6503-10 [15374961.001]
  • [Cites] Cancer Cell. 2005 Aug;8(2):131-41 [16098466.001]
  • [Cites] Endocrinology. 2001 Apr;142(4):1652-8 [11250947.001]
  • [Cites] Lancet. 2003 Jan 25;361(9354):323-31 [12559880.001]
  • [Cites] Appl Immunohistochem Mol Morphol. 2006 Mar;14(1):78-82 [16540735.001]
  • [Cites] Cancer Res. 2003 Apr 15;63(8):1865-70 [12702575.001]
  • [Cites] Curr Opin Oncol. 2006 Jul;18(4):330-4 [16721126.001]
  • [Cites] Cancer Res. 2003 Oct 15;63(20):6613-25 [14583454.001]
  • [Cites] J Clin Pathol. 2005 Apr;58(4):361-6 [15790698.001]
  • [Cites] Clin Cancer Res. 2006 Feb 1;12(3 Pt 1):860-8 [16467100.001]
  • [Cites] Cancer Res. 2000 Dec 15;60(24):6868-74 [11156382.001]
  • [Cites] Neuropathol Appl Neurobiol. 2005 Aug;31(4):384-94 [16008822.001]
  • [Cites] Mol Cell Biol. 2005 Jul;25(13):5675-86 [15964822.001]
  • [Cites] Nat Rev Neurosci. 2004 Oct;5(10):782-92 [15378038.001]
  • [Cites] Cancer Chemother Pharmacol. 2005 Nov;56 Suppl 1:47-57 [16273354.001]
  • [Cites] Cancer Res. 1999 Sep 1;59(17):4228-32 [10485462.001]
  • [Cites] Cancer Res. 2006 Jun 15;66(12 ):6264-70 [16778202.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2002 Aug 1;53(5):1192-202 [12128120.001]
  • [Cites] J Clin Oncol. 2006 Mar 10;24(8):1253-65 [16525180.001]
  • [Cites] Leukemia. 2003 Nov;17(11):2234-7 [12931222.001]
  • [Cites] J Surg Oncol. 2004 Apr 1;86(1):34-40 [15048678.001]
  • [Cites] Nat Med. 2003 Jun;9(6):677-84 [12778166.001]
  • [Cites] Cancer Res. 2003 Aug 1;63(15):4315-21 [12907597.001]
  • [Cites] J Neurooncol. 2004 Nov;70(2):137-60 [15674475.001]
  • (PMID = 17285230.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Basic Helix-Loop-Helix Transcription Factors; 0 / Insulin-Like Growth Factor Binding Protein 2; 0 / RNA, Messenger; 0 / RNA, Neoplasm; 0 / endothelial PAS domain-containing protein 1; EC 2.7.10.1 / Receptor, Epidermal Growth Factor
  •  go-up   go-down


69. Kunitz A, Wolter M, van den Boom J, Felsberg J, Tews B, Hahn M, Benner A, Sabel M, Lichter P, Reifenberger G, von Deimling A, Hartmann C: DNA hypermethylation and aberrant expression of the EMP3 gene at 19q13.3 in Human Gliomas. Brain Pathol; 2007 Oct;17(4):363-70
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Allelic losses on 19q are found in the majority of oligodendroglial tumors and approximately one-third of diffuse astrocytomas.
  • However, the tumor suppressor genes (TSG) on 19q are still elusive.
  • In oligodendroglial tumors, we found that aberrant methylation in the 5'-region of EMP3 was significantly associated with reduced mRNA expression and LOH 19q.
  • Our data corroborate that oligodendroglial and astrocytic gliomas often show EMP3 hypermethylation and aberrant expression.
  • [MeSH-major] Brain Neoplasms / genetics. Chromosomes, Human, Pair 19 / genetics. DNA Methylation. Gene Expression Regulation, Neoplastic / genetics. Glioma / genetics. Membrane Glycoproteins / genetics
  • [MeSH-minor] Adult. Astrocytoma / genetics. Astrocytoma / metabolism. Astrocytoma / physiopathology. Gene Expression Profiling. Gene Silencing / physiology. Genetic Predisposition to Disease / genetics. Humans. Oligodendroglioma / genetics. Oligodendroglioma / metabolism. Oligodendroglioma / physiopathology. Oligonucleotide Array Sequence Analysis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17610521.001).
  • [ISSN] 1015-6305
  • [Journal-full-title] Brain pathology (Zurich, Switzerland)
  • [ISO-abbreviation] Brain Pathol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0 / EMP3 protein, human; 0 / Membrane Glycoproteins
  •  go-up   go-down


70. De Tommasi A, De Tommasi C, Occhiogrosso G, Cimmino A, Parisi M, Sanguedolce F, Ciappetta P: Primary intramedullary primitive neuroectodermal tumor (PNET)--case report and review of the literature. Eur J Neurol; 2006 Mar;13(3):240-3
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Primary intramedullary primitive neuroectodermal tumor (PNET)--case report and review of the literature.
  • Spinal primitive neuroectodermal tumors (PNET) are very rare tumors, and intramedullary localization is even less common.
  • Following the WHO 2000 classification, PNETs have been considered embryonal tumors composed of undifferentiated neuroepithelial cells with a capacity of differentiation into different cellular lines, such as astrocytic, ependymal, melanotic and muscular.
  • The optimal treatment for these malignant tumors is not yet clear, although, over the years, radiotherapy has been considered the best treatment for spinal PNETs.
  • The patient, 18 months after the onset of his symptomatology, died without cerebral tumor involvement.
  • [MeSH-major] Brain Neoplasms. Laminectomy / methods. Neuroectodermal Tumors, Primitive
  • [MeSH-minor] Adolescent. Adult. Aged. Child. Child, Preschool. Female. Follow-Up Studies. Humans. Magnetic Resonance Imaging. Male. Middle Aged

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16618339.001).
  • [ISSN] 1351-5101
  • [Journal-full-title] European journal of neurology
  • [ISO-abbreviation] Eur. J. Neurol.
  • [Language] eng
  • [Publication-type] Case Reports; Comparative Study; Journal Article; Review
  • [Publication-country] England
  • [Number-of-references] 25
  •  go-up   go-down


71. Jain D, Sharma MC, Sarkar C, Deb P, Gupta D, Mahapatra AK: Correlation of diagnostic yield of stereotactic brain biopsy with number of biopsy bits and site of the lesion. Brain Tumor Pathol; 2006 Oct;23(2):71-5
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Correlation of diagnostic yield of stereotactic brain biopsy with number of biopsy bits and site of the lesion.
  • Astrocytic lesions, the most common, include 10 pilocytic astrocytomas (PA), 29 diffuse astrocytomas (DA), 11 anaplastic astrocytomas (AA), and 7 glioblastoma multiforme (GBM).
  • [MeSH-major] Biopsy / methods. Brain / pathology. Brain Neoplasms / diagnosis. Brain Neoplasms / pathology. Stereotaxic Techniques
  • [MeSH-minor] Adolescent. Adult. Aged. Aging. Child. Coloring Agents. Eosine Yellowish-(YS). Female. Fluorescent Dyes. Hematoxylin. Humans. Immunohistochemistry. Magnetic Resonance Imaging. Male. Middle Aged. Paraffin Embedding. Reproducibility of Results. Retrospective Studies. Sex Characteristics. Tissue Fixation. Tomography, X-Ray Computed. Young Adult

  • MedlinePlus Health Information. consumer health - Biopsy.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. HEMATOXYLIN .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18095122.001).
  • [ISSN] 1433-7398
  • [Journal-full-title] Brain tumor pathology
  • [ISO-abbreviation] Brain Tumor Pathol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Japan
  • [Chemical-registry-number] 0 / Coloring Agents; 0 / Fluorescent Dyes; TDQ283MPCW / Eosine Yellowish-(YS); YKM8PY2Z55 / Hematoxylin
  •  go-up   go-down


72. Gelabert-Gonzalez M, Serramito-García R, Arcos-Algaba A: Desmoplastic infantile and non-infantile ganglioglioma. Review of the literature. Neurosurg Rev; 2010 Apr;34(2):151-8
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Desmoplastic gangliogliomas (DIG) are rare primary neoplasms that comprise 0.5-1.0% of all intracranial tumors.
  • These tumors invariably arise in the supratentorial region and commonly involve more than one lobe, preferentially the temporal and frontal.
  • The histologic diagnosis is characterized by the presence of three different cell lines: astrocytic, neuronal, and primitive neuroectodermal marker sites, which were demonstrable.
  • Desmoplastic gangliogliomas represent a rare tumor group with two well-defined age groups, the children and non-children.
  • Surgery is the treatment of choice and no complementary treatment is needed in cases of complete tumor resection.
  • [MeSH-major] Brain Neoplasms / surgery. Ganglioglioma / surgery
  • [MeSH-minor] Adolescent. Adult. Child, Preschool. Female. Humans. Immunohistochemistry. Infant. Infant, Newborn. Ki-67 Antigen / metabolism. Magnetic Resonance Imaging. Male. Microscopy, Electron. Neurosurgical Procedures. Skull / pathology. Supratentorial Neoplasms / pathology. Survival Analysis. Tomography, X-Ray Computed. Treatment Outcome. Ultrasonography

  • Genetic Alliance. consumer health - Desmoplastic Infantile Ganglioglioma.
  • Genetic Alliance. consumer health - Ganglioglioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neurosurg Sci. 1996 Sep-Dec;40(3-4):235-8 [9165432.001]
  • [Cites] Childs Nerv Syst. 2000 Jan;16(1):8-14 [10672423.001]
  • [Cites] Pediatr Dev Pathol. 1999 Nov-Dec;2(6):582-7 [10508884.001]
  • [Cites] Pediatr Radiol. 2005 Oct;35(10):1024-6 [15900435.001]
  • [Cites] Cent Eur Neurosurg. 2010 Feb;71(1):50-3 [20024887.001]
  • [Cites] Childs Nerv Syst. 2003 Jun;19(5-6):292-7 [12750935.001]
  • [Cites] Childs Nerv Syst. 2002 Oct;18(9-10):463-7 [12382166.001]
  • [Cites] J Neurooncol. 2002 Aug;59(1):63-9 [12222839.001]
  • [Cites] Noshuyo Byori. 1994;11(1):93-8 [8162157.001]
  • [Cites] Turk J Pediatr. 2008 Sep-Oct;50(5):495-9 [19102059.001]
  • [Cites] Arq Neuropsiquiatr. 2007 Dec;65(4A):960-4 [18094854.001]
  • [Cites] AJNR Am J Neuroradiol. 1991 Nov-Dec;12 (6):1195-7 [1763751.001]
  • [Cites] Histopathology. 1992 Jul;21(1):43-9 [1634201.001]
  • [Cites] Hum Pathol. 1996 Jun;27(6):610-3 [8666374.001]
  • [Cites] Neurosurg Rev. 1998;21(1):31-5 [9584283.001]
  • [Cites] Pediatr Dev Pathol. 1998 May-Jun;1(3):234-42 [10463284.001]
  • [Cites] Arq Neuropsiquiatr. 1998 Sep;56(3A):443-8 [9754426.001]
  • [Cites] Pediatr Neurosurg. 1995;22(4):167-73 [7619716.001]
  • [Cites] Mod Pathol. 2001 Jul;14(7):720-6 [11455006.001]
  • [Cites] Australas Radiol. 2005 Oct;49(5):433-7 [16174188.001]
  • [Cites] J Neurosurg Sci. 2000 Sep;44(3):150-4 [11126451.001]
  • [Cites] Acta Neuropathol. 2002 Aug;104(2):144-8 [12111357.001]
  • [Cites] Pediatr Radiol. 2006 Jun;36(6):541-5 [16552586.001]
  • [Cites] Cancer. 1990 Jul 1;66(1):173-9 [2354404.001]
  • [Cites] J Clin Neurosci. 2007 May;14(5):498-501 [17386372.001]
  • [Cites] Neurosurgery. 2003 Oct;53(4):979-83; discussion 983-4 [14519230.001]
  • [Cites] Neuropathology. 2005 Jun;25(2):150-2 [15875908.001]
  • [Cites] Radiographics. 2000 Jan-Feb;20(1):276-8 [10682792.001]
  • [Cites] Pediatr Neurosurg. 2002 Jan;36(1):29-32 [11818743.001]
  • [Cites] Neuropathology. 2006 Aug;26(4):318-22 [16961068.001]
  • [Cites] Pediatr Radiol. 1995;25(7):540-3 [8545186.001]
  • [Cites] Surg Neurol. 2007 Sep;68(3):304-8; discussion 308 [17719974.001]
  • [Cites] Childs Nerv Syst. 2007 Jun;23(6):619-20; author reply 621 [17450367.001]
  • [Cites] Pediatr Radiol. 2001 Jun;31(6):403-5 [11436886.001]
  • [Cites] Brain Pathol. 1993 Jul;3(3):275-81 [8293187.001]
  • [Cites] Childs Nerv Syst. 2003 Jun;19(5-6):359-66 [12783262.001]
  • [Cites] Neurol India. 2009 Nov-Dec;57(6):796-9 [20139515.001]
  • [Cites] Brain Pathol. 2001 Apr;11(2):265-6 [11303803.001]
  • [Cites] Cancer Genet Cytogenet. 1996 Nov;92(1):4-7 [8956861.001]
  • [Cites] Histopathology. 1990 Mar;16(3):235-41 [2332209.001]
  • [Cites] Acta Cytol. 2001 Nov-Dec;45(6):1037-42 [11726100.001]
  • [Cites] Cancer. 1984 Dec 1;54(11):2505-12 [6498740.001]
  • [Cites] Ryoikibetsu Shokogun Shirizu. 2000;(28 Pt 3):75-6 [11043186.001]
  • [Cites] Neurol Med Chir (Tokyo). 1993 Jul;33(7):463-6 [7692325.001]
  • [Cites] Neurol Med Chir (Tokyo). 1993 Mar;33(3):177-80 [7683126.001]
  • [Cites] Cytojournal. 2005 Jan 11;2(1):1 [15644137.001]
  • [Cites] Neurosurgery. 1994 Apr;34(4):583-9; discussion 589 [8008154.001]
  • [Cites] Childs Nerv Syst. 1997 Mar;13(3):154-65 [9137857.001]
  • [Cites] J Child Neurol. 2005 Nov;20(11):920-4 [16417865.001]
  • [Cites] Neuropathology. 2009 Oct;29(5):597-601 [19622111.001]
  • [Cites] J Med Assoc Thai. 2005 Dec;88(12 ):1962-5 [16519002.001]
  • [Cites] Am J Surg Pathol. 2002 Nov;26(11):1515-22 [12409729.001]
  • [Cites] Childs Nerv Syst. 1994 Sep;10 (7):458-62; discussion 462-3 [7842437.001]
  • [Cites] Neurosurg Rev. 2009 Jul;32(3):369-74; discussion 374 [19280238.001]
  • [Cites] J Neurooncol. 2006 Feb;76(3):271-5 [16205962.001]
  • [Cites] Pediatr Neurosurg. 2008;44(5):422-5 [18703892.001]
  • [Cites] Arch Pediatr. 2006 Feb;13(2):163-6 [16364614.001]
  • [Cites] Pediatr Blood Cancer. 2005 Dec;45(7):986-90 [15702481.001]
  • [Cites] Neuroradiology. 2004 Dec;46(12):1039-43 [15551129.001]
  • [Cites] Pediatr Dev Pathol. 2006 Nov-Dec;9(6):462-7 [17163789.001]
  • [Cites] J Neurosurg Pediatr. 2008 Jan;1(1):95-8 [18352812.001]
  • [Cites] Neurol India. 2004 Sep;52(3):384-6 [15472436.001]
  • [Cites] Acta Oncol. 1997;36(6):655-7 [9408160.001]
  • [Cites] Acta Neuropathol. 1993;85(2):199-204 [8442411.001]
  • [Cites] J Neurosurg. 1987 Jan;66(1):58-71 [3097276.001]
  • [Cites] Ann Diagn Pathol. 2004 Oct;8(5):280-3 [15494934.001]
  • [Cites] AJNR Am J Neuroradiol. 2004 Jun-Jul;25(6):1028-33 [15205142.001]
  • (PMID = 21246390.001).
  • [ISSN] 1437-2320
  • [Journal-full-title] Neurosurgical review
  • [ISO-abbreviation] Neurosurg Rev
  • [Language] eng
  • [Publication-type] Journal Article; Meta-Analysis; Review
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Ki-67 Antigen
  •  go-up   go-down


73. Plotkin M, Amthauer H, Eisenacher J, Wurm R, Michel R, Wust P, Stockhammer F, Röttgen R, Gutberlet M, Ruf J, Felix R: Value of 123I-IMT SPECT for diagnosis of recurrent non-astrocytic intracranial tumours. Neuroradiology; 2005 Jan;47(1):18-26
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Value of 123I-IMT SPECT for diagnosis of recurrent non-astrocytic intracranial tumours.
  • In the current study we investigated whether IMT-SPECT could also be useful in the follow-up of brain metastases and other intracranial tumours of non-astrocytic origin.
  • The study included 22 patients with suspected recurrent intracranial tumours of non-astrocytic origin (12 brain metastases, one supratentorial primitive neuroendocrine tumour (PNET), one rhabdoid tumour, two clivus chordomas, three ependymomas, two pituitary tumours, one anaplastic meningioma) who had previously been treated by surgery and/or radio/chemotherapy.
  • We concluded that the IMT-SPECT is a promising complementary imaging tool for the detection of recurrences of non-astrocytic intracranial tumours and their distinguishing from treatment-induced changes.
  • [MeSH-major] Brain Neoplasms / diagnostic imaging. Iodine Radioisotopes. Methyltyrosines. Neoplasm Recurrence, Local / diagnostic imaging. Radiopharmaceuticals. Tomography, Emission-Computed, Single-Photon / methods
  • [MeSH-minor] Adolescent. Adult. Aged. Chordoma / diagnostic imaging. Ependymoma / diagnostic imaging. False Negative Reactions. False Positive Reactions. Female. Follow-Up Studies. Glioma / diagnostic imaging. Humans. Magnetic Resonance Imaging. Male. Meningioma / diagnostic imaging. Middle Aged. Neuroendocrine Tumors / diagnostic imaging. Pituitary Neoplasms / diagnostic imaging. Retrospective Studies. Rhabdoid Tumor / diagnostic imaging. Sensitivity and Specificity. Supratentorial Neoplasms / diagnostic imaging

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Nucl Med. 2001 Apr;42(4):579-85 [11337545.001]
  • [Cites] Acta Radiol. 1989 Mar-Apr;30(2):121-8 [2493795.001]
  • [Cites] Ann Nucl Med. 2002 Nov;16(7):503-6 [12508845.001]
  • [Cites] J Neurooncol. 2004 Oct;70(1):49-58 [15527107.001]
  • [Cites] AJR Am J Roentgenol. 1994 Dec;163(6):1459-65 [7992747.001]
  • [Cites] Eur J Nucl Med. 1998 Feb;25(2):177-81 [9473267.001]
  • [Cites] J Nucl Med. 2000 Nov;41(11):1793-800 [11079485.001]
  • [Cites] Neuroimaging Clin N Am. 1999 Nov;9(4):801-19 [10517946.001]
  • [Cites] J Clin Oncol. 2002 Jan 15;20(2):396-404 [11786566.001]
  • [Cites] Eur J Nucl Med. 1999 Feb;26(2):144-51 [9933348.001]
  • [Cites] Semin Oncol. 1994 Apr;21(2):162-71 [8153662.001]
  • [Cites] Nuklearmedizin. 1995 Apr;34(2):71-5 [7761277.001]
  • [Cites] Semin Nucl Med. 2003 Apr;33(2):148-62 [12756647.001]
  • [Cites] AJNR Am J Neuroradiol. 1996 Feb;17 (2):345-53 [8938309.001]
  • [Cites] J Nucl Med. 1989 Jan;30(1):110-2 [2783455.001]
  • [Cites] J Nucl Med. 1998 Oct;39(10 ):1736-43 [9776279.001]
  • [Cites] J Nucl Med. 1998 Jan;39(1):23-7 [9443732.001]
  • [Cites] AJNR Am J Neuroradiol. 1993 May-Jun;14 (3):524-7 [8517335.001]
  • [Cites] Nucl Med Commun. 1996 Mar;17 (3):197-8 [8692485.001]
  • [Cites] J Nucl Med. 1997 Apr;38(4):517-22 [9098193.001]
  • [Cites] Radiology. 1993 Jan;186(1):37-44 [8416584.001]
  • [Cites] Acta Radiol. 1990 Sep;31(5):417-29 [2261284.001]
  • [Cites] Radiology. 2003 Jan;226(1):181-7 [12511688.001]
  • [Cites] Nuklearmedizin. 1997 Mar;36(2):36-41 [9148271.001]
  • [Cites] J Nucl Med. 2004 Mar;45(3):374-81 [15001676.001]
  • [Cites] J Comput Assist Tomogr. 1983 Dec;7(6):1062-6 [6415134.001]
  • [Cites] Neurosurgery. 1993 Jul;33(1):28-33 [8355844.001]
  • [Cites] AJR Am J Roentgenol. 1988 Jan;150(1):189-97 [3257119.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2000 Aug 1;48(1):43-52 [10924970.001]
  • [Cites] Curr Opin Oncol. 1994 May;6(3):254-61 [8080854.001]
  • [Cites] J Nucl Med. 2004 Apr;45(4):579-86 [15073253.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2002 Nov 1;54(3):842-54 [12377338.001]
  • [Cites] Clin Cancer Res. 2000 Jun;6(6):2252-9 [10873075.001]
  • [Cites] J Nucl Med. 1998 May;39(5):778-85 [9591574.001]
  • [Cites] Nucl Med Commun. 1996 Jul;17 (7):609-15 [8843121.001]
  • [Cites] J Neurosurg. 2003 May;98 (5):1056-64 [12744366.001]
  • [Cites] Nuklearmedizin. 2002;41(4):191-6 [12224403.001]
  • [Cites] Ann Neurol. 1991 Apr;29(4):347-55 [1929205.001]
  • [Cites] J Nucl Med. 1990 Mar;31(3):281-6 [2155314.001]
  • (PMID = 15630586.001).
  • [ISSN] 0028-3940
  • [Journal-full-title] Neuroradiology
  • [ISO-abbreviation] Neuroradiology
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Chemical-registry-number] 0 / Iodine Radioisotopes; 0 / Methyltyrosines; 0 / Radiopharmaceuticals; A77N8J5H5T / 3-iodo-alpha-methyltyrosine
  •  go-up   go-down


74. Ng EL, Ng JJ, Liang F, Tang BL: Rab22B is expressed in the CNS astroglia lineage and plays a role in epidermal growth factor receptor trafficking in A431 cells. J Cell Physiol; 2009 Dec;221(3):716-28
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The expression profile and functions of the brain-enriched Rab22B/Rab31 small GTPase had remained uncharacterized.
  • Using specific antibodies against Rab22B, we found the protein to be exceptionally enriched in nestin and RC2-positive radial glia of the embryonic mouse brain.
  • In the adult brain, Rab22B is rather specifically expressed in glial fibrillary acidic protein (GFAP)-positive mature astrocytes, but is not clearly detectable in either 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)-positive mature oligodendrocytes or betaIII-tubulin (TuJ)-positive neurons.
  • [MeSH-minor] Animals. Brain / cytology. Brain / metabolism. Cell Line, Tumor. Cell Membrane / metabolism. Cell Proliferation. Embryo, Mammalian / metabolism. Endosomes / metabolism. Epidermal Growth Factor / metabolism. Epidermal Growth Factor / pharmacology. Humans. Mice. Mice, Inbred C57BL. Nerve Tissue Proteins / metabolism. Neuroglia / metabolism. Protein Binding / physiology. RNA, Small Interfering / genetics. Rats. Rats, Sprague-Dawley. Receptor, IGF Type 2. Receptors, Cytoplasmic and Nuclear / metabolism. Vesicular Transport Proteins / metabolism

  • COS Scholar Universe. author profiles.
  • Gene Ontology. gene/protein/disease-specific - Gene Ontology annotations from this paper .
  • KOMP Repository. gene/protein/disease-specific - KOMP Repository (subscription/membership/fee required).
  • Mouse Genome Informatics (MGI). Mouse Genome Informatics (MGI) .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19725050.001).
  • [ISSN] 1097-4652
  • [Journal-full-title] Journal of cellular physiology
  • [ISO-abbreviation] J. Cell. Physiol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Nerve Tissue Proteins; 0 / RAB31 protein, human; 0 / RNA, Small Interfering; 0 / Receptor, IGF Type 2; 0 / Receptors, Cytoplasmic and Nuclear; 0 / Vesicular Transport Proteins; 0 / cation-dependent mannose-6-phosphate receptor; 0 / early endosome antigen 1; 0 / glial fibrillary astrocytic protein, mouse; 0 / rab22b protein, rat; 62229-50-9 / Epidermal Growth Factor; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 3.6.1.- / rab GTP-Binding Proteins; EC 3.6.5.2 / Rab22B protein, mouse
  •  go-up   go-down


75. Katsetos CD, Dráberová E, Smejkalová B, Reddy G, Bertrand L, de Chadarévian JP, Legido A, Nissanov J, Baas PW, Dráber P: Class III beta-tubulin and gamma-tubulin are co-expressed and form complexes in human glioblastoma cells. Neurochem Res; 2007 Aug;32(8):1387-98
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • We have previously shown that the neuronal-associated class III beta-tubulin isotype and the centrosome-associated gamma-tubulin are aberrantly expressed in astrocytic gliomas (Cell Motil Cytoskeleton 2003, 55:77-96; J Neuropathol Exp Neurol 2006, 65:455-467).
  • Here we determined the expression, distribution and interaction of betaIII-tubulin and gamma-tubulin in diffuse-type astrocytic gliomas (grades II-IV) (n = 17) and the human glioblastoma cell line T98G.
  • [MeSH-major] Brain Neoplasms / metabolism. Glioblastoma / metabolism. Tubulin / metabolism
  • [MeSH-minor] Adult. Antineoplastic Agents, Phytogenic / pharmacology. Cell Line, Tumor / cytology. Cell Line, Tumor / drug effects. Cell Line, Tumor / metabolism. Child. Humans. Multiprotein Complexes. Nocodazole / pharmacology. Paclitaxel / pharmacology. Tubulin Modulators / pharmacology. Vinblastine / pharmacology

  • Genetic Alliance. consumer health - Glioblastoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. TAXOL .
  • Hazardous Substances Data Bank. VINBLASTINE .
  • antibodies-online. View related products from antibodies-online.com (subscription/membership/fee required).
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Am J Surg Pathol. 2002 Apr;26(4):479-85 [11914626.001]
  • [Cites] FEBS Lett. 2000 May 4;473(1):19-23 [10802051.001]
  • [Cites] J Clin Invest. 1997 Sep 1;100(5):1282-93 [9276747.001]
  • [Cites] Bull Cancer. 2005 Feb;92 (2):E25-30 [15749640.001]
  • [Cites] Glia. 2002 Sep;39(3):193-206 [12203386.001]
  • [Cites] J Cell Sci. 2001 Jan;114(Pt 2):413-22 [11148142.001]
  • [Cites] Folia Biol (Praha). 1999;45(4):163-5 [10732731.001]
  • [Cites] Histochemistry. 1988;89(5):485-92 [2459085.001]
  • [Cites] Br J Cancer. 1998 Feb;77(4):562-6 [9484812.001]
  • [Cites] J Cell Sci. 1993 Dec;106 ( Pt 4):1263-73 [7907338.001]
  • [Cites] J Immunol. 2006 Jun 15;176(12 ):7243-53 [16751367.001]
  • [Cites] J Neuropathol Exp Neurol. 1993 Nov;52(6):655-66 [8229085.001]
  • [Cites] J Biol Chem. 2005 Apr 1;280(13):12902-7 [15695826.001]
  • [Cites] Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4685-9 [2052551.001]
  • [Cites] Exp Cell Res. 2004 May 1;295(2):375-86 [15093737.001]
  • [Cites] Cell Motil Cytoskeleton. 1996;33(1):38-51 [8824733.001]
  • [Cites] Biochem J. 2002 Aug 1;365(Pt 3):889-95 [11939909.001]
  • [Cites] Arch Pathol Lab Med. 2000 Apr;124(4):535-44 [10747310.001]
  • [Cites] Proc Natl Acad Sci U S A. 1990 Sep;87(18):7195-9 [2402501.001]
  • [Cites] Plant Cell. 2003 Feb;15(2):465-80 [12566585.001]
  • [Cites] Cell Motil Cytoskeleton. 1990;17(2):118-32 [2257630.001]
  • [Cites] Nature. 2005 May 26;435(7041):523-7 [15917813.001]
  • [Cites] Cell Motil Cytoskeleton. 2003 Jun;55(2):77-96 [12740870.001]
  • [Cites] Arch Pathol Lab Med. 2003 Sep;127(9):1187-91 [12946225.001]
  • [Cites] J Neuropathol Exp Neurol. 2005 Jun;64(6):479-89 [15977639.001]
  • [Cites] Nature. 1992 Mar 5;356(6364):80-3 [1538786.001]
  • [Cites] Histochem Cell Biol. 1998 Mar;109(3):231-9 [9541471.001]
  • [Cites] J Cell Biochem. 2002;84(3):472-83 [11813253.001]
  • [Cites] Nature. 1995 Dec 7;378(6557):578-83 [8524390.001]
  • [Cites] Cell Motil Cytoskeleton. 1997;36(2):179-89 [9015205.001]
  • [Cites] Biochemistry. 1999 Nov 30;38(48):15712-20 [10625437.001]
  • [Cites] J Cell Biol. 1998 Aug 10;142(3):775-86 [9700165.001]
  • [Cites] Mol Chem Neuropathol. 1992 Dec;17(3):273-87 [1337253.001]
  • [Cites] J Cell Physiol. 1979 Apr;99(1):43-54 [222778.001]
  • [Cites] J Comp Neurol. 2000 Jul 31;423(3):359-72 [10870078.001]
  • [Cites] Dev Dyn. 2002 Mar;223(2):229-40 [11836787.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 May;65(5):465-77 [16772870.001]
  • [Cites] J Child Neurol. 2003 Dec;18(12):851-66; discussion 867 [14736079.001]
  • [Cites] Int J Oncol. 2005 Mar;26(3):589-96 [15703812.001]
  • [Cites] Acta Neuropathol. 2003 Jan;105(1):1-13 [12471454.001]
  • [Cites] Oncogene. 2002 Sep 9;21(40):6234-40 [12214254.001]
  • [Cites] Anat Rec. 1998 Mar;250(3):335-43 [9517850.001]
  • [Cites] J Cell Biol. 1999 Feb 22;144(4):721-33 [10037793.001]
  • [Cites] Clin Cancer Res. 2005 Jan 1;11(1):298-305 [15671559.001]
  • [Cites] Mol Biol Cell. 2000 Apr;11(4):1225-39 [10749926.001]
  • [Cites] Arch Pathol Lab Med. 2001 May;125(5):613-24 [11300931.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Apr;61(4):307-20 [11939586.001]
  • [Cites] Int J Cancer. 2007 May 15;120(10):2078-85 [17285590.001]
  • [Cites] Nature. 1995 Dec 7;378(6557):638-40 [8524401.001]
  • [Cites] Cancer Res. 2001 Sep 15;61(18):6885-91 [11559565.001]
  • [Cites] Exp Cell Res. 2004 Aug 1;298(1):218-28 [15242776.001]
  • (PMID = 17406983.001).
  • [ISSN] 0364-3190
  • [Journal-full-title] Neurochemical research
  • [ISO-abbreviation] Neurochem. Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Phytogenic; 0 / Multiprotein Complexes; 0 / TUBB3 protein, human; 0 / Tubulin; 0 / Tubulin Modulators; 5V9KLZ54CY / Vinblastine; P88XT4IS4D / Paclitaxel; SH1WY3R615 / Nocodazole
  •  go-up   go-down


76. Sareddy GR, Panigrahi M, Challa S, Mahadevan A, Babu PP: Activation of Wnt/beta-catenin/Tcf signaling pathway in human astrocytomas. Neurochem Int; 2009 Sep;55(5):307-17
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Astrocytomas are the most common form of primary brain tumors.
  • Here, we report the evidence that Wnt/beta-catenin/Tcf signaling pathway is constitutively activated in astrocytic tumors.
  • In the present study, human astrocytic tumors with different clinical grades were analyzed for mRNA expression of Dvl-1, Dvl-2, Dvl-3, beta-catenin, c-myc and cyclin D1 and protein levels of beta-catenin, Lef1, Tcf4, c-Myc, N-Myc, c-jun and cyclin D1.
  • Western blotting revealed upregulation of beta-catenin, Lef1, Tcf4 and their target proteins in the core tumor tissues in comparison to peritumor and normal brain tissues.
  • [MeSH-minor] Adolescent. Adult. Base Sequence. Blotting, Western. DNA Primers. Female. Humans. Immunohistochemistry. Male. Middle Aged. RNA, Messenger / genetics. Reverse Transcriptase Polymerase Chain Reaction. Young Adult


77. Eckert A, Kloor M, Giersch A, Ahmadi R, Herold-Mende C, Hampl JA, Heppner FL, Zoubaa S, Holinski-Feder E, Pietsch T, Wiestler OD, von Knebel Doeberitz M, Roth W, Gebert J: Microsatellite instability in pediatric and adult high-grade gliomas. Brain Pathol; 2007 Apr;17(2):146-50
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Microsatellite instability in pediatric and adult high-grade gliomas.
  • About 15% of sporadic gastrointestinal and endometrial tumors show the microsatellite instability (MSI) phenotype because of loss of DNA mismatch repair (MMR) function.
  • The incidence of MSI in tumors of the central nervous system still remains controversial.
  • Based on these data and the fact that in different tumor entities MMR deficiency defines a subgroup of tumors with distinct pathogenesis and particular clinicopathological features that may have impact on prognosis and therapy, we screened 624 gliomas from 71 young and 553 adult patients for MMR deficiency by MSI analysis using three highly sensitive diagnostic markers.
  • A malignant glioma from an adult patient displayed MSI and concomitant loss of nuclear MSH2 and MSH6 protein expression (0.16%; 1/619).
  • No evidence for MSI or loss of MMR protein expression was observed in 71 gliomas from young patients (0%; 0/71) including 41 high-grade astrocytic tumors.
  • [MeSH-major] Brain Neoplasms / genetics. Glioma / genetics. Microsatellite Instability
  • [MeSH-minor] Adult. Child. DNA-Binding Proteins / metabolism. Humans. Immunohistochemistry. Polymerase Chain Reaction

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17388945.001).
  • [ISSN] 1015-6305
  • [Journal-full-title] Brain pathology (Zurich, Switzerland)
  • [ISO-abbreviation] Brain Pathol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0 / DNA-Binding Proteins
  •  go-up   go-down


78. Li NY, Zhou XJ, Jin XZ, Meng K, Ma HH, Zheng XG, Jiang SJ, Sun GQ: [A clinicopathologic study of dysembryoplstic neuroepithelial tumor]. Zhonghua Bing Li Xue Za Zhi; 2005 Sep;34(9):561-5
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [A clinicopathologic study of dysembryoplstic neuroepithelial tumor].
  • OBJECTIVE To study the clinicopathologic features, radiologic findings, treatment modalities and prognosis of dysembryoplastic neuroepithelial tumor (DNT).
  • On magnetic resonance imaging (MRI) study, the tumor was hypodense on T1 and hyperdense on T2.
  • Ten cases were treated by complete surgical excision and the remaining 8 tumors were partially excised.
  • None of the cases showed tumor recurrence after operation.
  • Histologically, all tumors demonstrated a multinodular architecture and were intracortical in location, sometimes with extension into the white matter.
  • The tumor was formed by an admixture of oligodendrocyte-like cells, mature neurons and astrocytes, with obvious microcystic changes.
  • Electron microscopy showed early neuronal, astrocytic and oligodendroglial differentiation of the oligodendrocyte-like cells.
  • CONCLUSIONS: DNT is a benign tumor (corresponding to WHO grade I) that can be cured by surgical excision, despite sometimes incomplete tumor removal.
  • [MeSH-major] Brain Neoplasms / pathology. Cerebral Cortex / pathology. Neoplasms, Neuroepithelial / pathology. Oligodendroglia / pathology
  • [MeSH-minor] Adolescent. Adult. Child. Child, Preschool. Female. Follow-Up Studies. Humans. Male. Middle Aged. Neurofilament Proteins / metabolism. S100 Proteins / metabolism. Survival Rate. Synaptophysin / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16468305.001).
  • [ISSN] 0529-5807
  • [Journal-full-title] Zhonghua bing li xue za zhi = Chinese journal of pathology
  • [ISO-abbreviation] Zhonghua Bing Li Xue Za Zhi
  • [Language] chi
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] China
  • [Chemical-registry-number] 0 / Neurofilament Proteins; 0 / S100 Proteins; 0 / Synaptophysin
  •  go-up   go-down


79. Horger M, Fenchel M, Nägele T, Moehle R, Claussen CD, Beschorner R, Ernemann U: Water diffusivity: comparison of primary CNS lymphoma and astrocytic tumor infiltrating the corpus callosum. AJR Am J Roentgenol; 2009 Nov;193(5):1384-7
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Water diffusivity: comparison of primary CNS lymphoma and astrocytic tumor infiltrating the corpus callosum.
  • OBJECTIVE: The purpose of this study was to determine whether lymphoma and astrocytic tumor infiltrating the corpus callosum can be reliably differentiated with measurement of water diffusivity.
  • Regions of interest were drawn on apparent diffusion coefficient (ADC) maps inside the callosal tumor.
  • ADCs were normalized by calculation of the ratio between the ADC of the tumor and the ADC of an uninvolved region of corpus callosum.
  • RESULTS: The mean ADC of glioblastoma multiforme was 1.13 +/- 0.31 (SD) x 10(-3) mm(2)/s, and the mean tumor to corpus callosum ADC ratio was 1.51 +/- 0.46; of low-grade astrocytoma, 1.14 +/- 0.23 x 10(-3) mm(2)/s and 1.54 +/- 0.28; gliomatosis cerebri, 1.01 +/- 0.20 x 10(-3) mm(2)/s and 1.31 +/- 0.36; and lymphoma, 0.71 +/- 0.13 x 10(-3) mm(2)/s and 0.93 +/- 0.19.
  • The difference between the mean tumor to corpus callosum ADC ratio of lymphoma and that of all grades of astrocytoma (1.48 +/- 0.43) was statistically significant (p < 0.001).
  • The optimal ADC threshold for discriminating astrocytic tumor and lymphoma was 0.90 x 10(-3) mm(2)/s (sensitivity, 84%; specificity, 89%).
  • The optimal threshold for tumor to corpus callosum ADC ratio was 1.22 (sensitivity, 73%; specificity, 100%).
  • CONCLUSION: The water diffusivity and the ADC ratio of the tumor to normal-appearing corpus callosum of astrocytic tumor differ significantly from those of lymphoma infiltrating the corpus callosum, allowing reliable differentiation of the two types of tumor.
  • [MeSH-major] Astrocytoma / pathology. Brain Neoplasms / pathology. Corpus Callosum / pathology. Diffusion Magnetic Resonance Imaging / methods. Glioblastoma / pathology. Lymphoma / pathology. Water / metabolism
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Analysis of Variance. Female. Humans. Image Processing, Computer-Assisted. Male. Middle Aged. ROC Curve. Retrospective Studies. Sensitivity and Specificity

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Lymphoma.
  • Hazardous Substances Data Bank. Water .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19843757.001).
  • [ISSN] 1546-3141
  • [Journal-full-title] AJR. American journal of roentgenology
  • [ISO-abbreviation] AJR Am J Roentgenol
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 059QF0KO0R / Water
  •  go-up   go-down


80. Whitmore RG, Krejza J, Kapoor GS, Huse J, Woo JH, Bloom S, Lopinto J, Wolf RL, Judy K, Rosenfeld MR, Biegel JA, Melhem ER, O'Rourke DM: Prediction of oligodendroglial tumor subtype and grade using perfusion weighted magnetic resonance imaging. J Neurosurg; 2007 Sep;107(3):600-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Prediction of oligodendroglial tumor subtype and grade using perfusion weighted magnetic resonance imaging.
  • Perfusion weighted magnetic resonance (MR) imaging allows for noninvasive determination of relative tumor blood volume (rTBV) and has been used to predict the grade of astrocytic neoplasms.
  • The aim of this study was to use perfusion weighted MR imaging to predict tumor grade and cytogenetic profile in oligodendroglial neoplasms.
  • Tumors were classified by histopathological grade and stratified into two cytogenetic groups: 1p or 1p and 19q loss of heterozygosity (LOH) (Group 1), and 19q LOH only on intact alleles (Group 2).
  • Tumor blood volume was calculated in relation to contralateral white matter.
  • Multivariate logistic regression analysis was used to develop predictive models of cytogenetic profile and tumor grade.
  • CONCLUSIONS: Oligodendroglial classification models derived from advanced imaging will improve the accuracy of tumor grading, provide prognostic information, and have potential to influence treatment decisions.
  • [MeSH-major] Brain Neoplasms / genetics. Brain Neoplasms / pathology. Loss of Heterozygosity / genetics. Magnetic Resonance Angiography. Oligodendroglioma / genetics. Oligodendroglioma / pathology
  • [MeSH-minor] Adult. Aged. Blood Volume. Female. Humans. Male. Middle Aged. Predictive Value of Tests. Retrospective Studies. Tumor Burden

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17886561.001).
  • [ISSN] 0022-3085
  • [Journal-full-title] Journal of neurosurgery
  • [ISO-abbreviation] J. Neurosurg.
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / R01 CA-90586
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
  • [Publication-country] United States
  •  go-up   go-down


81. Strojnik T, Kavalar R, Trinkaus M, Lah TT: Cathepsin L in glioma progression: comparison with cathepsin B. Cancer Detect Prev; 2005;29(5):448-55
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • OBJECTIVE: Lysosomal cysteine cathepsins have been implicated in tumor progression.
  • METHODS: The histological slides of 82 patients with primary astrocytic tumors were reviewed.
  • We evaluated the immunostaining of the cathepsins in tumor and endothelial cells.
  • The total score was significantly higher in malignant than in benign tumors, both for cathepsin B (p<0.001) and for cathepsin L (p<0.01).
  • CONCLUSION: Cathepsin L is preferentially expressed in tumor cells, increasing with glioma progression, but is not significantly associated with new vasculature of glioblastoma.
  • [MeSH-major] Brain Neoplasms / chemistry. Brain Neoplasms / pathology. Cathepsin B / biosynthesis. Cathepsin B / physiology. Cathepsins / biosynthesis. Cathepsins / physiology. Cysteine Endopeptidases / biosynthesis. Cysteine Endopeptidases / physiology. Glioma / chemistry. Glioma / pathology
  • [MeSH-minor] Adolescent. Adult. Aged. Cathepsin L. Child. Child, Preschool. Disease Progression. Female. Gene Expression Profiling. Humans. Male. Middle Aged. Neovascularization, Pathologic. Prognosis. Retrospective Studies. Survival Analysis

  • Genetic Alliance. consumer health - Glioma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16183211.001).
  • [ISSN] 0361-090X
  • [Journal-full-title] Cancer detection and prevention
  • [ISO-abbreviation] Cancer Detect. Prev.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] EC 3.4.- / Cathepsins; EC 3.4.22.- / Cysteine Endopeptidases; EC 3.4.22.1 / Cathepsin B; EC 3.4.22.15 / CTSL1 protein, human; EC 3.4.22.15 / Cathepsin L
  •  go-up   go-down


82. Comincini S, Chiarelli LR, Zelini P, Del Vecchio I, Azzalin A, Arias A, Ferrara V, Rognoni P, Dipoto A, Nano R, Valentini G, Ferretti L: Nuclear mRNA retention and aberrant doppel protein expression in human astrocytic tumor cells. Oncol Rep; 2006 Dec;16(6):1325-32
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Nuclear mRNA retention and aberrant doppel protein expression in human astrocytic tumor cells.
  • It is abundant in testis and, unlike PrP, it is expressed at low levels in the adult central nervous system (CNS).
  • Recently, ectopic expression of doppel was found in two different tumor types, specifically in glial and haematological cancers.
  • Immunohistochemistry experiments demonstrated that Dpl was mainly localised in the cytoplasm of the astrocytic tumor cells, and that it failed to be GPI-anchored to the cell membrane.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Cell Nucleus / metabolism. Prions / biosynthesis. RNA, Messenger / metabolism
  • [MeSH-minor] Blotting, Northern. Blotting, Western. Cell Line, Tumor. Cytoplasm / metabolism. GPI-Linked Proteins. Gene Expression. Gene Expression Profiling. Humans. Immunohistochemistry. Protein Biosynthesis. Reverse Transcriptase Polymerase Chain Reaction. Transcription, Genetic. Transfection

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17089057.001).
  • [ISSN] 1021-335X
  • [Journal-full-title] Oncology reports
  • [ISO-abbreviation] Oncol. Rep.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / GPI-Linked Proteins; 0 / PRND protein, human; 0 / Prions; 0 / RNA, Messenger
  •  go-up   go-down


83. Beetz C, Bergner S, Brodoehl S, Brodhun M, Ewald C, Kalff R, Krüger J, Patt S, Kiehntopf M, Deufel T: Outcome-based profiling of astrocytic tumours identifies prognostic gene expression signatures which link molecular and morphology-based pathology. Int J Oncol; 2006 Nov;29(5):1183-91
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Outcome-based profiling of astrocytic tumours identifies prognostic gene expression signatures which link molecular and morphology-based pathology.
  • Astrocytomas are intracranial malignancies for which invasive growth and high motility of tumour cells preclude total resection; the tumours usually recur in a more aggressive and, eventually, lethal form.
  • In order to identify novel molecular markers for prognosis we obtained expression profiles of: i) tumours associated with particularly long recurrence-free intervals, ii) tumours which led to rapid patient death, and iii) tumour-free control brain.
  • Our finding of cell-specificity for some of these outcome-determining genes relates global expression data to the presence of morphological correlates of tumour behaviour and, thus, provides a link between morphology-based and molecular pathology.
  • [MeSH-major] Astrocytoma / mortality. Biomarkers, Tumor / analysis. Brain Neoplasms / mortality. Gene Expression Profiling. Genes, Neoplasm / genetics
  • [MeSH-minor] Adolescent. Adult. Aged. Female. Humans. Male. Middle Aged. Oligonucleotide Array Sequence Analysis. Prognosis. RNA, Neoplasm / analysis. Reverse Transcriptase Polymerase Chain Reaction

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17016650.001).
  • [ISSN] 1019-6439
  • [Journal-full-title] International journal of oncology
  • [ISO-abbreviation] Int. J. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / RNA, Neoplasm
  •  go-up   go-down


84. Tanaka A: Imaging diagnosis and fundamental knowledge of common brain tumors in adults. Radiat Med; 2006 Jul;24(6):482-92
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Imaging diagnosis and fundamental knowledge of common brain tumors in adults.
  • The most common primary brain tumors in Japanese adults are meningiomas, gliomas, pituitary adenomas, and schwannomas, which together account for 84.0% of all primary brain tumors.
  • The typical imaging findings of these tumors are well known by radiologists; therefore, the clinical and pathological issues, including terminology, genetics, and relation to hormones are discussed in this article.
  • The molecular genetic analysis of brain tumors has recently become important.
  • For instance, genetic analysis is important for differentiating oligodendroglial tumors from astrocytic tumors, and the gene mutation predicts response to chemotherapy for anaplastic oligodendrogliomas.
  • Background factors such as hormones, history of cranial irradiation, and medications influence oncogenesis, tumor growth, and tumor appearances as seen by imaging modalities.
  • [MeSH-major] Brain Neoplasms / diagnosis. Magnetic Resonance Imaging. Tomography, X-Ray Computed
  • [MeSH-minor] Adult. Glioma / diagnosis. Humans. Image Processing, Computer-Assisted. Japan / epidemiology. Meningioma / diagnosis. Neurilemmoma / diagnosis. Pituitary Neoplasms / diagnosis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - CT Scans.
  • MedlinePlus Health Information. consumer health - MRI Scans.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neuropathol Exp Neurol. 2002 Mar;61(3):215-25; discussion 226-9 [11895036.001]
  • [Cites] AJNR Am J Neuroradiol. 1993 Sep-Oct;14(5):1241-7 [8237710.001]
  • [Cites] Neuromolecular Med. 2003;3(1):41-52 [12665675.001]
  • [Cites] AJNR Am J Neuroradiol. 1990 Sep-Oct;11(5):935-8 [2120998.001]
  • [Cites] J Clin Endocrinol Metab. 1999 Nov;84(11):3972-82 [10566636.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 2000 Aug 1;48(1):65-73 [10924973.001]
  • [Cites] AJNR Am J Neuroradiol. 2001 Aug;22(7):1306-15 [11498419.001]
  • [Cites] Radiology. 1999 Nov;213(2):383-8 [10551216.001]
  • [Cites] AJNR Am J Neuroradiol. 1994 Mar;15(3):525-32 [8197952.001]
  • [Cites] Oncogene. 1999 Jul 15;18(28):4144-52 [10435596.001]
  • [Cites] Int J Cancer. 2000 Jan 1;85(1):78-81 [10585587.001]
  • [Cites] J Neurosurg. 1998 Jul;89(1):69-73 [9647174.001]
  • [Cites] J Neuropathol Exp Neurol. 2005 Jun;64(6):479-89 [15977639.001]
  • [Cites] J Neuroimaging. 1996 Apr;6(2):104-7 [8634482.001]
  • [Cites] Radiology. 1990 Aug;176(2):447-50 [2367659.001]
  • [Cites] Neuroradiology. 1997 Aug;39(8):593-8 [9272499.001]
  • [Cites] Surg Neurol. 2002 Dec;58(6):395-402; discussion 402 [12517619.001]
  • [Cites] Radiology. 1997 Apr;203(1):263-7 [9122405.001]
  • [Cites] AJNR Am J Neuroradiol. 2000 Mar;21(3):485-8 [10730639.001]
  • [Cites] AJNR Am J Neuroradiol. 1992 Sep-Oct;13(5):1279-91 [1414816.001]
  • [Cites] Radiology. 1994 Apr;191(1):41-51 [8134596.001]
  • [Cites] Cancer. 1975 Jul;36(1):216-20 [1203849.001]
  • [Cites] Nihon Igaku Hoshasen Gakkai Zasshi. 1998 Jun;58(7):349-52 [9711074.001]
  • [Cites] AJNR Am J Neuroradiol. 1997 Mar;18(3):551-4 [9090422.001]
  • [Cites] Surg Neurol. 1994 Jun;41(6):486-9 [8059328.001]
  • [Cites] AJNR Am J Neuroradiol. 2001 Jun-Jul;22(6):1081-8 [11415902.001]
  • [Cites] Radiology. 2002 Jul;224(1):177-83 [12091680.001]
  • [Cites] Radiology. 2003 Aug;228(2):533-8 [12819334.001]
  • [Cites] Jpn J Clin Oncol. 2001 Oct;31(10):510-3 [11696622.001]
  • (PMID = 16958433.001).
  • [ISSN] 0288-2043
  • [Journal-full-title] Radiation medicine
  • [ISO-abbreviation] Radiat Med
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Japan
  • [Number-of-references] 31
  •  go-up   go-down


85. Keating AK, Kim GK, Jones AE, Donson AM, Ware K, Mulcahy JM, Salzberg DB, Foreman NK, Liang X, Thorburn A, Graham DK: Inhibition of Mer and Axl receptor tyrosine kinases in astrocytoma cells leads to increased apoptosis and improved chemosensitivity. Mol Cancer Ther; 2010 May;9(5):1298-307
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Astrocytomas account for the majority of malignant brain tumors diagnosed in both adult and pediatric patients.
  • In this study, we found that Mer and Axl mRNA transcript and protein expression were elevated in astrocytic patient samples and cell lines. shRNA-mediated knockdown of Mer and Axl RTK expression led to an increase in apoptosis in astrocytoma cells.

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Nature. 1999 Dec 9;402(6762):672-6 [10604474.001]
  • [Cites] N Engl J Med. 2009 Oct 15;361(16):1570-83 [19828534.001]
  • [Cites] Nat Med. 2001 Feb;7(2):215-21 [11175853.001]
  • [Cites] Science. 2001 Jul 13;293(5528):306-11 [11452127.001]
  • [Cites] Anticancer Res. 2002 Mar-Apr;22(2B):1071-8 [12168903.001]
  • [Cites] J Clin Oncol. 2002 Aug 15;20(16):3470-7 [12177108.001]
  • [Cites] Curr Opin Immunol. 2003 Feb;15(1):31-6 [12495730.001]
  • [Cites] J Neurosci. 2003 May 15;23(10):4208-18 [12764109.001]
  • [Cites] Clin Exp Metastasis. 2003;20(7):665-74 [14669798.001]
  • [Cites] Proc Natl Acad Sci U S A. 1988 Mar;85(6):1952-6 [3279421.001]
  • [Cites] Cell Growth Differ. 1994 Jun;5(6):647-57 [8086340.001]
  • [Cites] Mol Cell Biol. 1995 Dec;15(12):6582-92 [8524223.001]
  • [Cites] J Neurosurg. 1999 Mar;90(3):533-6 [10067924.001]
  • [Cites] Leukemia. 1999 Sep;13(9):1352-8 [10482985.001]
  • [Cites] J Clin Invest. 2005 Feb;115(2):237-46 [15650770.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10):987-96 [15758009.001]
  • [Cites] Neoplasia. 2005 Dec;7(12):1058-64 [16354588.001]
  • [Cites] Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5799-804 [16585512.001]
  • [Cites] Clin Cancer Res. 2006 May 1;12(9):2662-9 [16675557.001]
  • [Cites] J Neurosci. 2006 May 24;26(21):5638-48 [16723520.001]
  • [Cites] Nat Immunol. 2006 Jul;7(7):747-54 [16751775.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 Aug;65(8):769-75 [16896310.001]
  • [Cites] Oncogene. 2006 Oct 5;25(45):6092-100 [16652142.001]
  • [Cites] J Neuropathol Exp Neurol. 2006 Dec;65(12):1181-8 [17146292.001]
  • [Cites] Neoplasma. 2007;54(4):334-41 [17822324.001]
  • [Cites] Autophagy. 2007 Nov-Dec;3(6):542-5 [17611390.001]
  • [Cites] Clin Cancer Res. 2008 Jan 1;14(1):130-8 [18172262.001]
  • [Cites] J Neurosci. 2008 Jan 2;28(1):264-78 [18171944.001]
  • [Cites] Cell. 2008 Jan 11;132(1):27-42 [18191218.001]
  • [Cites] Nat Rev Immunol. 2008 May;8(5):327-36 [18421305.001]
  • [Cites] Adv Cancer Res. 2008;100:35-83 [18620092.001]
  • [Cites] J Cell Physiol. 2008 Dec;217(3):584-9 [18651562.001]
  • [Cites] Mol Endocrinol. 2008 Nov;22(11):2481-95 [18787040.001]
  • [Cites] Blood. 2008 Dec 1;112(12):4466-74 [18587011.001]
  • [Cites] Adv Tech Stand Neurosurg. 2009;34:3-35 [19368079.001]
  • [Cites] Lancet Oncol. 2009 May;10(5):459-66 [19269895.001]
  • [Cites] Oncogene. 2009 Oct 1;28(39):3442-55 [19633687.001]
  • [Cites] J Comp Neurol. 2000 Sep 18;425(2):295-314 [10954847.001]
  • (PMID = 20423999.001).
  • [ISSN] 1538-8514
  • [Journal-full-title] Molecular cancer therapeutics
  • [ISO-abbreviation] Mol. Cancer Ther.
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / CA082086-10; United States / NCI NIH HHS / CA / T32 CA082086; United States / NCI NIH HHS / CA / T32 CA082086-10
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Protein Kinase Inhibitors; 0 / Proto-Oncogene Proteins; 0 / RNA, Small Interfering; EC 2.7.10.1 / MERTK protein, human; EC 2.7.10.1 / Receptor Protein-Tyrosine Kinases; EC 2.7.10.1 / axl receptor tyrosine kinase
  • [Other-IDs] NLM/ NIHMS304681; NLM/ PMC3138539
  •  go-up   go-down


86. Daumas-Duport C, Koziak M, Miquel C, Nataf F, Jouvet A, Varlet P: [Reappraisal of the Sainte-Anne Hospital classification of oligodendrogliomas in view of retrospective studies]. Neurochirurgie; 2005 Sep;51(3-4 Pt 2):247-53
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • PURPOSE: Definition of homogeneous tumor groups of oligodendrogliomas or oligo-astrocytomas is a basic condition for an adequate evaluation and comparison of the results of treatments in patients from various institutions.
  • However, increasing discordances are observed in the histological diagnosis of these tumors.
  • PATIENTS AND METHODS: This study included 251 adult patients in whom a SA grade A or B oligodendroglioma or oligo-astrocytoma was newly diagnosed at our institution from 1984 to 2003.
  • Routine histological preparations and post-contrast preoperative MRI/CT-scan were simultaneously reviewed in order to assess the impact on survival of the following features: presence or absence of a polymorphous or gemistocytic astrocytic component, of necrosis and of contrast enhancement (CH); endothelial hyperplasia (EH) assessed as absent, present minor (HE+) or (HE++) when conform to the threshold of HE defined in the SA grading system of oligodendrogliomas.
  • The tumors were graded A: no CH and no EH; in B: CH and /or HE++, and A/B: EH + but no CE.
  • RESULTS: 70.1% of the tumors were classified as "pure" oligodendroglioma, 19.5% as "polymorphous oligo-astroastrocytoma" and 10.3% as "gemistocytic oligo-astrocytoma".
  • In grade A, or B tumors, the presence of a polymorphous or a gemistocytic component had no significant influence on survival; however respectively 53% and 65% of these tumours versus 32% of "pure" oligodendrogliomas were grade B at the time of diagnosis.
  • After regrouping of the histological subtypes and of the tumors with HE+ or absent, the series included 153 oligodendrogliomas grade A and 98 grade B.
  • Survival in patients with grade A versus grade B tumors was respectively 142 versus 52 months (p<0.0001).
  • In grade B tumors, necrosis had no significant influence on survival.
  • In tumors with or without CE, patient survival was respectively 148 versus 40 months (p<0.0001).
  • On post contrast MRI done in 235 patients, only 7 tumors (3%) were grade A/B (EH++ but no CH).
  • 1) tumors diagnosed according to the Ste-Anne classification as oligodendroglioma or oligo-astrocytoma be regrouped in a unique category, 2) independent of their histological type and grade according to the WHO, gliomas that do not show CE be regrouped with SA oligodendrogliomas grade A, 3) concerning gliomas that show CE on MRI: oligodendrogliomas or oligo-astrocytomas WHO grade II or III, as well as WHO secondary glioblastomas or glioblastomas with an oligodendroglial component, be regrouped with SA oligodendrogliomas grade B; however tumors that show ring-like CE surrounding large foci of necrosis and finger-like "peritumoral" edema should be excluded or analysed separately.
  • [MeSH-major] Brain / pathology. Brain / radiography. Brain Neoplasms / classification. Glioma / classification. Oligodendroglioma / classification
  • [MeSH-minor] Adult. France. Hospitals. Humans. Magnetic Resonance Imaging. Neoplasm Staging. Retrospective Studies. Survival Rate. Tomography, X-Ray Computed

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16292168.001).
  • [ISSN] 0028-3770
  • [Journal-full-title] Neuro-Chirurgie
  • [ISO-abbreviation] Neurochirurgie
  • [Language] fre
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] France
  •  go-up   go-down


87. Komatani H, Sugita Y, Arakawa F, Ohshima K, Shigemori M: Expression of CXCL12 on pseudopalisading cells and proliferating microvessels in glioblastomas: an accelerated growth factor in glioblastomas. Int J Oncol; 2009 Mar;34(3):665-72
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • To elucidate the correlation between the CXCR4/CXCL12 axis and glioblastomas (GBs), the present study assessed CXCR4/CXCL12 expression in 44 astrocytic tumor tissues using immunohistochemical analyses.
  • Several cell lines of brain tumors were also analyzed by RT-PCR analyses.
  • Although low-grade, astrocytic tumors were rarely positive for CXCL12 immunohistochemically, all GBs showed moderate to intense immunostaining with CXCL12, with particularly intense immunostaining being observed in the pseudopalisading cells and the proliferating microvessels.
  • Regarding CXCR4, widespread positive immunoreactivity was noted in the tumor cells in almost all cases of GBs.
  • Taken together, these results suggest that secretion of CXCR4/CXCL12 by hypoxic pseudopalisading and proliferating microvascular cells contributes to an outward migration of tumor cells away from hypoxia, creating a peripherally moving wave and subsequent microvascular proliferation.
  • [MeSH-major] Brain Neoplasms / blood supply. Chemokine CXCL12 / biosynthesis. Glioblastoma / blood supply
  • [MeSH-minor] Adolescent. Adult. Aged. Astrocytoma / blood supply. Astrocytoma / pathology. Cell Growth Processes / physiology. Cell Line, Tumor. Cell Movement / physiology. Child. Female. Humans. Immunohistochemistry. Kaplan-Meier Estimate. Male. Microvessels / metabolism. Microvessels / pathology. Middle Aged. Neovascularization, Pathologic / genetics. Neovascularization, Pathologic / metabolism. Neovascularization, Pathologic / pathology. Reverse Transcriptase Polymerase Chain Reaction. Survival Rate. Young Adult

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • MedlinePlus Health Information. consumer health - Childhood Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19212671.001).
  • [ISSN] 1019-6439
  • [Journal-full-title] International journal of oncology
  • [ISO-abbreviation] Int. J. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / Chemokine CXCL12
  •  go-up   go-down


88. Angileri FF, Aguennouz M, Conti A, La Torre D, Cardali S, Crupi R, Tomasello C, Germanò A, Vita G, Tomasello F: Nuclear factor-kappaB activation and differential expression of survivin and Bcl-2 in human grade 2-4 astrocytomas. Cancer; 2008 May 15;112(10):2258-66
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • It is triggered by the interaction of the tumor necrosis factor (TNF) with its receptors and recruitment of the intermediate factor TNF-receptor associated factor (TRAF) 2.
  • The authors investigated the activity of NF-kappaB, and the mRNA expression of TNFalpha, TNFalpha receptor, TRAF1, TRAF2, and TRAF-associated NF-kappaB activator (TANK), and the antiapoptotic genes Bcl-2, c-IAP 1 and 2, and Survivin in human astrocytic tumors.
  • METHODS: Eight low-grade astrocytomas (LGA), 10 anaplastic astrocytomas (AAs), 10 glioblastoma multiforme (GBM) samples were used; 4 samples of normal brain tissue were used as controls.
  • RESULTS: NF-kappaB hyperactivity was detected in tumor samples. mRNA of antiapoptotic genes, particularly BCL-2 and Survivin, was hyperexpressed in gliomas.
  • NF-kappaB-activated antiapoptotic genes were hyperexpressed in tumor samples, but showed a differential expression with higher levels of Bcl-2 in LGAs and higher levels of Survivin in GBMs.
  • [MeSH-major] Astrocytoma / metabolism. Brain Neoplasms / metabolism. Microtubule-Associated Proteins / metabolism. NF-kappa B / metabolism. Neoplasm Proteins / metabolism. Proto-Oncogene Proteins c-bcl-2 / metabolism
  • [MeSH-minor] Adaptor Proteins, Signal Transducing / genetics. Adaptor Proteins, Signal Transducing / metabolism. Adult. Aged. Case-Control Studies. Cell Differentiation. Electrophoretic Mobility Shift Assay. Female. Humans. Inhibitor of Apoptosis Proteins / genetics. Inhibitor of Apoptosis Proteins / metabolism. Male. Middle Aged. Neoplasm Staging. Prognosis. RNA, Messenger / genetics. RNA, Messenger / metabolism. Reverse Transcriptase Polymerase Chain Reaction. TNF Receptor-Associated Factor 1 / genetics. TNF Receptor-Associated Factor 1 / metabolism. TNF Receptor-Associated Factor 2 / genetics. TNF Receptor-Associated Factor 2 / metabolism. Tankyrases / genetics. Tankyrases / metabolism

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • The Lens. Cited by Patents in .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2008 American Cancer Society.
  • (PMID = 18327814.001).
  • [ISSN] 0008-543X
  • [Journal-full-title] Cancer
  • [ISO-abbreviation] Cancer
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Adaptor Proteins, Signal Transducing; 0 / BIRC5 protein, human; 0 / Inhibitor of Apoptosis Proteins; 0 / Microtubule-Associated Proteins; 0 / NF-kappa B; 0 / Neoplasm Proteins; 0 / Proto-Oncogene Proteins c-bcl-2; 0 / RNA, Messenger; 0 / TANK protein, human; 0 / TNF Receptor-Associated Factor 1; 0 / TNF Receptor-Associated Factor 2; EC 2.4.2.30 / Tankyrases; EC 2.4.4.30 / TNKS protein, human
  •  go-up   go-down


89. Huang X, Bai HM, Chen L, Li B, Lu YC: Reduced expression of LC3B-II and Beclin 1 in glioblastoma multiforme indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors. J Clin Neurosci; 2010 Dec;17(12):1515-9
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Reduced expression of LC3B-II and Beclin 1 in glioblastoma multiforme indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors.
  • The aim of this study was to investigate the expression of microtubule-associated protein 1 light chain 3B (LC3B) and the autophagy-related gene Beclin 1 in astrocytic tumors and to analyze their expression profiles with respect to the development of astrocytic tumors.
  • The expression patterns of LC3B and Beclin 1 were analyzed by immunohistochemistry and/or western blotting in tumor samples from 62 patients with different grades of astrocytic tumor.
  • Western blot analysis indicated that the average optical densitometry (OD) ratio of Beclin 1 in high-grade astrocytic tumors (World Health Organization [WHO] grade III/IV) was lower than in low-grade astrocytic tumors (WHO grade I/II, p = 0.036).
  • The expression of LC3B-I exhibited no significant difference among the various grades of astrocytic tumor.
  • However, the average OD ratio of LC3B-II was lower in glioblastoma multiforme (GBM) than in other grades of astrocytic tumor (p = 0.030).
  • The progression of astrocytic tumors was related to a decrease in autophagic capacity represented by the loss of LC3B-II and Beclin 1 expression.
  • [MeSH-major] Apoptosis Regulatory Proteins / biosynthesis. Brain Neoplasms / pathology. Gene Expression Regulation, Neoplastic. Glioblastoma / pathology. Membrane Proteins / biosynthesis. Microtubule-Associated Proteins / biosynthesis
  • [MeSH-minor] Adult. Astrocytoma / metabolism. Astrocytoma / pathology. Autophagy. Blotting, Western. Disease Progression. Down-Regulation. Female. Humans. Immunohistochemistry. Male. Middle Aged

  • Genetic Alliance. consumer health - Glioblastoma.
  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2010 Elsevier Ltd. All rights reserved.
  • (PMID = 20863706.001).
  • [ISSN] 1532-2653
  • [Journal-full-title] Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
  • [ISO-abbreviation] J Clin Neurosci
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Scotland
  • [Chemical-registry-number] 0 / Apoptosis Regulatory Proteins; 0 / BECN1 protein, human; 0 / Membrane Proteins; 0 / Microtubule-Associated Proteins; 0 / light chain 3, human
  •  go-up   go-down


90. Ono A, Kanno H, Hayashi A, Nishimura S, Kyuma Y, Sato H, Ito S, Shimizu N, Chang CC, Gondo G, Yamamoto I, Sasaki T, Tanaka M: Collagen gel matrix assay as an in vitro chemosensitivity test for malignant astrocytic tumors. Int J Clin Oncol; 2007 Apr;12(2):125-30
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Collagen gel matrix assay as an in vitro chemosensitivity test for malignant astrocytic tumors.
  • METHODS: We examined the chemosensitivites for four anticancer agents - 1-(4-amino-2-methyl-5-pyrimidinyl) methyl-3 (2-chloroethyl)-3-nitrosourea hydrochloride (ACNU), carboplatin, cisplatin, and etoposide - of 43 malignant astrocytic tumors (21 anaplastic astrocytomas and 22 glioblastomas) by using a collagen gel matrix assay, and we also determined the survival periods of the tumor-bearing patients.
  • Individual chemotherapy for malignant astrocytic tumors, based on chemosensitivity data, could contribute to longer survival, particularly in anaplastic astrocytoma-bearing patients.
  • [MeSH-minor] Adult. Aged. Central Nervous System Neoplasms / drug therapy. Disease Progression. Disease-Free Survival. Drug Screening Assays, Antitumor. Female. Fibrin Foam. Follow-Up Studies. Glioblastoma / drug therapy. Glioblastoma / pathology. Humans. Japan. Karnofsky Performance Status. Male. Middle Aged. Sensitivity and Specificity. Survival Analysis. Tissue Adhesives. Treatment Outcome. Tumor Burden / drug effects. Tumor Cells, Cultured / drug effects

  • MedlinePlus Health Information. consumer health - Cancer Chemotherapy.
  • Hazardous Substances Data Bank. CIS-DIAMINEDICHLOROPLATINUM .
  • Hazardous Substances Data Bank. ETOPOSIDE .
  • Hazardous Substances Data Bank. CARBOPLATIN .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Proc Natl Acad Sci U S A. 1986 Apr;83(8):2694-8 [3458228.001]
  • [Cites] Prog Clin Biol Res. 1980;48:259-76 [7208520.001]
  • [Cites] J Neurooncol. 1983;1(2):149-66 [6088712.001]
  • [Cites] Int J Urol. 2005 Jan;12(1):67-72 [15661056.001]
  • [Cites] Lancet. 1982 Apr 17;1(8277):885-7 [6122104.001]
  • [Cites] Jpn J Cancer Res. 1991 May;82(5):607-12 [1648053.001]
  • [Cites] Eur J Cancer. 1996 Feb;32A(2):226-30 [8664032.001]
  • [Cites] Br J Cancer. 1983 Feb;47(2):205-14 [6297528.001]
  • [Cites] Urol Res. 1993 Mar;21(2):83-8 [8503152.001]
  • [Cites] Cancer Treat Rep. 1986 Dec;70(12):1379-82 [3791251.001]
  • [Cites] J Cancer Res Clin Oncol. 1999 Aug-Sep;125(8-9):481-6 [10480340.001]
  • [Cites] J Neurooncol. 1994;21(3):225-32 [7699417.001]
  • [Cites] Cancer Res. 1985 Sep;45(9):4200-5 [4028010.001]
  • [Cites] Cancer Res. 1982 Mar;42(3):992-8 [7199383.001]
  • (PMID = 17443280.001).
  • [ISSN] 1341-9625
  • [Journal-full-title] International journal of clinical oncology
  • [ISO-abbreviation] Int. J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Japan
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Fibrin Foam; 0 / Tissue Adhesives; 0S726V972K / Nimustine; 6PLQ3CP4P3 / Etoposide; 9007-34-5 / Collagen; BG3F62OND5 / Carboplatin; Q20Q21Q62J / Cisplatin
  •  go-up   go-down


91. Witte ME, Bol JG, Gerritsen WH, van der Valk P, Drukarch B, van Horssen J, Wilhelmus MM: Parkinson's disease-associated parkin colocalizes with Alzheimer's disease and multiple sclerosis brain lesions. Neurobiol Dis; 2009 Dec;36(3):445-52
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Parkinson's disease-associated parkin colocalizes with Alzheimer's disease and multiple sclerosis brain lesions.
  • Here, we assessed parkin distribution in AD and MS brain tissue using immunohistochemistry.
  • Similarly, we observed enhanced astrocytic parkin immunoreactivity in MS lesions, particularly in inflammatory lesions.
  • Our data indicate that parkin is upregulated in AD and MS brain tissue and might represent a defense mechanism to counteract stress-induced damage in AD and MS pathogenesis.
  • [MeSH-major] Alzheimer Disease / metabolism. Brain / metabolism. Multiple Sclerosis / metabolism. Ubiquitin-Protein Ligases / metabolism
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Amyloid / metabolism. Astrocytes / drug effects. Astrocytes / metabolism. Astrocytes / pathology. Cell Line, Tumor. Female. Free Radicals / toxicity. Humans. Immunohistochemistry. Male. Middle Aged. Plaque, Amyloid / metabolism. Plaque, Amyloid / pathology. RNA, Messenger

  • Genetic Alliance. consumer health - Multiple Sclerosis.
  • MedlinePlus Health Information. consumer health - Alzheimer's Disease.
  • MedlinePlus Health Information. consumer health - Multiple Sclerosis.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19716418.001).
  • [ISSN] 1095-953X
  • [Journal-full-title] Neurobiology of disease
  • [ISO-abbreviation] Neurobiol. Dis.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Amyloid; 0 / Free Radicals; 0 / RNA, Messenger; EC 6.3.2.19 / Ubiquitin-Protein Ligases; EC 6.3.2.19 / parkin protein
  •  go-up   go-down


92. Yi W, Haapasalo H, Holmlund C, Järvelä S, Raheem O, Bergenheim AT, Hedman H, Henriksson R: Expression of leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins in human ependymoma relates to tumor location, WHO grade, and patient age. Clin Neuropathol; 2009 Jan-Feb;28(1):21-7
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Expression of leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins in human ependymoma relates to tumor location, WHO grade, and patient age.
  • LRIG1 has been shown to be a suppressor of tumor growth by counteracting the signaling of epidermal growth factor receptor (EGFR) family members, including EGFR (ERBB1).
  • Expression of LRIG proteins seems to be of importance in the pathogenesis of astrocytic tumors.
  • The indications that expression and subcellular localization of LRIG proteins could be pathogenetically associated with specific clinicopathological features of ependymoma tumors might be of importance in the carcinogeneses and tumor progression of human ependymomas.
  • [MeSH-major] Brain Neoplasms / pathology. Ependymoma / pathology. Membrane Proteins / biosynthesis. Spinal Neoplasms / pathology
  • [MeSH-minor] Adolescent. Adult. Age Factors. Aged. Cell Nucleus / metabolism. Child. Child, Preschool. Cytoplasm / metabolism. Female. Gene Expression. Humans. Immunohistochemistry. Infant. Male. Membrane Glycoproteins / biosynthesis. Middle Aged. Tissue Array Analysis. World Health Organization


93. Mendonça R, Lima LG, Fernandes LN, Ferreira NP, De Napoli G: [Primary connus medullaris glioblastoma: case report]. Arq Neuropsiquiatr; 2005 Jun;63(2B):539-42
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Glioblastomas are the most common type of brain tumors; astrocytic in their origin, they are anaplastic tumors, and are located mainly in the cerebral hemispheres.
  • Primary growth in the conus medullaris is very rare, and the assessment and prognosis of this kind of tumor are distinct and unique.
  • We present here the case of a 39 years-old man with an intramedullary tumor of the spinal cord, with an histo pathological diagnosis of glioblastoma, along with some therapeutic considerations.
  • [MeSH-minor] Adult. Humans. Male

  • Genetic Alliance. consumer health - Glioblastoma.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16059615.001).
  • [ISSN] 0004-282X
  • [Journal-full-title] Arquivos de neuro-psiquiatria
  • [ISO-abbreviation] Arq Neuropsiquiatr
  • [Language] por
  • [Publication-type] Case Reports; English Abstract; Journal Article
  • [Publication-country] Brazil
  •  go-up   go-down


94. Moskowitz SI, Jin T, Prayson RA: Role of MIB1 in predicting survival in patients with glioblastomas. J Neurooncol; 2006 Jan;76(2):193-200
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • BACKGROUND: Histologic immunomarkers of cell cycle proteins have been utilized for prognosis in high-grade astrocytic tumors.
  • [MeSH-major] Biomarkers, Tumor / metabolism. Brain Neoplasms / metabolism. Glioblastoma / metabolism. Ki-67 Antigen / metabolism
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Combined Modality Therapy. Female. Humans. Immunohistochemistry. Karnofsky Performance Status. Male. Middle Aged. Predictive Value of Tests. Retrospective Studies. Survival Analysis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Neuropathol Appl Neurobiol. 1998 Oct;24(5):381-8 [9821169.001]
  • [Cites] J Neurosurg. 1999 Dec;91(6):997-1004 [10584846.001]
  • [Cites] Neurosurgery. 1998 Apr;42(4):709-20; discussion 720-3 [9574634.001]
  • [Cites] J Neurosurg Sci. 2000 Dec;44(4):203-9; discussion 209-10 [11327289.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1996 Mar 1;34(4):803-8 [8598356.001]
  • [Cites] J Natl Cancer Inst. 1993 May 5;85(9):704-10 [8478956.001]
  • [Cites] Cancer J. 2003 May-Jun;9(3):222-9 [12952307.001]
  • [Cites] Neuro Oncol. 2002 Jul;4(3):179-86 [12084348.001]
  • [Cites] J Neuropathol Exp Neurol. 2002 Apr;61(4):321-8 [11939587.001]
  • [Cites] J Neurosurg. 2004 Aug;101(2):219-26 [15309911.001]
  • [Cites] Breast. 2003 Dec;12(6):538-42 [14659132.001]
  • [Cites] Histopathology. 2002 Jan;40(1):2-11 [11903593.001]
  • [Cites] Eur J Cancer. 2002 Jul;38(10):1343-7 [12091064.001]
  • [Cites] Clin Neuropathol. 2002 Nov-Dec;21(6):252-7 [12489673.001]
  • [Cites] Surg Neurol. 1999 Oct;52(4):371-9 [10555843.001]
  • [Cites] J Neurooncol. 2004 Jan;66(1-2):139-46 [15015779.001]
  • [Cites] Neuro Oncol. 1999 Apr;1(2):124-37 [11550308.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1999 Nov 1;45(4):923-9 [10571199.001]
  • [Cites] J Neurooncol. 2000;46(1):11-6 [10896201.001]
  • [Cites] Cancer. 2003 Feb 15;97(4):1063-71 [12569607.001]
  • [Cites] Neurosurgery. 1993 May;32(5):716-20; discussion 720 [8388081.001]
  • [Cites] J Neurooncol. 2001 Dec;55(3):195-204 [11859975.001]
  • [Cites] Int J Radiat Oncol Biol Phys. 1998 Dec 1;42(5):981-7 [9869219.001]
  • [Cites] J Neurooncol. 2002 Apr;57(2):115-21 [12125971.001]
  • [Cites] Cancer. 1987 May 1;59(9):1617-25 [3030531.001]
  • [Cites] Neurosurgery. 1994 Jan;34(1):45-60; discussion 60-1 [8121569.001]
  • [Cites] Neuropathol Appl Neurobiol. 2000 Aug;26(4):319-31 [10931365.001]
  • [Cites] Ann Neurol. 1999 Aug;46(2):183-8 [10443883.001]
  • [Cites] J Neurooncol. 2002 Jan;56(2):127-32 [11995813.001]
  • [Cites] Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14453-8 [9826721.001]
  • [Cites] J Neurosurg. 1986 Dec;65(6):795-8 [3772478.001]
  • [Cites] J Neurosurg. 2003 Nov;99(5):886-92 [14609169.001]
  • [Cites] Neurochirurgie. 1998 Mar;44(1):25-30 [9757314.001]
  • [Cites] Am J Pathol. 2001 Apr;158(4):1525-32 [11290570.001]
  • [Cites] J Neurooncol. 2002 Jul;58(3):217-36 [12187957.001]
  • [Cites] J Neurooncol. 2000;46(1):71-80 [10896207.001]
  • [Cites] Am J Clin Pathol. 2003 May;119(5):715-22 [12760291.001]
  • [Cites] Lancet. 2002 Mar 23;359(9311):1011-8 [11937180.001]
  • [Cites] Neurosurgery. 1994 Apr;34(4):674-8; discussion 678-9 [8008166.001]
  • [Cites] Neurosurgery. 2002 Jun;50(6):1238-44; discussion 1244-5 [12015841.001]
  • [Cites] J Neurosurg. 1997 Jan;86(1):121-30 [8988090.001]
  • [Cites] Int J Oncol. 2003 Sep;23 (3):641-8 [12888899.001]
  • [Cites] J Neurooncol. 2003 May;63(1):9-13 [12814249.001]
  • [Cites] Surg Neurol. 1998 Dec;50(6):579-85 [9870820.001]
  • [Cites] J Neurosurg. 2003 Sep;99(3):467-73 [12959431.001]
  • [Cites] N Engl J Med. 2005 Mar 10;352(10 ):987-96 [15758009.001]
  • [Cites] Cancer. 1996 Jan 15;77(2):373-80 [8625247.001]
  • [Cites] J Neurosurg Sci. 1999 Dec;43(4):263-70 [10864388.001]
  • [Cites] J Neurosurg. 2001 Aug;95(2):190-8 [11780887.001]
  • (PMID = 16234986.001).
  • [ISSN] 0167-594X
  • [Journal-full-title] Journal of neuro-oncology
  • [ISO-abbreviation] J. Neurooncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Biomarkers, Tumor; 0 / Ki-67 Antigen
  •  go-up   go-down


95. Alaraj A, Chan M, Oh S, Michals E, Valyi-Nagy T, Hersonsky T: Astroblastoma presenting with intracerebral hemorrhage misdiagnosed as dural arteriovenous fistula: review of a rare entity. Surg Neurol; 2007 Mar;67(3):308-13
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • BACKGROUND: Astroblastoma is one of the most unusual types of tumors whose histogenesis has been recently clarified.
  • Immunohistochemically, the tumor cells show diffuse strong positivity for GFAP, S-100 protein, vimentin, as well as neuron-specific enolase and focal positivity for EMA.
  • Because of its high degree of proliferation, the presence of astroblastic pseudorosettes, prominent perivascular hyalinization, regional hyaline changes, and pushing borders with regard to the adjacent brain, the tumor was considered anaplastic.
  • CONCLUSIONS: Astroblastoma is a rare pure pathologic entity--a distinct form of astrocytic gliomas.
  • The diagnosis of astroblastoma is often difficult because of the astroblastic aspects that can be found in astrocytic tumors, in ependymomas, and in nonneuroepithelial tumors.
  • [MeSH-minor] Adult. Cerebral Angiography. Diagnosis, Differential. Humans. Magnetic Resonance Imaging. Male. Neoplasm Staging

  • Genetic Alliance. consumer health - Astroblastoma.
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17320647.001).
  • [ISSN] 0090-3019
  • [Journal-full-title] Surgical neurology
  • [ISO-abbreviation] Surg Neurol
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


96. Shields CL, Benevides R, Materin MA, Shields JA: Optical coherence tomography of retinal astrocytic hamartoma in 15 cases. Ophthalmology; 2006 Sep;113(9):1553-7
PDF icon [Fulltext service] Get downloadable fulltext PDFs of articles closely matching to this article, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Optical coherence tomography of retinal astrocytic hamartoma in 15 cases.
  • OBJECTIVE: To describe the features of retinal astrocytic hamartoma using optical coherence tomography (OCT).
  • PARTICIPANTS: Fifteen consecutive eyes from 14 patients with retinal astrocytic hamartoma.
  • MAIN OUTCOME MEASURES: Optical coherence tomography characteristics of the tumor.
  • By ophthalmoscopy, the mean basal diameter of the tumor was 3.6 mm.
  • By OCT, the tumor showed hyperreflectivity at its surface, internal retinal disorganization, and a gradual gently sloping transition from a normal retina into a tumorous retina in all 15 cases (100%).
  • On OCT, there was mild retinal traction on the surface of the tumor in 4 (27%), discrete internal moth-eaten optically empty spaces representing intralesional calcification or intratumoral cavities in 10 (67%), and optical shadowing posterior to the tumor in 14 (93%).
  • CONCLUSIONS: Retinal astrocytic hamartoma shows characteristic features on OCT, including a gradual transition from a normal retina into an optically hyperreflective mass with retinal disorganization, characteristic moth-eaten spaces, and posterior shadowing.
  • [MeSH-minor] Adolescent. Adult. Aged. Aged, 80 and over. Child. Female. Fluorescein Angiography. Humans. Male. Middle Aged. Ophthalmoscopy. Tuberous Sclerosis / complications

  • MedlinePlus Health Information. consumer health - Retinal Disorders.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16949441.001).
  • [ISSN] 1549-4713
  • [Journal-full-title] Ophthalmology
  • [ISO-abbreviation] Ophthalmology
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


97. Nakamura M, Ishida E, Shimada K, Kishi M, Nakase H, Sakaki T, Konishi N: Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Lab Invest; 2005 Feb;85(2):165-75
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Frequent allelic losses on the long arm of chromosome 22 (22q) in gliomas indicate the presence of tumor suppressor gene (TSG) at this location.
  • However, the target gene(s) residing in this chromosome are still unknown and their putative roles in the development of astrocytic tumors, especially in secondary glioblastoma, have not yet been defined.
  • To compile a precise physical map for the region of common deletions in astrocytic tumors, we performed a high-density loss of heterozygosity (LOH) analysis using 31 polymorphic microsatellite markers spanning 22q in a series of grade II diffuse astrocytomas, anaplastic astrocytomas, primary glioblastomas, and secondary glioblastomas that had evolved from lower grade astrocytomas.
  • [MeSH-major] Brain Neoplasms / genetics. Chromosomes, Human, Pair 22. Glioblastoma / genetics. Loss of Heterozygosity. Tissue Inhibitor of Metalloproteinase-3 / genetics
  • [MeSH-minor] Adult. Alleles. DNA Methylation. Disease Progression. Epigenesis, Genetic. Gene Deletion. Gene Expression Regulation, Neoplastic. Genetic Markers. Humans. Immunohistochemistry. Microsatellite Repeats. Neoplasm Metastasis. Neoplasm Staging. Physical Chromosome Mapping. Polymorphism, Genetic. Prognosis. Promoter Regions, Genetic. Survival Analysis

  • MedlinePlus Health Information. consumer health - Brain Tumors.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15592495.001).
  • [ISSN] 0023-6837
  • [Journal-full-title] Laboratory investigation; a journal of technical methods and pathology
  • [ISO-abbreviation] Lab. Invest.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Genetic Markers; 0 / Tissue Inhibitor of Metalloproteinase-3
  •  go-up   go-down


98. Barbashina V, Salazar P, Holland EC, Rosenblum MK, Ladanyi M: Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin Cancer Res; 2005 Feb 1;11(3):1119-28
PDF icon [Fulltext service] Download fulltext PDF of this article and others, as many as you want.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene.
  • Because most 1p deletions in gliomas involve almost the entire chromosome arm, narrowing the region of the putative tumor suppressor gene has been difficult.
  • EXPERIMENTAL DESIGN: Among 205 consecutive cases of glioma studied for 1p loss of heterozygosity (LOH), 112 tumors were evaluated for both 1p and 19q LOH using at least three polymorphic markers on 1p and 19q each.
  • The latter group included both low-grade tumors (oligodendroglioma, diffuse astrocytoma, and "oligoastrocytoma") and high-grade tumors (anaplastic oligodendrogliomas, anaplastic astrocytomas, anaplastic oligoastrocytomas).
  • Tumors with small segmental 1p losses (defined as LOH at some loci with retention of heterozygosity at other loci) were studied using a more extensive panel of markers to define the 1p MDR.
  • In contrast, no astrocytomas and only 6 of 30 (20%) oligoastrocytic tumors had combined 1p/19q loss.
  • Eleven tumors (6 oligodendrogliomas or having oligodendroglial components, 5 purely astrocytic) with small segmental 1p losses underwent further detailed LOH mapping.
  • All informative tumors in the oligodendroglial group and 2 of 3 informative astrocytomas showed LOH at 1p36.23, with a 150-kb MDR located between D1S2694 and D1S2666, entirely within the CAMTA1 transcription factor gene.
  • CAMTA1 is normally expressed predominantly in non-neoplastic adult brain tissue.
  • Relative to the latter, the expression level of CAMTA1 was low in oligodendroglial tumors and was further halved in cases with 1p deletion compared with those without 1p deletion (Mann-Whitney, P = 0.03).
  • CONCLUSIONS: Our data confirm the strong association of combined 1p/19q loss with classic oligodendroglioma histology and identify a very small segment of 1p36 located within CAMTA1 that was deleted in all oligodendroglial tumors with 1p LOH.
  • [MeSH-major] Brain Neoplasms / genetics. Chromosomes, Human, Pair 1 / genetics. Chromosomes, Human, Pair 19 / genetics. Glioma / genetics. Loss of Heterozygosity
  • [MeSH-minor] Adult. Astrocytoma / genetics. Astrocytoma / pathology. Calcium-Binding Proteins / genetics. Chromosome Deletion. Chromosome Mapping. Expressed Sequence Tags. Gene Expression Profiling. Gene Expression Regulation, Neoplastic. Genes, Tumor Suppressor. Humans. Microsatellite Repeats. Mutation. Oligodendroglioma / genetics. Oligodendroglioma / pathology. Reverse Transcriptase Polymerase Chain Reaction. Trans-Activators / genetics