[X] Close
You are about to erase all the values you have customized, search history, page format, etc.
Click here to RESET all values       Click here to GO BACK without resetting any value
Items 1 to 100 of about 263
1. Figueroa ME, Skrabanek L, Li Y, Jiemjit A, Fandy TE, Paietta E, Fernandez H, Tallman MS, Greally JM, Carraway H, Licht JD, Gore SD, Melnick A: MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood; 2009 Oct 15;114(16):3448-58
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation.
  • Increasing evidence shows aberrant hypermethylation of genes occurring in and potentially contributing to pathogenesis of myeloid malignancies.
  • To determine the extent of promoter hypermethylation in such tumors, we compared the distribution of DNA methylation of 14 000 promoters in MDS and secondary acute myeloid leukemia (AML) patients enrolled in a phase 1 trial of 5-azacytidine and the histone deacetylase inhibitor entinostat against de novo AML patients and normal CD34(+) bone marrow cells.
  • The MDS and secondary AML patients displayed more extensive aberrant DNA methylation involving thousands of genes than did the normal CD34(+) bone marrow cells or de novo AML blasts.
  • Aberrant methylation in MDS and secondary AML tended to affect particular chromosomal regions, occurred more frequently in Alu-poor genes, and included prominent involvement of genes involved in the WNT and MAPK signaling pathways.
  • [MeSH-major] Azacitidine / administration & dosage. DNA Methylation / drug effects. DNA, Neoplasm / metabolism. Enzyme Inhibitors / administration & dosage. Leukemia, Myeloid, Acute. Myelodysplastic Syndromes. Neoplasms, Second Primary / drug therapy. Neoplasms, Second Primary / metabolism

  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • MedlinePlus Health Information. consumer health - Myelodysplastic Syndromes.
  • COS Scholar Universe. author profiles.
  • ClinicalTrials.gov. clinical trials - ClinicalTrials.gov .
  • Faculty of 1000. commentaries/discussion - See the articles recommended by F1000Prime's Faculty of more than 8,000 leading experts in Biology and Medicine. (subscription/membership/fee required).
  • Hazardous Substances Data Bank. AZACITIDINE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Mol Pharmacol. 2001 Apr;59(4):751-7 [11259619.001]
  • [Cites] Lancet Oncol. 2009 Mar;10(3):223-32 [19230772.001]
  • [Cites] Blood. 2009 Feb 5;113(6):1315-25 [18832655.001]
  • [Cites] Blood. 2009 Sep 24;114(13):2764-73 [19546476.001]
  • [Cites] Nucleic Acids Res. 2002 Jan 1;30(1):207-10 [11752295.001]
  • [Cites] J Clin Oncol. 2002 May 15;20(10):2429-40 [12011120.001]
  • [Cites] Nat Rev Genet. 2002 Jun;3(6):415-28 [12042769.001]
  • [Cites] Hum Mol Genet. 2002 Oct 1;11(20):2479-88 [12351584.001]
  • [Cites] Leukemia. 2003 May;17(5):910-8 [12750705.001]
  • [Cites] Leukemia. 2003 Sep;17(9):1813-9 [12970781.001]
  • [Cites] N Engl J Med. 2003 Nov 20;349(21):2042-54 [14627790.001]
  • [Cites] J Biol Chem. 2004 Apr 9;279(15):15161-6 [14722112.001]
  • [Cites] Nat Med. 2004 May;10(5):481-3 [15048110.001]
  • [Cites] Genome Biol. 2004;5(10):R80 [15461798.001]
  • [Cites] Nat Genet. 1999 Jan;21(1):103-7 [9916800.001]
  • [Cites] Bioinformatics. 2005 Jun 1;21(11):2789-90 [15797915.001]
  • [Cites] Br J Haematol. 2005 Jul;130(2):209-17 [16029449.001]
  • [Cites] Cancer Res. 2005 Aug 15;65(16):7086-90 [16103056.001]
  • [Cites] Genes Chromosomes Cancer. 2005 Nov;44(3):305-19 [16075461.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15785-90 [16243968.001]
  • [Cites] Nat Clin Pract Oncol. 2005 Dec;2 Suppl 1:S36-44 [16341239.001]
  • [Cites] Eur J Haematol. 2006 Jan;76(1):23-32 [16343268.001]
  • [Cites] Cancer Res. 2006 Jun 15;66(12):6361-9 [16778214.001]
  • [Cites] BMC Genomics. 2006;7:133 [16740159.001]
  • [Cites] Genome Res. 2006 Aug;16(8):1046-55 [16809668.001]
  • [Cites] J Clin Oncol. 2006 Aug 20;24(24):3895-903 [16921040.001]
  • [Cites] Blood. 2007 Jan 1;109(1):52-7 [16882708.001]
  • [Cites] Leukemia. 2007 Sep;21(9):1937-44 [17611569.001]
  • [Cites] Cancer Res. 2007 Sep 1;67(17):8248-54 [17804739.001]
  • [Cites] Mol Cell. 2007 Oct 26;28(2):337-50 [17964271.001]
  • [Cites] Mol Cell Biol. 2008 Jan;28(2):752-71 [17991895.001]
  • [Cites] Semin Hematol. 2008 Jan;45(1):23-30 [18179966.001]
  • [Cites] Nucleic Acids Res. 2008 Jan;36(Database issue):D773-9 [18086701.001]
  • [Cites] PLoS One. 2008;3(3):e1882 [18365023.001]
  • [Cites] Bioinformatics. 2008 May 1;24(9):1161-7 [18353789.001]
  • [Cites] Mol Cancer Ther. 2008 Sep;7(9):2998-3005 [18790780.001]
  • [CommentIn] Blood. 2009 Oct 15;114(16):3363-4 [19833849.001]
  • (PMID = 19652201.001).
  • [ISSN] 1528-0020
  • [Journal-full-title] Blood
  • [ISO-abbreviation] Blood
  • [Language] eng
  • [Databank-accession-numbers] ClinicalTrials.gov/ NCT00101179
  • [Grant] United States / NCI NIH HHS / CA / R21 CA110507; United States / NCI NIH HHS / CA / U10 CA021115; United States / NCI NIH HHS / CA / U54 CA143876-01; United States / NCI NIH HHS / CA / K24 CA111717; United States / NCI NIH HHS / CA / R01 CA125635; United States / NCI NIH HHS / CA / U01 CA070095; United States / NCI NIH HHS / CA / U54 CA143876; United States / NICHD NIH HHS / HD / R01 HD044078; United States / NCI NIH HHS / CA / CA21115; United States / NCI NIH HHS / CA / U24 CA114737; United States / NCI NIH HHS / CA / R01 CA104348; United States / NCI NIH HHS / CA / U01CA70095
  • [Publication-type] Clinical Trial; Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, CD34; 0 / DNA, Neoplasm; 0 / Enzyme Inhibitors; 0 / Histone Deacetylase Inhibitors; 0 / Wnt Proteins; EC 3.5.1.98 / Histone Deacetylases; M801H13NRU / Azacitidine
  • [Other-IDs] NLM/ PMC2765680
  •  go-up   go-down


2. Hallemeier CL, Girgis MD, Blum WG, Brown RA, Khoury HJ, Devine SM, Vij R, Lin HS, DiPersio JF, Adkins DR: Long-term remissions in patients with myelodysplastic syndrome and secondary acute myelogenous leukemia undergoing allogeneic transplantation following a reduced intensity conditioning regimen of 550 cGy total body irradiation and cyclophosphamide. Biol Blood Marrow Transplant; 2006 Jul;12(7):749-57
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Long-term remissions in patients with myelodysplastic syndrome and secondary acute myelogenous leukemia undergoing allogeneic transplantation following a reduced intensity conditioning regimen of 550 cGy total body irradiation and cyclophosphamide.
  • We analyzed outcomes of patients with myelodysplastic syndrome (MDS) or secondary acute myelogenous leukemia (sAML) that were treated at our institution with a reduced intensity conditioning (RIC) regimen of 550-cGy total body irradiation and cyclophosphamide followed by related donor (RD) or unrelated donor (URD) transplantation.
  • [MeSH-major] Bone Marrow Transplantation / methods. Leukemia, Myeloid, Acute / therapy. Myelodysplastic Syndromes / therapy. Neoplasms, Second Primary / therapy. Peripheral Blood Stem Cell Transplantation / methods. Transplantation Conditioning / methods


3. Rizzieri DA, O'Brien JA, Broadwater G, Decastro CM, Dev P, Diehl L, Beaven A, Lagoo A, Gockerman JP, Chao NJ, Moore JO: Outcomes of patients who undergo aggressive induction therapy for secondary acute myeloid leukemia. Cancer; 2009 Jul 1;115(13):2922-9
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Outcomes of patients who undergo aggressive induction therapy for secondary acute myeloid leukemia.
  • BACKGROUND: Response and survival in 96 patients with secondary acute myeloid leukemia (sAML) who received aggressive induction chemotherapy was reviewed.
  • Patients with AML after previous chemotherapy or radiation therapy had a higher morphologic remission rate compared with those arising from myelodysplastic syndrome or myeloproliferative disease (82% vs 62%; P = .027).
  • In this population of patients who received aggressive chemotherapy, Charlson comorbidity index or a higher number of factors recognized as high risk in leukemia patients did not affect the chance of OS, DFS, and EFS, although having more recognized leukemia risk factors was related to a lower chance of surviving 1 year.
  • [MeSH-major] Leukemia, Myeloid, Acute / drug therapy. Neoplasms, Second Primary / drug therapy

  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19452542.001).
  • [ISSN] 0008-543X
  • [Journal-full-title] Cancer
  • [ISO-abbreviation] Cancer
  • [Language] eng
  • [Publication-type] Evaluation Studies; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


Advertisement
4. Tangen JM, Fløisand Y, Foss-Abrahamsen J, Haukås E, Naess IA, Skjelbakken T: [Survival in adults with acute myelogenous leukemia]. Tidsskr Nor Laegeforen; 2008 May 15;128(10):1164-7
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Survival in adults with acute myelogenous leukemia].
  • BACKGROUND: Acute myelogenous leukemia is the most common type of acute leukemia in adults.
  • MATERIAL AND METHODS: Survival data were retrieved from the Norwegian Registry for Acute Leukemias and Lymphoblastic Lymphomas for patients with acute myelogenous leukemia (aged from 16 to 60 years) who were registered in the period 1.1.2000-31.12.2005.
  • Patients with secondary acute myelogenous leukemia were classified as high-risk.
  • RESULTS AND INTERPRETATION: 4-year survival was 94.5% in acute promyelocytic leukemia, 77.7% in other low-risk acute myelogenous leukemia, 39.0% in standard risk patients and 29.1% in high-risk patients.
  • The increase is most probably due to an intensification of chemotherapy after remission and to the implementation of all-trans-retinoic acid in the treatment of promyelocytic leukemia.
  • [MeSH-major] Leukemia, Myeloid, Acute / mortality
  • [MeSH-minor] Adolescent. Adult. Age Factors. Antineoplastic Combined Chemotherapy Protocols / administration & dosage. Female. Humans. Leukemia, Promyelocytic, Acute / drug therapy. Leukemia, Promyelocytic, Acute / genetics. Leukemia, Promyelocytic, Acute / mortality. Male. Middle Aged. Neoplasm Recurrence, Local / mortality. Norway / epidemiology. Risk Factors. Survival Rate

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentIn] Tidsskr Nor Laegeforen. 2008 Aug 14;128(15):1681-2; author reply 1682 [18704137.001]
  • (PMID = 18480864.001).
  • [ISSN] 0807-7096
  • [Journal-full-title] Tidsskrift for den Norske lægeforening : tidsskrift for praktisk medicin, ny række
  • [ISO-abbreviation] Tidsskr. Nor. Laegeforen.
  • [Language] nor
  • [Publication-type] Comparative Study; English Abstract; Journal Article
  • [Publication-country] Norway
  •  go-up   go-down


5. Ostgård LS, Kjeldsen E, Holm MS, Brown Pde N, Pedersen BB, Bendix K, Johansen P, Kristensen JS, Nørgaard JM: Reasons for treating secondary AML as de novo AML. Eur J Haematol; 2010 Sep;85(3):217-26
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Reasons for treating secondary AML as de novo AML.
  • In a Danish bi-regional registry-based study, we conducted an analysis of the incidence and clinical importance of secondary acute myeloid leukaemia (AML).
  • In a total of 630 cases of AML, we found 157 (25%) cases of secondary AML.
  • The secondary leukaemia arose from MDS (myelodysplastic syndrome) in 77 cases (49%), CMPD (chronic myeloproliferative disorder) in 43 cases (27%) and was therapy-related AML (t-AML) in 37 cases (24%).
  • Median age at diagnosis of AML was 69 yr in secondary cases when compared to 66 yr in de novo cases (P = 0.006).
  • In univariate analyses, secondary AML was associated with an inferior complete remission (CR) rate (P = 0.008) and poorer overall survival (OS, P = 0.003) whereas in complete remitters, disease-free survival (DFS) of secondary cases was equal to that of de novo cases.
  • Interestingly, in all further analyses of CR-rates, OS and DFS, when correcting for the influence of age, cytogenetic abnormalities, performance status and leucocyte count (WBC), presence of secondary AML completely lost prognostic significance.
  • We conclude that the presence of secondary AML does not per se convey an unfavourable prognosis and that patients with secondary AML should be offered the chance of benefiting from treatment according to current frontline AML protocols.
  • [MeSH-major] Leukemia, Myeloid, Acute / complications. Leukemia, Myeloid, Acute / drug therapy. Myelodysplastic Syndromes / complications


6. Park TS, Choi JR, Yoon SH, Song J, Kim J, Kim SJ, Kwon O, Min YH: Acute promyelocytic leukemia relapsing as secondary acute myelogenous leukemia with translocation t(3;21)(q26;q22) and RUNX1-MDS1-EVI1 fusion transcript. Cancer Genet Cytogenet; 2008 Dec;187(2):61-73
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Acute promyelocytic leukemia relapsing as secondary acute myelogenous leukemia with translocation t(3;21)(q26;q22) and RUNX1-MDS1-EVI1 fusion transcript.
  • Acute promyelocytic leukemia (APL) is a subtype of acute myelogenous leukemia (AML) that is characterized by peculiar clinical and biologic features, including severe hemorrhagic diathesis, specific recurrent chromosomal aberration, and distinct morphologic features with predominant pathologic promyelocytes.
  • A reciprocal translocation involving chromosomes 15 and 17, t(15;17)(q22;q21), is a characteristic feature of APL that represents approximately 5-8% of AML.
  • In contrast to other AML subtypes, APL is particularly sensitive to treatment with all trans-retinoic acid (ATRA) combined with chemotherapy, converting this once fatal leukemia to a highly curable disease.
  • Nonetheless, therapy-related myelodysplastic syndrome-acute myelogenous leukemia (t-MDS/AML) has been reported as a rare complication of chemotherapy in APL.
  • Of 30 APL cases described as t-MDS/AML in the literature, only 1 case relapsed as acute leukemia with t(3;21)(q26;q22).
  • Here we describe a rare case of APL relapsing as secondary AML with t(3;21)(q26;q22) and clinically characterize this patient using the RUNX1 (previously AML1)-MDS1-EVI1 fusion transcript (with follow-up for 55 months), and review the relevant literature.
  • [MeSH-major] Leukemia, Myeloid, Acute / genetics. Leukemia, Promyelocytic, Acute / genetics. Neoplasms, Second Primary / genetics. Oncogene Proteins, Fusion / genetics. Translocation, Genetic

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • Genetic Alliance. consumer health - Acute Promyelocytic Leukemia.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • Hazardous Substances Data Bank. ALL-TRANS-RETINOIC ACID .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19027486.001).
  • [ISSN] 1873-4456
  • [Journal-full-title] Cancer genetics and cytogenetics
  • [ISO-abbreviation] Cancer Genet. Cytogenet.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Core Binding Factor Alpha 2 Subunit; 0 / DNA-Binding Proteins; 0 / MECOM protein, human; 0 / Neoplasm Proteins; 0 / Oncogene Proteins, Fusion; 0 / RUNX1 protein, human; 0 / Transcription Factors; 0 / promyelocytic leukemia-retinoic acid receptor alpha fusion oncoprotein; 5688UTC01R / Tretinoin
  •  go-up   go-down


7. Gombos DS, Hungerford J, Abramson DH, Kingston J, Chantada G, Dunkel IJ, Antoneli CB, Greenwald M, Haik BG, Leal CA, Medina-Sanson A, Schefler AC, Veerakul G, Wieland R, Bornfeld N, Wilson MW, Yu CB: Secondary acute myelogenous leukemia in patients with retinoblastoma: is chemotherapy a factor? Ophthalmology; 2007 Jul;114(7):1378-83
SciCrunch. Clinical Genomic Database: Data: Gene Annotation .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Secondary acute myelogenous leukemia in patients with retinoblastoma: is chemotherapy a factor?
  • PURPOSE: To describe a series of patients with secondary acute myelogenous leukemia (sAML) and retinoblastoma (RB).
  • MAIN OUTCOME MEASURES: History of RB and development of sAML, management of RB (surgery, radiotherapy, chemotherapy), age at diagnosis of RB and leukemia, French-American-British (FAB) subtype, and current status of patient (alive or dead).
  • Mean latent period from RB to AML diagnosis was 9.8 years (median, 42 months).
  • Ten children died of their leukemia.
  • CONCLUSIONS: Acute myelogenous leukemia is a rare secondary malignancy among retinoblastoma patients, many of whom were treated with primary or adjuvant chemotherapy.
  • [MeSH-major] Antineoplastic Agents, Phytogenic / adverse effects. Enzyme Inhibitors / adverse effects. Leukemia, Myeloid, Acute / chemically induced. Neoplasms, Second Primary / chemically induced. Podophyllotoxin / adverse effects. Retinal Neoplasms / drug therapy. Retinoblastoma / drug therapy. Topoisomerase II Inhibitors


8. Ducastelle S, Adès L, Gardin C, Dombret H, Prébet T, Deconinck E, Rio B, Thomas X, Debotton S, Guerci A, Gratecos N, Stamatoullas A, Fegueux N, Dreyfus F, Fenaux P, Wattel E: Long-term follow-up of autologous stem cell transplantation after intensive chemotherapy in patients with myelodysplastic syndrome or secondary acute myeloid leukemia. Haematologica; 2006 Mar;91(3):373-6
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Long-term follow-up of autologous stem cell transplantation after intensive chemotherapy in patients with myelodysplastic syndrome or secondary acute myeloid leukemia.
  • We report on the outcomes of 53 patients with myelodysplastic syndromes (MDS) or acute myeloid leukemia secondary to MDS, autografted in first complete remission.
  • [MeSH-major] Leukemia, Myeloid, Acute / surgery. Myelodysplastic Syndromes / surgery. Stem Cell Transplantation


9. Owatari S, Otsuka M, Uozumi K, Takeshita T, Hanada S: Two cases of secondary acute myeloid leukemia accompanying adult T-cell leukemia/lymphoma. Int J Hematol; 2007 Jan;85(1):32-5
Hazardous Substances Data Bank. PODOFILOX .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Two cases of secondary acute myeloid leukemia accompanying adult T-cell leukemia/lymphoma.
  • We identified 2 cases of secondary acute myeloid leukemia (AML) following adult T-cell leukemia/lymphoma (ATL) in patients who had previously received chemotherapy.
  • Both cases were thought to represent therapy-related AML because the patients had previously received combination chemotherapy including epipodophyllotoxin, anthracycline, and alkylating agents for the ATL.
  • The cases were diagnosed as AML M4 with eosinophilia and AML M2, with the chromosomal abnormalities inv(16)(p13q22) and t(8;21)(q22;q22), respectively.
  • In our hospital, only these 2 cases of secondary AML accompanying ATL were identified among 90 cases of acute- or lymphoma-type ATL diagnosed from October 1999 to July 2006.
  • The frequency of coexisting AML and ATL is lower than that reported for acute leukemia coexisting with other lymphoid malignancies.
  • The low frequency of secondary leukemia with ATL may be associated with the short survival times of ATL patients.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / adverse effects. Leukemia, Myeloid / chemically induced. Leukemia-Lymphoma, Adult T-Cell / complications. Neoplasms, Second Primary / chemically induced
  • [MeSH-minor] Acute Disease. Alkylating Agents / therapeutic use. Anthracyclines / therapeutic use. Chromosome Aberrations. Female. Humans. Leukemia, Myeloid, Acute / chemically induced. Leukemia, Myelomonocytic, Acute / chemically induced. Male. Middle Aged. Podophyllotoxin / therapeutic use

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Scand J Haematol. 1986 Feb;36(2):127-37 [3518040.001]
  • [Cites] Br J Haematol. 2001 May;113(2):375-82 [11380402.001]
  • [Cites] Cancer Genet Cytogenet. 1989 Dec;43(2):227-41 [2598167.001]
  • [Cites] Cancer Res. 1984 Dec;44(12 Pt 1):5857-60 [6094001.001]
  • [Cites] Cancer. 1998 Feb 1;82(3):488-94 [9452266.001]
  • [Cites] Proc Natl Acad Sci U S A. 1980 Dec;77(12):7415-9 [6261256.001]
  • [Cites] Leuk Res. 1991;15(2-3):81-90 [2016910.001]
  • [Cites] Cancer. 1989 Jun 15;63(12):2505-8 [2720600.001]
  • [Cites] Semin Oncol. 1992 Feb;19(1):47-84 [1736370.001]
  • [Cites] N Engl J Med. 1991 Dec 12;325(24):1682-7 [1944468.001]
  • [Cites] Hum Genet. 1997 Jun;99(6):761-5 [9187669.001]
  • [Cites] J Clin Oncol. 1986 Dec;4(12):1748-57 [3783201.001]
  • [Cites] Proc Natl Acad Sci U S A. 1981 Oct;78(10):6476-80 [7031654.001]
  • [Cites] Adv Pharmacol. 1990;21:149-83 [2176094.001]
  • [Cites] Genes Chromosomes Cancer. 1990 May;2(1):53-8 [2177642.001]
  • [Cites] J Natl Cancer Inst. 1996 Apr 3;88(7):407-18 [8618232.001]
  • [Cites] Leuk Res. 1992 Nov;16(11):1113-23 [1434747.001]
  • [Cites] Intern Med. 1995 Oct;34(10):947-52 [8563094.001]
  • [Cites] Cancer. 1986 Aug 15;58(4):924-7 [3719557.001]
  • [Cites] Leuk Lymphoma. 1992 Sep;8(1-2):147-55 [1337297.001]
  • [Cites] Jpn J Clin Oncol. 1988 Mar;18(1):33-41 [2895197.001]
  • [Cites] Br J Haematol. 1991 Nov;79(3):428-37 [1751370.001]
  • (PMID = 17261499.001).
  • [ISSN] 0925-5710
  • [Journal-full-title] International journal of hematology
  • [ISO-abbreviation] Int. J. Hematol.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Japan
  • [Chemical-registry-number] 0 / Alkylating Agents; 0 / Anthracyclines; L36H50F353 / Podophyllotoxin
  •  go-up   go-down


10. Nemoto N, Suzukawa K, Shimizu S, Shinagawa A, Takei N, Taki T, Hayashi Y, Kojima H, Kawakami Y, Nagasawa T: Identification of a novel fusion gene MLL-MAML2 in secondary acute myelogenous leukemia and myelodysplastic syndrome with inv(11)(q21q23). Genes Chromosomes Cancer; 2007 Sep;46(9):813-9
SciCrunch. OMIM: Data: Gene Annotation .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Identification of a novel fusion gene MLL-MAML2 in secondary acute myelogenous leukemia and myelodysplastic syndrome with inv(11)(q21q23).
  • We have identified a novel fusion partner of MLL, namely the mastermind like 2 (MAML2 gene), in secondary acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) with inv(11)(q21q23).
  • RT-PCR and sequencing revealed that exon 7 of MLL was fused to exon 2 of MAML2 in the AML and MDS cells.
  • MLL-MAML2 in secondary AML/MDS and MECT1-MAML2 in mucoepithelioid carcinoma, benign Wartin's tumor, and clear cell hidradenoma consist of the same COOH-terminal part of MAML2.
  • [MeSH-major] Chromosomes, Human, Pair 11 / genetics. DNA-Binding Proteins / genetics. Leukemia, Myeloid, Acute / genetics. Myelodysplastic Syndromes / genetics. Myeloid-Lymphoid Leukemia Protein / genetics. Nuclear Proteins / genetics. Oncogene Proteins, Fusion / genetics. Transcription Factors / genetics


11. Koh Y, Kim I, Bae JY, Song EY, Kim HK, Yoon SS, Lee DS, Park SS, Park MH, Park S, Kim BK: Prognosis of secondary acute myeloid leukemia is affected by the type of the preceding hematologic disorders and the presence of trisomy 8. Jpn J Clin Oncol; 2010 Nov;40(11):1037-45
Hazardous Substances Data Bank. DAUNORUBICIN .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Prognosis of secondary acute myeloid leukemia is affected by the type of the preceding hematologic disorders and the presence of trisomy 8.
  • BACKGROUND: Differences in the clinical course of secondary acute myeloid leukemia according to the type of the preceding disorders are not defined.
  • We compared the outcomes of therapy-related acute myeloid leukemia, acute myeloid leukemia following myelodysplastic syndrome and acute myeloiod leukemia following myeloproliferative neoplasm.
  • We also intended to find prognostic factors in secondary acute myeloid leukemia overall.
  • RESULTS: Ninety-five secondary acute myeloid leukemia patients (median age of 56.4 years) were analyzed.
  • Twenty-six, 57 and 12 patients had therapy-related leukemia, leukemia following myelodysplastic syndrome and myeloproliferative neoplasm, respectively.
  • Compared to therapy-related leukemia (P = 0.027) and leukemia following myelodysplastic syndrome (P = 0.050), leukemia following myeloproliferative neoplasm had shorter overall survival.
  • In secondary leukemia, presence of trisomy 8 had a prognostic impact (P = 0.003) along with cytogenetic risk group (P = 0.016).
  • CONCLUSIONS: Prognosis of secondary acute myeloid leukemia was different according to the type of the preceding disorders with the worst prognosis in leukemia following myeloprolfierative neoplasm.
  • Along with cytogenetic risk grouping, trisomy 8 had a poor prognostic impact in secondary acute myeloid leukemia.
  • [MeSH-major] Chromosomes, Human, Pair 8 / genetics. Leukemia, Myeloid, Acute / etiology. Leukemia, Myeloid, Acute / genetics. Myelodysplastic Syndromes / complications. Myeloproliferative Disorders / complications. Trisomy

  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • MedlinePlus Health Information. consumer health - Myelodysplastic Syndromes.
  • Hazardous Substances Data Bank. CYTARABINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20587614.001).
  • [ISSN] 1465-3621
  • [Journal-full-title] Japanese journal of clinical oncology
  • [ISO-abbreviation] Jpn. J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 04079A1RDZ / Cytarabine; ZRP63D75JW / Idarubicin; ZS7284E0ZP / Daunorubicin
  •  go-up   go-down


12. Rodriguez V, Erlandson L, Arndt CA, Wiseman GA, Anderson PM: Low toxicity and efficacy of (153)samarium-EDTMP and melphalan as a conditioning regimen for secondary acute myelogenous leukemia. Pediatr Transplant; 2005 Feb;9(1):122-6
Hazardous Substances Data Bank. Samarium, Elemental .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Low toxicity and efficacy of (153)samarium-EDTMP and melphalan as a conditioning regimen for secondary acute myelogenous leukemia.
  • We report the case of a 15-yr-old girl who developed secondary acute myelogenous leukemia (AML) 4 yr after completion of therapy for metastatic Ewing sarcoma (primary right acetabulum with metastatic disease to the lungs).
  • [MeSH-major] Leukemia, Myeloid, Acute / therapy. Melphalan. Organometallic Compounds / therapeutic use. Organophosphorus Compounds / therapeutic use. Radioisotopes. Samarium. Transplantation Conditioning / methods

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. MELPHALAN .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15667625.001).
  • [ISSN] 1397-3142
  • [Journal-full-title] Pediatric transplantation
  • [ISO-abbreviation] Pediatr Transplant
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Denmark
  • [Chemical-registry-number] 0 / Organometallic Compounds; 0 / Organophosphorus Compounds; 0 / Radioisotopes; 122575-21-7 / samarium ethylenediaminetetramethylenephosphonate; 42OD65L39F / Samarium; Q41OR9510P / Melphalan
  •  go-up   go-down


13. Tsujimura H, Mimura N, Ise M, Sakai C, Shimada H, Nagata M, Kumagai K: Incidence of therapy-related leukemia following chemoradiotherapy for esophageal cancer. J Clin Oncol; 2009 May 20;27(15_suppl):e15663

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Incidence of therapy-related leukemia following chemoradiotherapy for esophageal cancer.
  • However, the frequency and the pathogenesis of secondary malignancies that is the most serious late-onset complication are still unclear.
  • RESULTS: Four patients, who achieved CR after CRT, developed leukemia.
  • Case1, 60-yo-male, developed overt acute myeloid leukemia (AML) from myelodysplastic syndrome 48 months after CRT.
  • Case2, 64-yo-male, developed AML M0 with t(9;22)(q34;q11) 44 months after CRT.
  • Case3, 72-yo-male, developed Burkitt leukemia with t(8;14)(q24;q32) 19 months after CRT.
  • Case4, 65-yo-male, developed myeloid crisis of chronic myelogenous leukemia with complicated abnormalities including t(9;22)(q34;q11) 48 months after CRT.
  • All patients eventually died of leukemia.
  • CONCLUSIONS: Since platinum and fluorouracil have shown relatively low chance of secondary neoplasm, our data demonstrates that the concurrent radiotherapy which involves massive bone marrow tissue may increase the risk of leukomogenesis.
  • To this end, atypical cytogenetic abnormalities seen in the present cases give a new insight into the biology of therapy-related leukemia.
  • Notably, this is the first report presenting the incidence of secondary leukemia by nedaplatin.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27962759.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


14. Plunkett W, Thomas DA, O'Brien SM, Federl S, Giles FJ, Nicol SJ, Gill J, Zhao L, Ravandi F, Kantarjian H: Phase I study of pemetrexed in patients with relapsed or refractory acute leukemia or lymphoid blast phase chronic myelogenous leukemia. J Clin Oncol; 2009 May 20;27(15_suppl):7068

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Phase I study of pemetrexed in patients with relapsed or refractory acute leukemia or lymphoid blast phase chronic myelogenous leukemia.
  • The purpose of this phase I trial was to define the dose-limiting toxicity (DLT), maximum tolerated dose (MTD), and recommended phase II dose (RP2D) of pemetrexed given with vitamin supplementation to patients with relapsed or refractory leukemia.
  • Secondary objectives were pharmacokinetic (PK) and pharmacodynamic (PD) analyses of pemetrexed.
  • METHODS: Patients ≥15 years of age were enrolled with relapsed or refractory leukemia, Eastern Cooperative Oncology Group performance status ≤2, adequate renal and hepatic function, and life expectancy of ≥6 weeks.
  • RESULTS: Twenty-two patients entered the trial; median age was 50 years (range: 18-75); 15 patients had acute myeloid leukemia and 7 patients had acute lymphocytic leukemia (ALL).

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27961463.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


15. Bello CM, Yu D, Zhu W, Wetzstein GA, Lancet JE: Outcomes following induction chemotherapy in patients with AML arising from MDS: Analysis of prognostic factors. J Clin Oncol; 2009 May 20;27(15_suppl):7088

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Outcomes following induction chemotherapy in patients with AML arising from MDS: Analysis of prognostic factors.
  • : 7088 Background: Secondary acute myeloid leukemia (sAML) arising from myelodysplasia (MDS) or a myeloproliferative neoplasm (MPN) has a poor prognosis.
  • METHODS: Retrospective chart review of patients with untreated AML from MDS/MPN treated with standard induction therapy from January 2004 to September 2008.
  • Multivariable analysis indicated that the same three factors were significantly negatively associated with CR/CRp as well as OS: PR cytogenetics, prior treatment with DM/L, and long transformation to AML on log scale.
  • Only 32% of the group that received prior treatment with a DM/L achieved CR/CRp compared to 78% in non DM/L-treated patients (OR = 0.13, 95% CI: 0.04-0.42).
  • The median OS for those treated with a DM/L was 3.7 mo compared to 10.5 mo for non DM/L-treated patients (p < 0.0001).
  • CONCLUSIONS: Prior MDS treatment with a DM/L, PR cytogenetics and long transformation to AML are independent negative prognostic factors for response and OS in patients with sAML following induction therapy, suggesting that such patients may be better served by novel approaches, and that stratification for these risk factors should be considered in future clinical trials.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27961482.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


16. Villano JL, Letarte N, Yu JM, Shakir AR, Bressler L: Hematologic adverse events associated with temozolomide (TMZ). J Clin Oncol; 2009 May 20;27(15_suppl):2053

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • : 2053 Background: Secondary acute myeloid leukemia (AML) is reported to occur in 3%-10% of patients treated with alkylating agents for Hodgkin's lymphoma, non-Hodgkin's lymphoma, ovarian cancer, breast cancer, and multiple myeloma.
  • The incidence of secondary AML is greatest at 5-10 years after treatment, and AML often follows myelodysplastic syndrome (MDS).
  • Among these patients, we identified 140 cases that we labeled as major hematologic adverse events: agranulocytosis (8 cases), aplasia (42), aplastic anemia (52), leukemia (26), MDS (6), and lymphoma (6).
  • Risk of leukemia/MDS from our review may also be significant, but length of follow-up is insufficient and the real risk is likely still unknown.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27964671.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


17. Maris MB, Ravandi F, Stuart R, Stone R, Cripe L, Cooper M, Strickland S, Turturro F, Stock W, Berman C: A phase II study of voreloxin as single agent therapy for elderly patients (pts) with newly diagnosed acute myeloid leukemia (AML). J Clin Oncol; 2009 May 20;27(15_suppl):7048

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] A phase II study of voreloxin as single agent therapy for elderly patients (pts) with newly diagnosed acute myeloid leukemia (AML).
  • Interim results of REVEAL-1, a phase II study of single agent voreloxin in newly diagnosed elderly AML pts, are reported.
  • Eligibility: newly diagnosed AML (de novo or secondary AML), pts age ≥ 60 and ≥ 1 additional adverse risk factor (age ≥ 70, secondary AML, intermediate or unfavorable cytogenetics, or PS 2).
  • Voreloxin PK were similar to those in an earlier single agent phase I study in relapsed/refractory AML.
  • CONCLUSIONS: In REVEAL-1, voreloxin demonstrates clinical activity with 2 dosing schedules in previously untreated elderly (age ≥ 60) patients with AML who are unlikely to benefit from standard chemotherapy.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27961427.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


18. Klepin HD, Balducci L: Acute myelogenous leukemia in older adults. Oncologist; 2009 Mar;14(3):222-32
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Acute myelogenous leukemia in older adults.
  • The incidence of acute myelogenous leukemia (AML) increases with age.
  • Older AML patients, generally defined by age > or = 60 years, have worse treatment outcomes than younger patients.
  • Older patients are more likely to present with unfavorable cytogenetic abnormalities, multidrug resistance phenotypes, and secondary AML.
  • Investigations of hypomethylating agents and signal transduction inhibitors hold promise for the treatment of AML patients.
  • [MeSH-major] Geriatrics / methods. Leukemia, Myeloid, Acute / pathology. Leukemia, Myeloid, Acute / therapy

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19282349.001).
  • [ISSN] 1549-490X
  • [Journal-full-title] The oncologist
  • [ISO-abbreviation] Oncologist
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Number-of-references] 72
  •  go-up   go-down


19. Willems L, Suarez F, Messas E, Baubion N, Decaudin D, Fourquet A, Ghez D, Delarue R, Hermine O, Buzyn A, Varet B, Rubio MT: [High risk of cardiac dysfunction after treatment of secondary acute myeloid leukemia following chemotherapy and radiotherapy for breast cancer]. Bull Cancer; 2010 Feb;97(2):245-54
Hazardous Substances Data Bank. EPIRUBICIN .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [High risk of cardiac dysfunction after treatment of secondary acute myeloid leukemia following chemotherapy and radiotherapy for breast cancer].
  • Secondary acute myeloid leukaemia (AML) occurring after breast cancer is a rare long-term complication of the chemo- and/or radiation therapy required to treat breast cancer.
  • The usually recognized curative option of these secondary AML includes courses of anthracycline-based chemotherapy followed by haematopoietic stem cell transplantation (HSCT).
  • Cardiac dysfunction during AML treatment of these patients previously treated with anthracyclines for breast cancer has not been reported to date.
  • We evaluated the evolution of cardiac function in seven patients treated with anthracyclines and/or autologous or allogeneic bone marrow transplantation for secondary AML occurring after breast cancer.
  • All of the patients who received a cumulative anthracycline dose above the cardiac toxicity threshold developed cardiac symptoms during AML chemotherapy courses.
  • Thus, the risk of severe cardiac dysfunction after treatment of secondary AML following breast cancer must be taken in account as part of the therapeutic strategy of those patients.
  • As discussed here, an accurate evaluation of risk factors, the use of sensitive detection tests and of cardioprotective drugs as well as that of non-cardiotoxic chemotherapy might decrease the occurrence and severity of this life-threatening complication.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / adverse effects. Breast Neoplasms. Hematopoietic Stem Cell Transplantation / adverse effects. Leukemia, Myeloid / therapy. Neoplasms, Second Primary / therapy
  • [MeSH-minor] Acute Disease. Adult. Chemotherapy, Adjuvant / adverse effects. Cyclophosphamide / administration & dosage. Cyclophosphamide / adverse effects. Daunorubicin / administration & dosage. Daunorubicin / adverse effects. Epirubicin / administration & dosage. Epirubicin / adverse effects. Female. Fluorouracil / administration & dosage. Fluorouracil / adverse effects. Heart Diseases / chemically induced. Heart Diseases / drug therapy. Heart Diseases / physiopathology. Humans. Middle Aged. Remission Induction. Stroke Volume / drug effects. Stroke Volume / physiology

  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • Genetic Alliance. consumer health - Breast Cancer.
  • MedlinePlus Health Information. consumer health - Breast Cancer.
  • Hazardous Substances Data Bank. DAUNORUBICIN .
  • Hazardous Substances Data Bank. CYCLOPHOSPHAMIDE .
  • Hazardous Substances Data Bank. FLUOROURACIL .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19819776.001).
  • [ISSN] 1769-6917
  • [Journal-full-title] Bulletin du cancer
  • [ISO-abbreviation] Bull Cancer
  • [Language] fre
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] France
  • [Chemical-registry-number] 3Z8479ZZ5X / Epirubicin; 8N3DW7272P / Cyclophosphamide; U3P01618RT / Fluorouracil; ZS7284E0ZP / Daunorubicin; FEC protocol
  •  go-up   go-down


20. Suzuki K, Ohishi K, Sekine T, Masuya M, Katayama N: Selective blast cell reduction in elderly patients with acute myeloid leukemia secondary to myelodysplastic syndrome treated with methylprednisolone. Int J Hematol; 2007 May;85(4):344-9
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Selective blast cell reduction in elderly patients with acute myeloid leukemia secondary to myelodysplastic syndrome treated with methylprednisolone.
  • The management of elderly patients with acute myeloid leukemia (AML) and a poor performance status is challenging.
  • An 89-year-old man with AML secondary to myelodysplastic syndrome (MDS) and a poor performance status (4) underwent treatment with methylprednisolone (mPSL) (125 mg/body), which resulted in a remarkable reduction of blast cells in the peripheral blood.
  • On the basis of this experience, we gave the same mPSL dose to other elderly patients with MDS/AML (n=5) or AML-M4 (n=1) who had a poor performance status (3 or higher) and appeared unable to tolerate standard cytotoxic chemotherapies.
  • Selective and significant blast cell reduction was observed in 4 of the 5 patients with MDS/AML, whereas no effects were seen in the AML patient.
  • Although our experience is limited, these findings may provide a clue to understanding the mechanisms regulating the survival of blast cells of MDS/AML and indicate that mPSL may provide a benefit to a subset of these patients.
  • [MeSH-major] Blast Crisis / drug therapy. Blast Crisis / etiology. Leukemia, Myeloid, Acute / drug therapy. Leukemia, Myeloid, Acute / etiology. Methylprednisolone / administration & dosage. Myelodysplastic Syndromes / complications. Myelodysplastic Syndromes / drug therapy


21. Kuptsova-Clarkson N, Ambrosone CB, Weiss J, Baer MR, Sucheston LE, Zirpoli G, Kopecky KJ, Ford L, Blanco J, Wetzler M, Moysich KB: XPD DNA nucleotide excision repair gene polymorphisms associated with DNA repair deficiency predict better treatment outcomes in secondary acute myeloid leukemia. Int J Mol Epidemiol Genet; 2010;1(4):278-94
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] XPD DNA nucleotide excision repair gene polymorphisms associated with DNA repair deficiency predict better treatment outcomes in secondary acute myeloid leukemia.
  • We evaluated these polymorphisms and XPD haplotypes in adult de novo (n=214) and secondary (n=79) acute myeloid leukemia (AML) patients treated with cytarabine and anthracycline chemotherapy.
  • Differential responses were observed in secondary, but not de novo, AML.
  • Among secondary AML patients, the odds of achieving complete remission (CR) were higher for the XPD 312Asn/Asn (OR= 11.23; 95% CI, 2.23-56.63) and XPD 751Gln/Gln (OR= 7.07; 95% CI, 1.42-35.18) genotypes.
  • If validated, these findings could support stratification of chemotherapy in secondary AML.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 21394217.001).
  • [ISSN] 1948-1756
  • [Journal-full-title] International journal of molecular epidemiology and genetics
  • [ISO-abbreviation] Int J Mol Epidemiol Genet
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / CA108353-02; United States / NCI NIH HHS / CA / R03 CA108353; United States / NCI NIH HHS / CA / CA108353-01; United States / NCI NIH HHS / CA / R03 CA108353-02; United States / NCI NIH HHS / CA / R03 CA108353-01
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Other-IDs] NLM/ NIHMS247623; NLM/ PMC3049908
  • [Keywords] NOTNLM ; Acute Myeloid Leukemia (AML) / DNA repair gene polymorphisms / pharmacogenetics/pharmacogenomics / secondary AML
  •  go-up   go-down


22. Borthakur G, Lin E, Jain N, Estey EE, Cortes JE, O'Brien S, Faderl S, Ravandi F, Pierce S, Kantarjian H: Survival is poorer in patients with secondary core-binding factor acute myelogenous leukemia compared with de novo core-binding factor leukemia. Cancer; 2009 Jul 15;115(14):3217-21
Hazardous Substances Data Bank. CYTARABINE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Survival is poorer in patients with secondary core-binding factor acute myelogenous leukemia compared with de novo core-binding factor leukemia.
  • BACKGROUND: Therapy related secondary acute myelogenous leukemia (AML) was commonly associated with prior exposure to alkylating agents or topoisomerase inhibitor.
  • The long-term outcome of such patients with secondary AML was found to be worse than that of patients with de novo AML.
  • Earlier reports suggested similar outcomes for patients with de novo and secondary AML associated with core-binding factor (CBF) abnormalities.
  • METHODS: A total of 188 patients with CBF AML were analyzed.
  • The frequency of secondary CBF AML was 9%.
  • RESULTS: Patients with secondary CBF AML were found to have significantly worse overall (OS) and event-free survival (EFS) compared with patients with de novo CBF AML.
  • Secondary CBF AML status appeared to have only marginal significance in multivariate analysis.
  • CONCLUSIONS: Matched analysis (by age, Eastern Cooperative Oncology Group performance status, and additional cytogenetic abnormality) indicated worse OS and EFS in patients with secondary CBF AML.
  • [MeSH-major] Core Binding Factors / metabolism. Leukemia, Myeloid, Acute / mortality. Neoplasms, Second Primary / mortality

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Leukemia. 1999 Nov;13(11):1735-40 [10557046.001]
  • [Cites] Leuk Lymphoma. 2008 Mar;49(3):517-23 [18297529.001]
  • [Cites] Genes Chromosomes Cancer. 2002 Apr;33(4):395-400 [11921273.001]
  • [Cites] Br J Haematol. 2002 Aug;118(2):385-400 [12139722.001]
  • [Cites] Eur J Haematol. 2003 Sep;71(3):143-54 [12930314.001]
  • [Cites] J Clin Oncol. 2003 Dec 1;21(23):4413-22 [14645432.001]
  • [Cites] J Clin Oncol. 2004 Mar 15;22(6):1087-94 [15020610.001]
  • [Cites] J Clin Oncol. 2004 Sep 15;22(18):3741-50 [15289486.001]
  • [Cites] Blood. 1992 Oct 1;80(7):1825-31 [1391946.001]
  • [Cites] Science. 1993 Aug 20;261(5124):1041-4 [8351518.001]
  • [Cites] J Clin Oncol. 1993 Dec;11(12):2370-9 [8246025.001]
  • [Cites] J Clin Oncol. 1998 May;16(5):1890-6 [9586906.001]
  • [Cites] Cancer Res. 1998 Sep 15;58(18):4173-9 [9751631.001]
  • [Cites] Biochim Biophys Acta. 1998 Oct 1;1400(1-3):233-55 [9748598.001]
  • [Cites] Br J Haematol. 2006 Oct;135(2):165-73 [16939487.001]
  • [Cites] Leukemia. 2007 Apr;21(4):725-31 [17287858.001]
  • [Cites] Genes Chromosomes Cancer. 2002 Apr;33(4):379-94 [11921272.001]
  • (PMID = 19441109.001).
  • [ISSN] 0008-543X
  • [Journal-full-title] Cancer
  • [ISO-abbreviation] Cancer
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / P30 CA016672
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Core Binding Factors; 04079A1RDZ / Cytarabine
  • [Other-IDs] NLM/ NIHMS629439; NLM/ PMC4184418
  •  go-up   go-down


23. Kröger N, Shimoni A, Zabelina T, Schieder H, Panse J, Ayuk F, Wolschke C, Renges H, Dahlke J, Atanackovic D, Nagler A, Zander A: Reduced-toxicity conditioning with treosulfan, fludarabine and ATG as preparative regimen for allogeneic stem cell transplantation (alloSCT) in elderly patients with secondary acute myeloid leukemia (sAML) or myelodysplastic syndrome (MDS). Bone Marrow Transplant; 2006 Feb;37(4):339-44
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Reduced-toxicity conditioning with treosulfan, fludarabine and ATG as preparative regimen for allogeneic stem cell transplantation (alloSCT) in elderly patients with secondary acute myeloid leukemia (sAML) or myelodysplastic syndrome (MDS).
  • We investigated a dose-reduced conditioning regimen consisting of treosulfan and fludarabine followed by allogeneic stem cell transplantation (SCT) in 26 patients with secondary AML or MDS.
  • Acute graft-versus-host disease (GvHD) grade II-IV was seen in 23% and severe grade III GvHD in 12% of the patients.
  • No patients experienced grade IV acute GvHD.
  • [MeSH-major] Antilymphocyte Serum / therapeutic use. Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Busulfan / analogs & derivatives. Hematopoietic Stem Cell Transplantation. Leukemia, Myeloid / therapy. Myelodysplastic Syndromes / therapy. Transplantation Conditioning / methods. Vidarabine / analogs & derivatives
  • [MeSH-minor] Acute Disease. Adult. Aged. Disease-Free Survival. Female. Graft vs Host Disease / drug therapy. Graft vs Host Disease / prevention & control. HLA Antigens / analysis. Humans. Male. Middle Aged. Prospective Studies. Recurrence. Siblings. Survival Rate. Transplantation, Homologous. Treatment Outcome


24. Czibere A, Prall WC, Zerbini LF, Grall F, Craigie EC, Ulrich SD, Giagounidis AA, Haas R, Libermann TA, Aivado M: The nonsteroidal anti-inflammatory drug Exisulind selectively induces apoptosis via JNK in secondary acute myeloid leukemia after myelodysplastic syndrome. Cell Cycle; 2005 Jun;4(6):812-7
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The nonsteroidal anti-inflammatory drug Exisulind selectively induces apoptosis via JNK in secondary acute myeloid leukemia after myelodysplastic syndrome.
  • Treatment of patients suffering from myelodysplastic syndromes and secondary acute myeloid leukemia after MDS is often unsuccessful.
  • Exisulind is another potentially pro-apoptotic agent, and therefore, we investigated its influence on proliferation, differentiation, cell cycle and apoptosis in two sAML/MDS cell lines, one de-novo AML cell line and healthy CD34+ bone marrow cells.
  • Exisulind had no effect on de-novo AML or normal CD34+ cells.
  • [MeSH-major] Anti-Inflammatory Agents, Non-Steroidal / therapeutic use. Apoptosis / drug effects. JNK Mitogen-Activated Protein Kinases / metabolism. Leukemia, Myeloid, Acute / drug therapy. Leukemia, Myeloid, Acute / etiology. Myelodysplastic Syndromes / complications. Sulindac / analogs & derivatives


25. Chen YC, Sheen JM, Huang LT, Wu KS, Hsiao CC: Disseminated tuberculous myositis in a child with acute myelogenous leukemia. Pediatr Neonatol; 2009 Apr;50(2):74-7
MedlinePlus Health Information. consumer health - Tuberculosis.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Disseminated tuberculous myositis in a child with acute myelogenous leukemia.
  • We present a case of disseminated tuberculous myositis in a girl with secondary acute myelogenous Leukemia following successful chemotherapy for undifferentiated sarcoma of the maxillary sinus.
  • [MeSH-major] Leukemia, Myeloid, Acute / complications. Myositis / complications. Tuberculosis / complications


26. Al-Ali HK, Brand R, van Biezen A, Finke J, Boogaerts M, Fauser AA, Egeler M, Cahn JY, Arnold R, Biersack H, Niederwieser D, de Witte T: A retrospective comparison of autologous and unrelated donor hematopoietic cell transplantation in myelodysplastic syndrome and secondary acute myeloid leukemia: a report on behalf of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Leukemia; 2007 Sep;21(9):1945-51
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] A retrospective comparison of autologous and unrelated donor hematopoietic cell transplantation in myelodysplastic syndrome and secondary acute myeloid leukemia: a report on behalf of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT).
  • Hematopoietic cell transplantation (HCT) is an effective treatment for myelodysplasia (MDS) and secondary acute myeloid leukemia (sAML).
  • [MeSH-major] Hematopoietic Stem Cell Transplantation / mortality. Leukemia, Myeloid / mortality. Leukemia, Myeloid / therapy. Myelodysplastic Syndromes / mortality. Myelodysplastic Syndromes / therapy
  • [MeSH-minor] Acute Disease. Adolescent. Adult. Age Distribution. Aged. Disease-Free Survival. Female. Humans. Incidence. Male. Middle Aged. Recurrence. Retrospective Studies. Survival Analysis. Tissue Donors. Transplantation, Autologous. Transplantation, Homologous. Treatment Outcome


27. Szotkowski T, Muzik J, Voglova J, Koza V, Maaloufova J, Kozak T, Jarosova M, Michalova K, Zak P, Steinerova K, Vydra J, Lanska M, Katrincsakova B, Sicova K, Pavlik T, Dusek L, Indrak K: Prognostic factors and treatment outcome in 1,516 adult patients with de novo and secondary acute myeloid leukemia in 1999-2009 in 5 hematology intensive care centers in the Czech Republic. Neoplasma; 2010;57(6):578-89
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Prognostic factors and treatment outcome in 1,516 adult patients with de novo and secondary acute myeloid leukemia in 1999-2009 in 5 hematology intensive care centers in the Czech Republic.
  • Acute myeloid leukemia (AML) is a severe condition with a high mortality.
  • The study represents a detailed analysis of the role of these factors and treatment outcomes based on a long-term follow-up of patients treated in 5 hematology intensive care centers in the Czech Republic.The studied group comprised 1,188 patients with de novo AML and 328 patients with secondary AML.
  • Curatively treated patients achieved fewer complete remissions and relapsed more often than those with de novo AML.
  • Patients with secondary AML had lower rates of allogeneic transplantation as part of consolidation therapy and a significantly shorter median overall survival.
  • However, the treatment outcome of de novo AML patients is not satisfactory, the only exception being those with acute promyelocytic leukemia.
  • [MeSH-major] Leukemia, Myeloid, Acute / mortality. Neoplasms, Second Primary / mortality


28. Verma D, O'Brien S, Thomas D, Faderl S, Koller C, Pierce S, Kebriaei P, Garcia-Manero G, Cortes J, Kantarjian H, Ravandi F: Therapy-related acute myelogenous leukemia and myelodysplastic syndrome in patients with acute lymphoblastic leukemia treated with the hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone regimens. Cancer; 2009 Jan 1;115(1):101-6
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Therapy-related acute myelogenous leukemia and myelodysplastic syndrome in patients with acute lymphoblastic leukemia treated with the hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone regimens.
  • BACKGROUND: Secondary malignancies including myeloid neoplasms occur infrequently in acute lymphoblastic leukemia (ALL) and to the authors' knowledge have not been as well documented in adults as in children.
  • RESULTS: Sixteen patients (2.49%) developed secondary acute myelogenous leukemia (AML) (6 patients) or myelodysplastic syndrome (MDS) (10 patients).
  • Karyotype at time of AML/MDS diagnosis was -5, -7 in 9 patients, normal in 1 patient, complex in 1 patient, inv(11) in 1 patient, t(4;11) in 1 patient, del(20) in 1 patient, and unavailable in 2 patients.
  • Secondary AML/MDS developed at a median of 32 months after ALL diagnosis.
  • Cytarabine plus anthracycline-based treatment was given to 12 patients with AML and high-risk MDS.
  • Eight patients (1 with AML and 7 with MDS) underwent allogeneic stem cell transplantation, and all but 2 died at a median of 3 months (range, 0.5-11 months) after transplantation.
  • The median overall survival after a diagnosis of secondary AML and MDS was 9.25 months (range, 1+ to 26+ months).
  • CONCLUSIONS: Secondary AML and MDS occur infrequently in adult patients with de novo ALL treated with the hyper-CVAD regimens, and response to therapy is poor.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Leukemia, Myeloid, Acute / chemically induced. Myelodysplastic Syndromes / chemically induced. Precursor Cell Lymphoblastic Leukemia-Lymphoma / drug therapy


29. Shao B, Gao YR, Wang C, Yan SK, Cai Q, Jiang JL, Yang J, Bai HT, Zhao M, Zhao CX: [Prognostic factor analysis of 77 old patients with acute myelogenous leukemia]. Ai Zheng; 2006 Aug;25(8):1007-12
MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Prognostic factor analysis of 77 old patients with acute myelogenous leukemia].
  • BACKGROUND & OBJECTIVE: The manifestations of old acute myelogenous (AML) patients have their special biological and clinical characteristics, with lower response rate to therapy and shorter survival time.
  • This study was to investigate the prognostic factors of elderly patients with AML retrospectively.
  • METHODS: 77 patients aged> or =60 years with AML from 1994 to 2005 were admitted to our study and all the possible prognostic factors were analyzed with Kaplan-Meier survival analysis.
  • The patients with primary AML (median survival time was 98 days) had significantly longer survival time than those with secondary AML (median survival time was 32 days)(P=0.007), which their CR ratios were 50% and 0% (P=0.023).
  • CONCLUSIONS: Factors, including age >70, PS 2 to 4, percentage of blasts in bone marrow >50%, secondary AML, unfavorable karyotype, expression of CD34, lower dosage.
  • [MeSH-major] Anthracyclines / therapeutic use. Leukemia, Myeloid, Acute / drug therapy

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16965684.001).
  • [Journal-full-title] Ai zheng = Aizheng = Chinese journal of cancer
  • [ISO-abbreviation] Ai Zheng
  • [Language] chi
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] China
  • [Chemical-registry-number] 0 / Anthracyclines; 0 / Antigens, CD34
  •  go-up   go-down


30. Lichtman MA: Is there an entity of chemically induced BCR-ABL-positive chronic myelogenous leukemia? Oncologist; 2008 Jun;13(6):645-54
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Is there an entity of chemically induced BCR-ABL-positive chronic myelogenous leukemia?
  • Advances in the therapy of malignancy have been accompanied by an increased frequency of cases of secondary acute myelogenous leukemia and related clonal cytopenias and oligoblastic (subacute) myelogenous leukemia (myelodysplastic syndromes).
  • The acute myelogenous leukemia incidence can be increased by high-dose acute ionizing radiation exposure, alkylating agents, topoisomerase II inhibitors, possibly other DNA-damaging therapeutic agents, heavy, prolonged cigarette smoking, and high dose-time exposure to benzene, the latter less frequently seen in industrialized countries with worksite regulations.
  • Acute myelogenous leukemia and myelodysplastic syndromes may result from innumerable primary types of chromosome damage.
  • In the case of chronic myelogenous leukemia, a specific break in chromosome bands 9q34 and 22q11 must occur to result in the causal fusion oncogene (BCR-ABL).
  • A review of 11 studies of the chromosomal abnormalities found in presumptive cases of cytotoxic therapy-induced leukemia and of 40 studies of the subtypes of leukemia that occur following cytotoxic therapy for other cancers has not provided evidence of an increased risk for chemically induced BCR-ABL-positive chronic myelogenous leukemia.
  • Studies of the effects of alkylating agents, topoisomerase inhibitors, and benzene on chromosomes of hematopoietic cells in vitro, coupled with the aforementioned epidemiological studies of secondary leukemia after cytotoxic therapy or of persons exposed to high dose-time concentrations of benzene in the workplace, do not indicate a relationship among chemical exposure, injury to chromosome bands 9q34 and 22q11, and an increased risk for BCR-ABL-positive chronic myelogenous leukemia.
  • [MeSH-major] Antineoplastic Agents / adverse effects. Chromosome Aberrations. Leukemia, Myelogenous, Chronic, BCR-ABL Positive / chemically induced

  • MedlinePlus Health Information. consumer health - Chronic Myeloid Leukemia.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18586919.001).
  • [ISSN] 1083-7159
  • [Journal-full-title] The oncologist
  • [ISO-abbreviation] Oncologist
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents
  • [Number-of-references] 113
  •  go-up   go-down


31. Kornblau SM, Minden MD, Rosen DB, Putta S, Cohen A, Covey T, Spellmeyer DC, Fantl WJ, Gayko U, Cesano A: Dynamic single-cell network profiles in acute myelogenous leukemia are associated with patient response to standard induction therapy. Clin Cancer Res; 2010 Jul 15;16(14):3721-33
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Dynamic single-cell network profiles in acute myelogenous leukemia are associated with patient response to standard induction therapy.
  • PURPOSE: Complete response to induction chemotherapy is observed in approximately 60% of patients with newly diagnosed non-M3 acute myelogenous leukemia (AML).
  • However, no methods exist to predict with high accuracy at the individual patient level the response to standard AML induction therapy.
  • EXPERIMENTAL DESIGN: We applied single-cell network profiling (SCNP) using flow cytometry, a tool that allows a comprehensive functional assessment of intracellular signaling pathways in heterogeneous tissues, to two training cohorts of AML samples (n = 34 and 88) to predict the likelihood of response to induction chemotherapy.
  • Results were independent of cytogenetics, FLT3 mutational status, and diagnosis of secondary AML.
  • SCNP provides information distinct from other known prognostic factors such as age, secondary AML, cytogenetics, and molecular alterations and is potentially combinable with the latter to improve clinical decision making.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Leukemia, Myeloid, Acute / drug therapy. Leukemia, Myeloid, Acute / metabolism

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright 2010 AACR.
  • [Cites] Blood. 1998 Feb 15;91(4):1101-34 [9454740.001]
  • [Cites] J Clin Oncol. 2010 Feb 1;28(4):596-604 [20026798.001]
  • [Cites] Cancer Res. 1998 Sep 15;58(18):4173-9 [9751631.001]
  • [Cites] Cytokines Cell Mol Ther. 1998 Sep;4(3):187-98 [9825844.001]
  • [Cites] N Engl J Med. 1999 Sep 30;341(14):1051-62 [10502596.001]
  • [Cites] Crit Care. 2004 Dec;8(6):508-12 [15566624.001]
  • [Cites] Curr Opin Hematol. 2005 Jan;12(1):68-75 [15604894.001]
  • [Cites] Science. 2005 Apr 22;308(5721):523-9 [15845847.001]
  • [Cites] Crit Rev Oncol Hematol. 2005 Nov;56(2):195-221 [16236521.001]
  • [Cites] Blood. 2005 Dec 1;106(12):3740-6 [16051734.001]
  • [Cites] Blood. 2005 Dec 1;106(12):3733-9 [16076867.001]
  • [Cites] Nat Rev Cancer. 2006 Feb;6(2):146-55 [16491074.001]
  • [Cites] Blood. 2006 May 1;107(9):3481-5 [16455952.001]
  • [Cites] Nat Methods. 2006 May;3(5):361-8 [16628206.001]
  • [Cites] Leukemia. 2006 Jun;20(6):965-70 [16598313.001]
  • [Cites] Blood. 2006 Oct 1;108(7):2358-65 [16763210.001]
  • [Cites] Br J Haematol. 2006 Nov;135(4):438-49 [16965385.001]
  • [Cites] Blood. 2006 Dec 1;108(12):3898-905 [16912223.001]
  • [Cites] Front Biosci. 2007;12:800-15 [17127321.001]
  • [Cites] Crit Rev Oncol Hematol. 2007 Jun;62(3):214-26 [17368038.001]
  • [Cites] J Clin Oncol. 2007 Aug 1;25(22):3337-43 [17577018.001]
  • [Cites] Blood. 2008 Feb 15;111(4):1903-12 [18042804.001]
  • [Cites] Leuk Res. 2008 Jun;32(6):913-8 [17928050.001]
  • [Cites] Leuk Res. 2008 Jun;32(6):944-53 [18206229.001]
  • [Cites] Blood. 2008 May 1;111(9):4490-5 [18309032.001]
  • [Cites] N Engl J Med. 2008 May 1;358(18):1909-18 [18450602.001]
  • [Cites] N Engl J Med. 2008 May 1;358(18):1919-28 [18450603.001]
  • [Cites] Blood. 2008 May 15;111(10):5078-85 [18337557.001]
  • [Cites] J Immunol. 2008 Jun 1;180(11):7358-67 [18490735.001]
  • [Cites] Blood. 2008 Jun 1;111(11):5371-9 [18378853.001]
  • [Cites] Front Biosci. 2008;13:4605-16 [18508532.001]
  • [Cites] J Clin Oncol. 2008 Oct 1;26(28):4595-602 [18559874.001]
  • [Cites] J Clin Oncol. 2008 Nov 20;26(33):5429-35 [18591546.001]
  • [Cites] Blood. 2009 Jan 1;113(1):28-36 [18827183.001]
  • [Cites] Blood. 2009 Jan 1;113(1):154-64 [18840713.001]
  • [Cites] Blood. 2009 Mar 26;113(13):3088-91 [19171880.001]
  • [Cites] Br J Haematol. 2009 Jun;145(5):555-68 [19344393.001]
  • [Cites] J Clin Oncol. 2009 Jul 1;27(19):3198-204 [19451432.001]
  • [Cites] Hematology. 2009 Aug;14(4):204-12 [19635183.001]
  • [Cites] Cancer Res. 2001 Oct 1;61(19):7233-9 [11585760.001]
  • [Cites] Nat Immunol. 2002 Dec;3(12):1129-34 [12447370.001]
  • [Cites] Semin Hematol. 2002 Oct;39(4 Suppl 3):6-11 [12447846.001]
  • [Cites] Blood. 2002 Dec 15;100(13):4325-36 [12393746.001]
  • [Cites] Blood. 2003 Feb 1;101(3):837-45 [12393383.001]
  • [Cites] Blood. 2003 Sep 1;102(5):1613-8 [12750167.001]
  • [Cites] J Clin Oncol. 2003 Dec 15;21(24):4642-9 [14673054.001]
  • [Cites] J Clin Oncol. 2004 Feb 15;22(4):624-33 [14726504.001]
  • [Cites] Cell. 2004 Jul 23;118(2):217-28 [15260991.001]
  • [Cites] Radiology. 1982 Apr;143(1):29-36 [7063747.001]
  • [Cites] Radiology. 1983 Sep;148(3):839-43 [6878708.001]
  • [Cites] Blood. 1998 Oct 1;92(7):2322-33 [9746770.001]
  • (PMID = 20525753.001).
  • [ISSN] 1078-0432
  • [Journal-full-title] Clinical cancer research : an official journal of the American Association for Cancer Research
  • [ISO-abbreviation] Clin. Cancer Res.
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / P01 CA108631
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] EC 2.7.10.1 / FLT3 protein, human; EC 2.7.10.1 / fms-Like Tyrosine Kinase 3
  • [Other-IDs] NLM/ NIHMS378349; NLM/ PMC3385931
  •  go-up   go-down


32. Karp JE, Smith BD, Gojo I, Lancet JE, Greer J, Klein M, Morris L, Levis MJ, Gore SD, Wright JJ, Garrett-Mayer E: Phase II trial of tipifarnib as maintenance therapy in first complete remission in adults with acute myelogenous leukemia and poor-risk features. Clin Cancer Res; 2008 May 15;14(10):3077-82
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Phase II trial of tipifarnib as maintenance therapy in first complete remission in adults with acute myelogenous leukemia and poor-risk features.
  • PURPOSE: Acute myelogenous leukemia (AML) does not have a high cure rate, particularly in patients with poor-risk features.
  • Tipifarnib is an oral farnesyltransferase inhibitor with activity in AML.
  • We conducted a phase II trial of maintenance tipifarnib monotherapy for 48 adults with poor-risk AML in first CR.
  • Comparison of CR durations for 25 patients who received two-cycle timed sequential therapy followed by tipifarnib maintenance with 23 historically similar patients who did not receive tipifarnib showed that tipifarnib was associated with DFS prolongation for patients with secondary AML and adverse cytogenetics.
  • CONCLUSIONS: This study suggests that some patients with poor-risk AML, including patients with secondary AML and adverse cytogenetics, may benefit from tipifarnib maintenance therapy.

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • MedlinePlus Health Information. consumer health - Cancer Chemotherapy.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Clin Oncol. 1999 Dec;17(12):3835-49 [10577857.001]
  • [Cites] Leukemia. 2007 Sep;21(9):1964-70 [17581608.001]
  • [Cites] Blood. 2001 Jun 1;97(11):3361-9 [11369625.001]
  • [Cites] Blood. 2001 Aug 1;98(3):548-53 [11468148.001]
  • [Cites] Blood. 2001 Sep 1;98(5):1302-11 [11520775.001]
  • [Cites] Blood. 2001 Sep 1;98(5):1312-20 [11520776.001]
  • [Cites] Leuk Res. 2003 Apr;27(4):313-21 [12531222.001]
  • [Cites] Blood. 2003 Mar 1;101(5):1692-7 [12411300.001]
  • [Cites] Am J Clin Pathol. 2003 May;119(5):672-80 [12760285.001]
  • [Cites] Blood. 2003 Dec 1;102(12):3880-9 [12920034.001]
  • [Cites] Blood. 2003 Dec 15;102(13):4527-34 [12947010.001]
  • [Cites] Blood Rev. 2004 Mar;18(1):39-63 [14684148.001]
  • [Cites] J Clin Oncol. 2004 Apr 1;22(7):1287-92 [15051776.001]
  • [Cites] N Engl J Med. 2004 Apr 15;350(16):1605-16 [15084693.001]
  • [Cites] Blood. 1989 Oct;74(5):1499-506 [2676014.001]
  • [Cites] Blood. 1992 Apr 15;79(8):1924-30 [1562720.001]
  • [Cites] Blood. 1997 Oct 15;90(8):2952-61 [9376575.001]
  • [Cites] J Clin Oncol. 1998 Mar;16(3):872-81 [9508168.001]
  • [Cites] Leukemia. 1999 Jun;13(6):843-9 [10360370.001]
  • [Cites] J Clin Oncol. 2005 Mar 20;23(9):1969-78 [15632409.001]
  • [Cites] Eur J Haematol. 2005 May;74(5):418-23 [15813916.001]
  • [Cites] J Clin Oncol. 2006 Jun 1;24(16):2480-9 [16735702.001]
  • [Cites] Blood. 2006 Sep 1;108(5):1677-83 [16670265.001]
  • [Cites] Blood. 2007 Jan 15;109(2):431-48 [16960150.001]
  • [Cites] Blood. 2007 Feb 15;109(4):1387-94 [17082323.001]
  • [Cites] Blood. 2007 May 15;109(10):4158-63 [17264294.001]
  • [Cites] J Clin Oncol. 2007 May 10;25(14):1908-15 [17488990.001]
  • [Cites] Hematol Oncol Clin North Am. 2000 Feb;14(1):251-67 [10680081.001]
  • (PMID = 18483374.001).
  • [ISSN] 1078-0432
  • [Journal-full-title] Clinical cancer research : an official journal of the American Association for Cancer Research
  • [ISO-abbreviation] Clin. Cancer Res.
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / CA 69854; United States / NCI NIH HHS / CA / U01 CA069854-07; United States / NCI NIH HHS / CA / U01 CA069854; United States / NCI NIH HHS / CA / U01 CA70095; United States / NCI NIH HHS / CA / U01 CA070095
  • [Publication-type] Clinical Trial, Phase II; Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Quinolones; 192185-72-1 / tipifarnib
  • [Other-IDs] NLM/ NIHMS281726; NLM/ PMC3074480
  •  go-up   go-down


33. Römermann D, Hasemeier B, Metzig K, Schlegelberger B, Länger F, Kreipe H, Lehmann U: [Methylation status of LINE-1 sequences in patients with MDS or secondary AML]. Verh Dtsch Ges Pathol; 2007;91:338-42
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Methylation status of LINE-1 sequences in patients with MDS or secondary AML].
  • [Transliterated title] Methylierungszustand von LINE-1-Sequenzen bei Patienten mit MDS oder sekundärer AML.
  • [MeSH-minor] Humans. Leukemia, Myeloid, Acute / genetics

  • MedlinePlus Health Information. consumer health - Myelodysplastic Syndromes.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18314632.001).
  • [ISSN] 0070-4113
  • [Journal-full-title] Verhandlungen der Deutschen Gesellschaft für Pathologie
  • [ISO-abbreviation] Verh Dtsch Ges Pathol
  • [Language] ger
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] Germany
  •  go-up   go-down


34. Preudhomme C, Renneville A, Bourdon V, Philippe N, Roche-Lestienne C, Boissel N, Dhedin N, André JM, Cornillet-Lefebvre P, Baruchel A, Mozziconacci MJ, Sobol H: High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder. Blood; 2009 May 28;113(22):5583-7
SciCrunch. Clinical Genomic Database: Data: Gene Annotation .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder.
  • Familial platelet disorder (FPD), a rare autosomal dominant disorder characterized by quantitative and qualitative platelet abnormalities, is considered as a model of genetic predisposition to acute myeloid leukemia (AML).
  • So far, monoallelic RUNX1 germline mutations have been found in 19 of 20 families with reported FPD, and the analysis of blast cells from only 5 patients at acute leukemia (AL) stage has shown no additional RUNX1 abnormality.
  • In addition to the germline RUNX1 mutation, we identified a second RUNX1 alteration in 6 AML cases (acquired point mutations in 4 cases and duplication of the altered RUNX1 allele associated with acquired trisomy 21 in 2 other cases).
  • Although haploinsufficiency of RUNX1 causes FPD, our findings suggest that a second genetic event involving RUNX1 is often associated with progression to AML.
  • [MeSH-major] Blood Platelet Disorders / genetics. Core Binding Factor Alpha 2 Subunit / genetics. Leukemia, Myeloid, Acute / genetics


35. Pyatt DW, Hays SM, Cushing CA: Do children have increased susceptibility for developing secondary acute myelogenous leukemia? Chem Biol Interact; 2005 May 30;153-154:223-9
MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Do children have increased susceptibility for developing secondary acute myelogenous leukemia?
  • This study was undertaken to evaluate the effects of age on a child's susceptibility to developing leukemia following exposure to known leukemogenic agents.
  • The clinical literature describing the risk of developing acute myelogenous leukemia (AML) following treatment with alkylating agents or topoisomerase reactive drugs (known leukemogens) was used as a basis for this investigation.
  • Although the number of studies and cases was very small, the available scientific and medical literature does not support the hypothesis that children will necessarily have an altered susceptibility or increased risk of developing chemotherapy-induced AML.
  • [MeSH-major] Antineoplastic Agents, Alkylating / adverse effects. Leukemia, Myeloid, Acute / epidemiology. Neoplasms, Second Primary / epidemiology

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [ErratumIn] Chem Biol Interact. 2005 Aug 15;155(3):191
  • (PMID = 15878160.001).
  • [ISSN] 0009-2797
  • [Journal-full-title] Chemico-biological interactions
  • [ISO-abbreviation] Chem. Biol. Interact.
  • [Language] eng
  • [Publication-type] Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] Ireland
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 0 / Topoisomerase II Inhibitors
  •  go-up   go-down


36. Lim Z, Brand R, Martino R, van Biezen A, Finke J, Bacigalupo A, Beelen D, Devergie A, Alessandrino E, Willemze R, Ruutu T, Boogaerts M, Falda M, Jouet JP, Niederwieser D, Kroger N, Mufti GJ, De Witte TM: Allogeneic hematopoietic stem-cell transplantation for patients 50 years or older with myelodysplastic syndromes or secondary acute myeloid leukemia. J Clin Oncol; 2010 Jan 20;28(3):405-11
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Allogeneic hematopoietic stem-cell transplantation for patients 50 years or older with myelodysplastic syndromes or secondary acute myeloid leukemia.
  • [MeSH-major] Hematopoietic Stem Cell Transplantation. Leukemia, Myeloid, Acute / therapy. Myelodysplastic Syndromes / therapy


37. Park MJ, Park YH, Ahn HJ, Choi W, Paik KH, Kim JM, Chang YH, Ryoo BY, Yang SH: Secondary hematological malignancies after breast cancer chemotherapy. Leuk Lymphoma; 2005 Aug;46(8):1183-8
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Secondary hematological malignancies after breast cancer chemotherapy.
  • According to several reports, the 10 year incidence of secondary acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS) after systemic chemotherapy is approximately 1.5%.
  • We detected 2 cases of secondary AML and 1 case of MDS, 19, 52 and 12 months, respectively, after systemic chemotherapy for breast cancer.
  • Published data on the occurrence of secondary hematological malignancies other than AML or MDS in this setting are scarce.
  • We encountered diffuse large B-cell lymphoma, angioimmunoblastic lymphoma and mantle cell lymphoma as secondary hematological malignancies after systemic chemotherapy for breast cancer.


38. Burmeister T, Meyer C, Thiel G, Reinhardt R, Thiel E, Marschalek R: A MLL-KIAA0284 fusion gene in a patient with secondary acute myeloid leukemia and t(11;14)(q23;q32). Blood Cells Mol Dis; 2008 Sep-Oct;41(2):210-4
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] A MLL-KIAA0284 fusion gene in a patient with secondary acute myeloid leukemia and t(11;14)(q23;q32).
  • MLL aberrations are found in approximately 10% of acute leukemias.
  • We describe here the case of a patient who developed secondary acute myeloid leukemia five years after the patient had received adjuvant radiochemotherapy because of breast cancer.
  • The expression of KIAA0284 in various tissues and hematologic diseases was investigated by real time quantitative PCR and turned out to be very low in all lymphatic and myeloid diseases investigated.
  • [MeSH-major] Leukemia, Myeloid, Acute / genetics. Myeloid-Lymphoid Leukemia Protein / genetics. Neoplasms, Second Primary / genetics. Oncogene Proteins, Fusion / genetics. Translocation, Genetic

  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18640063.001).
  • [ISSN] 1096-0961
  • [Journal-full-title] Blood cells, molecules & diseases
  • [ISO-abbreviation] Blood Cells Mol. Dis.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / MLL protein, human; 0 / Oncogene Proteins, Fusion; 149025-06-9 / Myeloid-Lymphoid Leukemia Protein; EC 2.1.1.43 / Histone-Lysine N-Methyltransferase
  •  go-up   go-down


39. Hussein K, Bock O, Theophile K, Schulz-Bischof K, Porwit A, Schlue J, Jonigk D, Kreipe H: MPLW515L mutation in acute megakaryoblastic leukaemia. Leukemia; 2009 May;23(5):852-5
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] MPLW515L mutation in acute megakaryoblastic leukaemia.
  • A series of primary and secondary acute myeloid leukaemias (AML) with megakaryoblastic phenotype and myelofibrosis unrelated to PMF (n=12) was analysed for the MPL(W515K/L) mutation by pyrosequencing.
  • None of the secondary AML cases evolving from pre-existing PMF showed MPL(W515K/L) (n=4).
  • We conclude that MPL(W515L) occurs in a considerable proportion of acute megakaryoblastic leukaemias with myelofibrosis unrelated to PMF.
  • [MeSH-major] Leukemia, Megakaryoblastic, Acute / genetics. Leukemia, Myelogenous, Chronic, BCR-ABL Positive / genetics. Mutation / genetics. Primary Myelofibrosis / genetics. Receptors, Thrombopoietin / genetics

  • MedlinePlus Health Information. consumer health - Chronic Myeloid Leukemia.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [CommentIn] Leukemia. 2009 Nov;23(11):2159-60 [19657363.001]
  • (PMID = 19194467.001).
  • [ISSN] 1476-5551
  • [Journal-full-title] Leukemia
  • [ISO-abbreviation] Leukemia
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Receptors, Thrombopoietin; 143641-95-6 / MPL protein, human; EC 2.7.10.2 / JAK2 protein, human; EC 2.7.10.2 / Janus Kinase 2
  •  go-up   go-down


40. Winter SS, Holdsworth MT, Devidas M, Raisch DW, Chauvenet A, Ravindranath Y, Ducore JM, Amylon MD: Antimetabolite-based therapy in childhood T-cell acute lymphoblastic leukemia: a report of POG study 9296. Pediatr Blood Cancer; 2006 Feb;46(2):179-86
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Antimetabolite-based therapy in childhood T-cell acute lymphoblastic leukemia: a report of POG study 9296.
  • PURPOSE: A previous Pediatric Oncology Group (POG) study showed high incidence of secondary acute myelogenous leukemia (AML) in children treated for T-cell acute lymphoblastic leukemia (T-ALL) or higher-stage lymphoblastic lymphoma.
  • To prevent secondary neoplasms, induce prolonged asparagine depletion, and maintain high event-free survival (EFS) in children with newly diagnosed T-ALL or higher-stage non-Hodgkins lymphoma (NHL), we designed this pilot study to determine feasibility and safety of substituting methotrexate/mercaptopurine for teniposide/cytarabine and PEG-asparaginase for native asparaginase.
  • No patients treated entirely on this study developed secondary neoplasms.
  • One patient taken off study for asparaginase toxicity was treated with multiagent therapy that contained teniposide, and died from secondary myelodysplasia (sMDS)/AML.
  • EFS was not compromised and secondary neoplasms were decreased.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / administration & dosage. Precursor Cell Lymphoblastic Leukemia-Lymphoma / drug therapy
  • [MeSH-minor] Adolescent. Anthracyclines / administration & dosage. Antimetabolites, Antineoplastic / administration & dosage. Antineoplastic Agents, Alkylating / administration & dosage. Asparaginase / administration & dosage. Asparaginase / adverse effects. Child. Child, Preschool. Disease-Free Survival. Drug Hypersensitivity / etiology. Female. Follow-Up Studies. Humans. Lymphoma, Non-Hodgkin / drug therapy. Lymphoma, Non-Hodgkin / mortality. Male. Pilot Projects. Remission Induction. Sepsis / etiology. Sepsis / mortality

  • Genetic Alliance. consumer health - Acute Lymphoblastic Leukemia.
  • Genetic Alliance. consumer health - Acute Lymphoblastic Leukemia, Childhood.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16007607.001).
  • [ISSN] 1545-5009
  • [Journal-full-title] Pediatric blood & cancer
  • [ISO-abbreviation] Pediatr Blood Cancer
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / 5 U10 CA5312; United States / NCI NIH HHS / CA / CA29139
  • [Publication-type] Clinical Trial; Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Anthracyclines; 0 / Antimetabolites, Antineoplastic; 0 / Antineoplastic Agents, Alkylating; EC 3.5.1.1 / Asparaginase
  •  go-up   go-down


41. Allen SL, Kolitz JE, Lundberg AS, Bennett JM, Capizzi RL, Budman DR: Phase I trials of amonafide as monotherapy and in combination with cytarabine in patients with poor-risk acute myeloid leukemia. Leuk Res; 2010 Apr;34(4):487-91
Hazardous Substances Data Bank. CYTARABINE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Phase I trials of amonafide as monotherapy and in combination with cytarabine in patients with poor-risk acute myeloid leukemia.
  • Amonafide-l-malate (amonafide) is a unique DNA intercalator that maintains activity in the presence of MDR mechanisms, a frequent cause of treatment-failure in secondary AML.
  • 43 patients with relapsed/refractory or secondary AML or CML blast crisis were enrolled into two phase I dose-escalation studies investigating amonafide as monotherapy or in combination with cytarabine.
  • Between both trials responses occurred in 9/20 patients with secondary AML.
  • Both trials demonstrated an acceptable safety profile and significant antileukemic activity in patients with poor-risk AML, especially those with secondary AML.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Cytarabine / administration & dosage. Leukemia, Myeloid, Acute / drug therapy. Naphthalimides / administration & dosage

  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright (c) 2009 Elsevier Ltd. All rights reserved.
  • (PMID = 19748672.001).
  • [ISSN] 1873-5835
  • [Journal-full-title] Leukemia research
  • [ISO-abbreviation] Leuk. Res.
  • [Language] eng
  • [Publication-type] Clinical Trial, Phase I; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Naphthalimides; 04079A1RDZ / Cytarabine; 1Q8D39N37L / amonafide
  •  go-up   go-down


42. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, La Starza R, Diverio D, Colombo E, Santucci A, Bigerna B, Pacini R, Pucciarini A, Liso A, Vignetti M, Fazi P, Meani N, Pettirossi V, Saglio G, Mandelli F, Lo-Coco F, Pelicci PG, Martelli MF, GIMEMA Acute Leukemia Working Party: Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med; 2005 Jan 20;352(3):254-66
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype.
  • METHODS: We used immunohistochemical methods to study the subcellular localization of NPM in bone marrow-biopsy specimens from 591 patients with primary acute myelogenous leukemia (AML).
  • RESULTS: Cytoplasmic NPM was detected in 208 (35.2 percent) of the 591 specimens from patients with primary AML but not in 135 secondary AML specimens or in 980 hematopoietic or extrahematopoietic neoplasms other than AML.
  • There was a high frequency of FLT3 internal tandem duplications and absence of CD34 and CD133 in AML specimens with a normal karyotype and cytoplasmic dislocation of NPM, but not in those in which the protein was restricted to the nucleus.
  • AML specimens with cytoplasmic NPM carried mutations of the NPM gene that were predicted to alter the protein at its C-terminal; this mutant gene caused cytoplasmic localization of NPM in transfected cells.
  • CONCLUSIONS: Cytoplasmic NPM is a characteristic feature of a large subgroup of patients with AML who have a normal karyotype, NPM gene mutations, and responsiveness to induction chemotherapy.
  • [MeSH-major] Bone Marrow / pathology. Cytoplasm / chemistry. Leukemia, Myeloid, Acute / genetics. Mutation. Nuclear Proteins / genetics


43. de Witte T, Hagemeijer A, Suciu S, Belhabri A, Delforge M, Kobbe G, Selleslag D, Schouten HC, Ferrant A, Biersack H, Amadori S, Muus P, Jansen JH, Hellström-Lindberg E, Kovacsovics T, Wijermans P, Ossenkoppele G, Gratwohl A, Marie JP, Willemze R: Value of allogeneic versus autologous stem cell transplantation and chemotherapy in patients with myelodysplastic syndromes and secondary acute myeloid leukemia. Final results of a prospective randomized European Intergroup Trial. Haematologica; 2010 Oct;95(10):1754-61
ClinicalTrials.gov. clinical trials - ClinicalTrials.gov .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Value of allogeneic versus autologous stem cell transplantation and chemotherapy in patients with myelodysplastic syndromes and secondary acute myeloid leukemia. Final results of a prospective randomized European Intergroup Trial.
  • [MeSH-major] Hematopoietic Stem Cell Transplantation / methods. Leukemia, Myeloid, Acute / therapy. Myelodysplastic Syndromes / therapy

  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • Genetic Alliance. consumer health - Myelodysplastic syndromes.
  • Genetic Alliance. consumer health - Transplantation.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • MedlinePlus Health Information. consumer health - Myelodysplastic Syndromes.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Mod Pathol. 2000 Feb;13(2):193-207 [10697278.001]
  • [Cites] Br J Haematol. 2000 Sep;110(3):620-30 [10997974.001]
  • [Cites] Blood. 2001 Oct 15;98(8):2326-31 [11588026.001]
  • [Cites] Br J Haematol. 2002 Aug;118(2):385-400 [12139722.001]
  • [Cites] Blood. 2002 Aug 15;100(4):1201-7 [12149198.001]
  • [Cites] Blood. 2002 Sep 15;100(6):1997-2004 [12200358.001]
  • [Cites] Leukemia. 2002 Sep;16(9):1615-21 [12200672.001]
  • [Cites] Leukemia. 2003 May;17(5):859-68 [12750698.001]
  • [Cites] Blood. 2003 Aug 15;102(4):1232-40 [12714526.001]
  • [Cites] Blood. 2004 Apr 15;103(8):2908-13 [15070662.001]
  • [Cites] Blood. 2004 Jul 15;104(2):579-85 [15039286.001]
  • [Cites] Ann Hematol. 2004 Aug;83(8):498-503 [15156346.001]
  • [Cites] Br J Haematol. 1985 Mar;59(3):425-33 [3970861.001]
  • [Cites] Br J Haematol. 1991 Apr;77(4):497-501 [2025575.001]
  • [Cites] Blood. 1995 Nov 15;86(10):3660-7 [7579331.001]
  • [Cites] Leukemia. 1995 Nov;9(11):1805-11 [7475266.001]
  • [Cites] Leukemia. 1996 Oct;10(10):1648-52 [8847900.001]
  • [Cites] Blood. 1997 Mar 15;89(6):2079-88 [9058730.001]
  • [Cites] Blood. 1997 Nov 15;90(10):3853-7 [9354651.001]
  • [Cites] Br J Haematol. 1997 Dec;99(4):939-44 [9432047.001]
  • [Cites] Br J Haematol. 1998 Sep;102(4):1015-24 [9734653.001]
  • [Cites] Blood. 1998 Oct 1;92(7):2322-33 [9746770.001]
  • [Cites] Leukemia. 1999 Apr;13(4):524-9 [10214857.001]
  • [Cites] Ann Oncol. 1999 Jul;10(7):825-9 [10470430.001]
  • [Cites] Leukemia. 2005 Mar;19(3):396-401 [15674354.001]
  • [Cites] Bone Marrow Transplant. 2006 Jan;37(2):183-9 [16299545.001]
  • [Cites] Haematologica. 2006 Mar;91(3):373-6 [16531261.001]
  • [Cites] Blood. 2007 May 1;109(9):3658-66 [17213292.001]
  • [Cites] Leukemia. 2007 Sep;21(9):1945-51 [17611571.001]
  • [Cites] Br J Haematol. 1982 Jun;51(2):189-99 [6952920.001]
  • [CommentIn] Haematologica. 2010 Oct;95(10):1623-7 [20884716.001]
  • (PMID = 20494931.001).
  • [ISSN] 1592-8721
  • [Journal-full-title] Haematologica
  • [ISO-abbreviation] Haematologica
  • [Language] eng
  • [Databank-accession-numbers] ClinicalTrials.gov/ NCT00002926
  • [Grant] United States / NCI NIH HHS / CA / 5U10 CA11488-32; United States / NCI NIH HHS / CA / 5U10 CA11488-27; United States / NCI NIH HHS / CA / 5U10 CA11488-38; United States / NCI NIH HHS / CA / 5U10 CA11488-28; United States / NCI NIH HHS / CA / 5U10 CA11488-35; United States / NCI NIH HHS / CA / 5U10 CA11488-31; United States / NCI NIH HHS / CA / 5U10 CA11488-26; United States / NCI NIH HHS / CA / 5U10 CA11488-37; United States / NCI NIH HHS / CA / U10 CA011488; United States / NCI NIH HHS / CA / 5U10 CA11488-29; United States / NCI NIH HHS / CA / 5U10 CA11488-36; United States / NCI NIH HHS / CA / 5U10 CA11488-33; United States / NCI NIH HHS / CA / 5U10 CA11488-34; United States / NCI NIH HHS / CA / 5U10 CA11488-30
  • [Publication-type] Comparative Study; Journal Article; Randomized Controlled Trial; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] Italy
  • [Other-IDs] NLM/ PMC2948102
  •  go-up   go-down


44. Mantadakis E, Danilatou V, Stiakaki E, Paterakis G, Papadhimitriou S, Kalmanti M: T-cell acute lymphoblastic leukemia relapsing as acute myelogenous leukemia. Pediatr Blood Cancer; 2007 Mar;48(3):354-7
Hazardous Substances Data Bank. METHOTREXATE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] T-cell acute lymphoblastic leukemia relapsing as acute myelogenous leukemia.
  • We present the unusual case of a 16-year-old girl with T-cell acute lymphoblastic leukemia (ALL) with an early thymocyte immunophenotype without myeloid markers, who after 13 months of complete hematological remission relapsed as acute myelogenous leukemia (AML) with minimal differentiation and died of her disease.
  • Whether the AML represented a relapse with lineage switch of the original immature T-cell clone or a new secondary malignancy, could not be proven due to the absence of molecular or clonal markers.
  • This report suggests that a subset of CD7+ T-cell leukemias without mature T-cell antigens (CD4-, CD8-) are minimally differentiated and can relapse as AML.
  • [MeSH-major] Antigens, Differentiation, T-Lymphocyte / analysis. Antigens, Neoplasm / analysis. Leukemia, Myeloid / pathology. Leukemia-Lymphoma, Adult T-Cell / pathology. Neoplastic Stem Cells / pathology. T-Lymphocyte Subsets / pathology
  • [MeSH-minor] 6-Mercaptopurine / administration & dosage. Acute Disease. Adolescent. Antigens, CD7 / analysis. Antineoplastic Combined Chemotherapy Protocols / adverse effects. Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Asparaginase / administration & dosage. Bone Marrow / pathology. Cell Differentiation. Cell Lineage. Core Binding Factor Alpha 2 Subunit / genetics. Cyclophosphamide / administration & dosage. Cytarabine / administration & dosage. Daunorubicin / administration & dosage. Dexamethasone / administration & dosage. Diagnosis, Differential. Doxorubicin / administration & dosage. Etoposide / administration & dosage. Etoposide / adverse effects. Fatal Outcome. Female. Gene Dosage. Histone-Lysine N-Methyltransferase. Humans. Immunophenotyping. Karyotyping. Methotrexate / administration & dosage. Myeloid-Lymphoid Leukemia Protein / genetics. Neoplasms, Second Primary / diagnosis. Proto-Oncogenes. Recurrence. Vincristine / administration & dosage

  • Genetic Alliance. consumer health - Acute Lymphoblastic Leukemia.
  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • Hazardous Substances Data Bank. CYTARABINE .
  • Hazardous Substances Data Bank. DAUNORUBICIN .
  • Hazardous Substances Data Bank. DOXORUBICIN .
  • Hazardous Substances Data Bank. ETOPOSIDE .
  • Hazardous Substances Data Bank. DEXAMETHASONE .
  • Hazardous Substances Data Bank. CYCLOPHOSPHAMIDE .
  • Hazardous Substances Data Bank. MERCAPTOPURINE .
  • Hazardous Substances Data Bank. VINCRISTINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2006 Wiley-Liss, Inc.
  • (PMID = 16206214.001).
  • [ISSN] 1545-5009
  • [Journal-full-title] Pediatric blood & cancer
  • [ISO-abbreviation] Pediatr Blood Cancer
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, CD7; 0 / Antigens, Differentiation, T-Lymphocyte; 0 / Antigens, Neoplasm; 0 / Core Binding Factor Alpha 2 Subunit; 0 / MLL protein, human; 0 / RUNX1 protein, human; 04079A1RDZ / Cytarabine; 149025-06-9 / Myeloid-Lymphoid Leukemia Protein; 5J49Q6B70F / Vincristine; 6PLQ3CP4P3 / Etoposide; 7S5I7G3JQL / Dexamethasone; 80168379AG / Doxorubicin; 8N3DW7272P / Cyclophosphamide; E7WED276I5 / 6-Mercaptopurine; EC 2.1.1.43 / Histone-Lysine N-Methyltransferase; EC 3.5.1.1 / Asparaginase; YL5FZ2Y5U1 / Methotrexate; ZS7284E0ZP / Daunorubicin
  •  go-up   go-down


45. Weintraub M, Revel-Vilk S, Charit M, Aker M, Pe'er J: Secondary acute myeloid leukemia after etoposide therapy for retinoblastoma. J Pediatr Hematol Oncol; 2007 Sep;29(9):646-8
Hazardous Substances Data Bank. ETOPOSIDE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Secondary acute myeloid leukemia after etoposide therapy for retinoblastoma.
  • Most chemotherapy regimens used in retinoblastoma include etoposide, an epipodophyllotoxin associated with a risk of secondary myeloid leukemia.
  • The use of etoposide in patients with a cancer predisposition syndrome such as retinoblastoma is potentially harmful, however, reports of secondary acute myeloid leukemia in patients treated with etoposide for retinoblastoma are rare.
  • We report a case of a patient who developed secondary acute myeloid leukemia after etoposide treatment for retinoblastoma.
  • [MeSH-major] Antineoplastic Agents, Phytogenic / adverse effects. Etoposide / adverse effects. Leukemia, Myeloid / chemically induced. Leukemia, Myeloid / diagnosis. Retinal Neoplasms / drug therapy. Retinoblastoma / drug therapy
  • [MeSH-minor] Acute Disease. Female. Humans. Infant. Treatment Outcome

  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • Genetic Alliance. consumer health - Retinoblastoma.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [ErratumIn] J Pediatr Hematol Oncol. 2007 Oct;29(10):728. Pèer, Jacob [corrected to Pe'er, Jacob]
  • (PMID = 17805043.001).
  • [ISSN] 1077-4114
  • [Journal-full-title] Journal of pediatric hematology/oncology
  • [ISO-abbreviation] J. Pediatr. Hematol. Oncol.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Phytogenic; 6PLQ3CP4P3 / Etoposide
  •  go-up   go-down


46. Stifter G, Heiss S, Gastl G, Tzankov A, Stauder R: Over-expression of tumor necrosis factor-alpha in bone marrow biopsies from patients with myelodysplastic syndromes: relationship to anemia and prognosis. Eur J Haematol; 2005 Dec;75(6):485-91
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Enhanced bone marrow (BM) angiogenesis is regarded as an essential cofactor in the progression of MDS to acute myelogenous leukemia (AML) and microvessel formation may be induced by TNF-alpha as well.
  • METHODS: TNF-alpha expression and BM vessels were immunohistochemically analyzed on 89 paraffin-embedded BM biopsies from patients with MDS and secondary AML, including 12 control samples.
  • MVD was increased in MDS and secondary AML and correlated with marrow cellularity and expression of TNF-alpha, but was not of prognostic significance.
  • CONCLUSIONS: TNF-alpha expression and MVD are elevated in MDS and secondary AML.
  • [MeSH-major] Biomarkers, Tumor / biosynthesis. Erythroid Precursor Cells / metabolism. Gene Expression Regulation, Leukemic. Leukemia, Myeloid, Acute / metabolism. Myelodysplastic Syndromes / metabolism. Tumor Necrosis Factor-alpha / biosynthesis


47. Perl AE, Kasner MT, Tsai DE, Vogl DT, Loren AW, Schuster SJ, Porter DL, Stadtmauer EA, Goldstein SC, Frey NV, Nasta SD, Hexner EO, Dierov JK, Swider CR, Bagg A, Gewirtz AM, Carroll M, Luger SM: A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res; 2009 Nov 1;15(21):6732-9
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia.
  • PURPOSE: Inhibiting mammalian target of rapamycin (mTOR) signaling in acute myelogenous leukemia (AML) blasts and leukemic stem cells may enhance their sensitivity to cytotoxic agents.
  • We sought to determine the safety and describe the toxicity of this approach by adding the mTOR inhibitor, sirolimus (rapamycin), to intensive AML induction chemotherapy.
  • EXPERIMENTAL DESIGN: We performed a phase I dose escalation study of sirolimus with the chemotherapy regimen MEC (mitoxantrone, etoposide, and cytarabine) in patients with relapsed, refractory, or untreated secondary AML.
  • Future studies are planned with different schedules to clarify the clinical and biochemical effects of sirolimus in AML and to determine whether target inhibition predicts chemotherapy response.
  • [MeSH-major] Antibiotics, Antineoplastic / administration & dosage. Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Leukemia, Myeloid, Acute / drug therapy. Sirolimus / administration & dosage

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • COS Scholar Universe. author profiles.
  • ClinicalTrials.gov. clinical trials - ClinicalTrials.gov .
  • Hazardous Substances Data Bank. MELPHALAN .
  • Hazardous Substances Data Bank. ETOPOSIDE .
  • Hazardous Substances Data Bank. CARBOPLATIN .
  • Hazardous Substances Data Bank. SIROLIMUS .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19843663.001).
  • [ISSN] 1078-0432
  • [Journal-full-title] Clinical cancer research : an official journal of the American Association for Cancer Research
  • [ISO-abbreviation] Clin. Cancer Res.
  • [Language] eng
  • [Publication-type] Clinical Trial, Phase I; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antibiotics, Antineoplastic; 6PLQ3CP4P3 / Etoposide; BG3F62OND5 / Carboplatin; EC 2.7.- / Protein Kinases; EC 2.7.1.1 / MTOR protein, human; EC 2.7.1.1 / TOR Serine-Threonine Kinases; Q41OR9510P / Melphalan; W36ZG6FT64 / Sirolimus; MEC regimen
  •  go-up   go-down


48. Szotkowski T, Rohon P, Zapletalova L, Sicova K, Hubacek J, Indrak K: Secondary acute myeloid leukemia - a single center experience. Neoplasma; 2010;57(2):170-8
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Secondary acute myeloid leukemia - a single center experience.
  • Secondary acute myeloid leukemia (sAML) may arise from the previous clonal disorder of hematopoiesis, usually from myelodysplastic syndrome (MDS) or from chronic myeloproliferative neoplasia (cMPN) or after exposure to a leukemogenic agent (previous chemotherapy or radiotherapy, some immunosuppressive drugs or environmental leukemogenic agents).
  • Secondary origin of AML is associated with unfavorable prognosis and it is not considered to be conventionally curable (with the exception of secondary acute promyelocytic leukemia).
  • Over that period of time, a total 574 patients with AML were diagnosed.
  • Of those, 430 patients were diagnosed as having primary AML; in 86 patients, sAML transformed from myelodysplastic syndrome and 58 patients were followed or treated for various malignancies or were treated with potentially leukemogenic agents because of non-malignant disorders.
  • Patients with secondary AML are older and less commonly treated with curative intention than those with primary AML.
  • With the exception of secondary acute promyelocytic leukemia, the prognosis of which does not differ from very good prognosis of the primary forms, secondary AML is not considered a conventionally curable disease.
  • [MeSH-major] Leukemia, Myeloid, Acute / etiology. Myelodysplastic Syndromes / complications. Myeloproliferative Disorders / complications. Neoplasm Recurrence, Local / etiology. Neoplasms, Second Primary / etiology


49. Karp JE, Smith BD, Levis MJ, Gore SD, Greer J, Hattenburg C, Briel J, Jones RJ, Wright JJ, Colevas AD: Sequential flavopiridol, cytosine arabinoside, and mitoxantrone: a phase II trial in adults with poor-risk acute myelogenous leukemia. Clin Cancer Res; 2007 Aug 1;13(15 Pt 1):4467-73
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Sequential flavopiridol, cytosine arabinoside, and mitoxantrone: a phase II trial in adults with poor-risk acute myelogenous leukemia.
  • In a phase I study of flavopiridol followed by 1-beta-d-arabinofuranosylcytosine (ara-C) and mitoxantrone, overall response rate for adults with relapsed and refractory acute myelogenous leukemias (AML) was 31%.
  • We have now completed a phase II study of sequential flavopiridol, ara-C, and mitoxantrone in 62 adults with poor-risk AML.
  • Complete remissions (CR) were achieved in 12 of 15 (75%) newly diagnosed secondary AML, 18 of 24 (75%) first relapse after short CR (median CR, 9 months, including prior allotransplant), and 2 of 13 (15%) primary refractory but 0 of 10 multiply refractory AML.
  • CONCLUSIONS: Flavopiridol has anti-AML activity directly and in combination with ara-C and mitoxantrone.
  • This timed sequential regimen induces durable CRs in a significant proportion of adults with newly diagnosed secondary AML (including complex cytogenetics) and adults with AML in first relapse after short first CR.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Leukemia, Myeloid, Acute / drug therapy

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. CYTARABINE .
  • Hazardous Substances Data Bank. NOVANTRONE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17671131.001).
  • [ISSN] 1078-0432
  • [Journal-full-title] Clinical cancer research : an official journal of the American Association for Cancer Research
  • [ISO-abbreviation] Clin. Cancer Res.
  • [Language] eng
  • [Grant] United States / NCRR NIH HHS / RR / M01-RR0052; United States / NCI NIH HHS / CA / U01 CA70095
  • [Publication-type] Clinical Trial, Phase II; Journal Article; Research Support, N.I.H., Extramural
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Flavonoids; 0 / Piperidines; 04079A1RDZ / Cytarabine; 45AD6X575G / alvocidib; BZ114NVM5P / Mitoxantrone
  •  go-up   go-down


50. Carneiro BA, Kaminer L, Eldibany M, Sreekantaiah C, Kaul K, Locker GY: Oxaliplatin-related acute myelogenous leukemia. Oncologist; 2006 Mar;11(3):261-2
Hazardous Substances Data Bank. LEUCOVORIN .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Oxaliplatin-related acute myelogenous leukemia.
  • Bone marrow biopsy was consistent with therapy-related acute myelogenous leukemia.
  • It is likely that the leukemia was related to the oxaliplatin administration.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / adverse effects. Leukemia, Myeloid, Acute / chemically induced
  • [MeSH-minor] Adenocarcinoma / drug therapy. Adenocarcinoma / pathology. Antibodies, Monoclonal / administration & dosage. Antibodies, Monoclonal, Humanized. Bevacizumab. Cecal Neoplasms / drug therapy. Cecal Neoplasms / pathology. Chromosome Deletion. Female. Fluorouracil / administration & dosage. Fluorouracil / adverse effects. Humans. Leucovorin / administration & dosage. Leucovorin / adverse effects. Middle Aged. Omentum / pathology. Organoplatinum Compounds / administration & dosage. Organoplatinum Compounds / adverse effects. Ovarian Neoplasms / drug therapy. Ovarian Neoplasms / secondary. Peritoneal Neoplasms / drug therapy. Peritoneal Neoplasms / secondary. Sigmoid Neoplasms / drug therapy. Sigmoid Neoplasms / secondary. Trisomy

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. FLUOROURACIL .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16549810.001).
  • [ISSN] 1083-7159
  • [Journal-full-title] The oncologist
  • [ISO-abbreviation] Oncologist
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antibodies, Monoclonal; 0 / Antibodies, Monoclonal, Humanized; 0 / Organoplatinum Compounds; 2S9ZZM9Q9V / Bevacizumab; Q573I9DVLP / Leucovorin; U3P01618RT / Fluorouracil; Folfox protocol
  •  go-up   go-down


51. Mihailov G, Ganeva P, Vassileva N, Guenova M, Balacenko G, Toshkov S, Hodjadjik D: Secondary acute myeloid leukemia early after therapy for Hodgkin's disease--a case report. J BUON; 2007 Jul-Sep;12(3):403-6
MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Secondary acute myeloid leukemia early after therapy for Hodgkin's disease--a case report.
  • A case of acute myeloid leukemia (AML) after successful therapy for Hodgkin's disease (HD) is reported.
  • Seven months after the CR was obtained the patient developed AML.
  • Knowing that the prognosis of patients with secondary AML (sAML) after primary HD is poor we decided to perform autologous peripheral stem cells' transplantation.
  • [MeSH-major] Hematopoietic Stem Cell Transplantation. Leukemia, Myeloid, Acute / diagnosis. Leukemia, Myeloid, Acute / surgery. Neoplasms, Second Primary / diagnosis. Neoplasms, Second Primary / surgery

  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17918297.001).
  • [ISSN] 1107-0625
  • [Journal-full-title] Journal of B.U.ON. : official journal of the Balkan Union of Oncology
  • [ISO-abbreviation] J BUON
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Greece
  •  go-up   go-down


52. Ayash LJ, Ratanatharathorn V, Braun T, Silver SM, Reynolds CM, Uberti JP: Unrelated donor bone marrow transplantation using a chemotherapy-only preparative regimen for adults with high-risk acute myelogenous leukemia. Am J Hematol; 2007 Jan;82(1):6-14
Hazardous Substances Data Bank. DOXORUBICIN .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Unrelated donor bone marrow transplantation using a chemotherapy-only preparative regimen for adults with high-risk acute myelogenous leukemia.
  • Limited data are available for adults undergoing unrelated donor (URD) BMT for AML using chemotherapy-only preparative regimens.
  • Previous studies incorporated irradiation, included adults and children, and excluded secondary leukemia.
  • Herein we report long-term outcomes for adults with poor-prognostic AML receiving a novel regimen of busulfan (16 mg/kg), cytarabine (8,000 mg/m(2)), and cyclophosphamide (120 mg/kg) (BAC), followed by URD BMT.
  • Adverse features included unfavorable cytogenetics (49%), secondary AML (47%), leukemia at transplant (42%), and extramedullary disease (16%).
  • At time of BMT, 23 were in remission (12 CR1) while 22 had leukemia.
  • Acute and chronic GVHD rates were 44 and 67%, respectively.
  • Seventeen (38%) were disease-free 52 months post-BMT; 13 were leukemia-free (eight CR1) at transplant.
  • Secondary leukemia, cytogenetics, cell dose, and GVHD did not influence outcome.
  • In poor-risk AML, BAC provided cytoreduction comparable to reported TBI-containing regimens, when administered for URD BMT.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / administration & dosage. Bone Marrow Transplantation. Leukemia, Myeloid, Acute / therapy. Tissue Donors. Transplantation Conditioning
  • [MeSH-minor] Acute Disease. Adult. Chronic Disease. Disease-Free Survival. Doxorubicin / administration & dosage. Doxorubicin / adverse effects. Factor XIII / administration & dosage. Factor XIII / adverse effects. Female. Fibrinogen / administration & dosage. Fibrinogen / adverse effects. Follow-Up Studies. Graft vs Host Disease / etiology. Graft vs Host Disease / mortality. Humans. Male. Middle Aged. Recurrence. Remission Induction. Retrospective Studies. Thrombin / administration & dosage. Thrombin / adverse effects. Transplantation, Homologous


53. Cole M, Strair R: Acute myelogenous leukemia and myelodysplasia secondary to breast cancer treatment: case studies and literature review. Am J Med Sci; 2010 Jan;339(1):36-40
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Acute myelogenous leukemia and myelodysplasia secondary to breast cancer treatment: case studies and literature review.
  • BACKGROUND AND PURPOSE: Chemotherapy and radiation therapy for breast cancer are known to increase the risk of developing a myelodysplastic syndrome (MDS) and/or acute myelogenous leukemia (AML).
  • Radiation therapy adds to the risk, and there is speculation that granulocyte colony-stimulating factor (G-CSF) may also predispose to leukemia.
  • The purpose of this systemic review is to bring to the attention of family physicians the unintended consequence of leukemia secondary to aggressively treated breast cancer.
  • METHODS: The medical records of several patients from Robert Wood Johnson University Hospital, with previously treated breast cancer admitted for therapy for AML or myelodysplasia, were reviewed.
  • RESULTS: Cases of patients whose AML was likely secondary to their treatment for breast cancer were used to illustrate the role of chemotherapy, radiation therapy, and perhaps G-CSF in the development of leukemia.
  • CONCLUSIONS: Chemotherapy and radiation therapy administered for breast cancer predispose patients to the development of MDS or AML.
  • We hypothesize that the breast cancer (BRCA) gene mutations might add to the risk and that primary care physicians must be aware of the long-term risks of cytotoxic therapy, including the development of MDS or AML.
  • [MeSH-major] Breast Neoplasms / drug therapy. Breast Neoplasms / radiotherapy. Leukemia, Myeloid, Acute / etiology. Myelodysplastic Syndromes / etiology


54. Kalaycio M, Rybicki L, Pohlman B, Sobecks R, Andresen S, Kuczkowski E, Bolwell B: Risk factors before autologous stem-cell transplantation for lymphoma predict for secondary myelodysplasia and acute myelogenous leukemia. J Clin Oncol; 2006 Aug 1;24(22):3604-10
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Risk factors before autologous stem-cell transplantation for lymphoma predict for secondary myelodysplasia and acute myelogenous leukemia.
  • PURPOSE: The risk factors for treatment-related myelodysplastic syndrome (t-MDS) and acute myelogenous leukemia (AML) after autologous stem-cell transplantation (ASCT) are similar to those that increase the risk of difficult stem-cell harvests.
  • We reviewed our experience in 526 patients with lymphoma treated by ASCT to determine whether difficult stem-cell harvests predict for an increased risk of t-MDS/AML.
  • RESULTS: With a median follow-up time for surviving patients of 69 months, 20 patients developed t-MDS/AML, for an actuarial incidence of 6.8% at 10 years.
  • Pretransplantation characteristics, including age, diagnosis of non-Hodgkin's lymphoma or Hodgkin's disease, bone marrow involvement, prior radiation therapy, prior exposure to chemotherapy, lactate dehydrogenase at the time of ASCT, disease status, and method of stem-cell mobilization, were then analyzed with respect to the subsequent development of t-MDS/AML.
  • By multivariable analysis, prior exposure to radiation therapy, four or more chemotherapy regimens, and more than 5 days of apheresis needed to harvest enough stem cells were identified as independent risk factors for t-MDS/AML.
  • CONCLUSION: These results suggest that identifiable pretransplantation factors predict for t-MDS/AML after ASCT.
  • [MeSH-major] Leukemia, Myeloid, Acute / etiology. Lymphoma / surgery. Myelodysplastic Syndromes / etiology. Peripheral Blood Stem Cell Transplantation


55. Varet B, Ifrah N: [Criteria for suspecting a myelodysplastic syndrome]. Rev Prat; 2010 Dec 20;60(10):1404-7
MedlinePlus Health Information. consumer health - Myelodysplastic Syndromes.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The myelodysplastic syndromes are a group of heterogeneous acquired and clonal disorders that are characterized by the intramedullar, abnormal death of myeloid progenitors leading to peripheral variable cytopenias.
  • It is predictive for the risk of transformation in secondary acute myeloid leukemia.

  • Genetic Alliance. consumer health - Myelodysplastic syndromes.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 21425539.001).
  • [ISSN] 0035-2640
  • [Journal-full-title] La Revue du praticien
  • [ISO-abbreviation] Rev Prat
  • [Language] fre
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] France
  •  go-up   go-down


56. Podgornik H, Debeljak M, Zontar D, Cernelc P, Prestor VV, Jazbec J: RUNX1 amplification in lineage conversion of childhood B-cell acute lymphoblastic leukemia to acute myelogenous leukemia. Cancer Genet Cytogenet; 2007 Oct 1;178(1):77-81
MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] RUNX1 amplification in lineage conversion of childhood B-cell acute lymphoblastic leukemia to acute myelogenous leukemia.
  • Amplification of RUNX1 (alias AML1) is a recurrent karyotypic abnormality in childhood acute lymphoblastic leukemia (ALL) that is generally associated with a poor outcome.
  • It does not occur with other primary chromosomal abnormalities in acute ALL.
  • AML1 amplification in acute myelogenous leukemia (AML) is a rare secondary event described mainly in therapy-related cases.
  • AML1 amplification was found in a 13-year-old patient with AML M4/M5 leukemia that occurred 5 years after she had been diagnosed with common B-cell ALL.
  • Conventional cytogenetic, fluorescent in situ hybridization (FISH), and polymerase chain reaction methods revealed no other chromosomal change expected to occur in a disease that we assumed to be a secondary leukemia.
  • [MeSH-major] Core Binding Factor Alpha 2 Subunit / genetics. Gene Expression Regulation, Neoplastic. Leukemia, B-Cell / genetics. Leukemia, B-Cell / pathology. Leukemia, Myeloid, Acute / genetics. Leukemia, Myeloid, Acute / pathology. Precursor Cell Lymphoblastic Leukemia-Lymphoma / genetics. Precursor Cell Lymphoblastic Leukemia-Lymphoma / pathology


57. Larson RA: Is secondary leukemia an independent poor prognostic factor in acute myeloid leukemia? Best Pract Res Clin Haematol; 2007 Mar;20(1):29-37
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Is secondary leukemia an independent poor prognostic factor in acute myeloid leukemia?
  • Secondary leukemia is a poorly defined term that often refers to the development of acute myeloid leukemia (AML) following the history of a previous disease, such as a myelodysplastic syndrome or a chronic myeloproliferative disorder.
  • Secondary leukemia can also be a consequence of treatment with chemotherapy, including alkylating agents and topoisomerase II inhibitors, and/or radiotherapy, or due to exposure to environmental carcinogens.
  • Outcomes for this large and variable group of patients with secondary AML have been poor compared to people who develop AML de novo.
  • The question arises whether a diagnosis of secondary leukemia per se indicates a poor prognosis or whether their bad outcomes result from an association with certain morphologic and biologic characteristics.
  • Morphologic dysplasia in de novo AML is related to unfavorable cytogenetics, but has no independent prognostic relevance under the conditions of intensive chemotherapy.
  • While there is no significant correlation between cytogenetic risk groups and dysplasia, cytogenetic features do have an impact on outcome among both de novo and secondary AML patients.
  • In various subgroups of secondary AML, the spectrum of cytogenetic abnormalities is similar to de novo AML, but the frequency of abnormalities associated with unfavorable and intermediate risk cytogenetics, such as a complex karyotype, trisomy 8, monosomy 7, and others, is higher in secondary AML.
  • The survival of patients with therapy-related myeloid leukemia (t-AML) is generally shorter than for those with de novo AML within the same cytogenetic risk group.
  • Across the population of t-AML, however, survival varies according to cytogenetic risk group, with longer survival in patients with favorable-risk karyotypes.
  • The term secondary AML is too broad and imprecise to be of importance and should not be used.
  • These AML patients should be enrolled on front-line chemotherapy trials and should be stratified by pretreatment disease status and exposure history, if necessary.
  • [MeSH-major] Chromosome Aberrations. Leukemia, Myeloid / drug therapy. Leukemia, Myeloid / genetics
  • [MeSH-minor] Acute Disease. Humans. Myelodysplastic Syndromes. Myeloproliferative Disorders. Neoplasms, Second Primary / drug therapy. Neoplasms, Second Primary / genetics. Prognosis. Survival Analysis

  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17336252.001).
  • [ISSN] 1521-6926
  • [Journal-full-title] Best practice & research. Clinical haematology
  • [ISO-abbreviation] Best Pract Res Clin Haematol
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] England
  • [Number-of-references] 23
  •  go-up   go-down


58. Bacher U, Haferlach T, Schoch C: Gain of 9p due to an unbalanced rearrangement der(9;18): a recurrent clonal abnormality in chronic myeloproliferative disorders. Cancer Genet Cytogenet; 2005 Jul 15;160(2):179-83
Genetic Alliance. consumer health - Chronic Myeloproliferative Disorders.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Three cases were diagnosed as polycythemia vera; one case presented with secondary acute myeloid leukemia following idiopathic osteomyelofibrosis.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15993276.001).
  • [ISSN] 0165-4608
  • [Journal-full-title] Cancer genetics and cytogenetics
  • [ISO-abbreviation] Cancer Genet. Cytogenet.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


59. Schoen C, Unzicker C, Stuhler G, Elias J, Einsele H, Grigoleit GU, Abele-Horn M, Mielke S: Life-threatening infection caused by daptomycin-resistant Corynebacterium jeikeium in a neutropenic patient. J Clin Microbiol; 2009 Jul;47(7):2328-31
MedlinePlus Health Information. consumer health - Antibiotics.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Here we report, for the first time, the isolation of a highly daptomycin-resistant strain of Corynebacterium jeikeium causing a life-threatening infection in a neutropenic patient undergoing cord blood transplantation for secondary acute myeloid leukemia.
  • [MeSH-minor] Cord Blood Stem Cell Transplantation / adverse effects. Humans. Leukemia, Myeloid, Acute / complications. Male. Microbial Sensitivity Tests. Middle Aged

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Scand J Infect Dis. 2006;38(4):290-2 [16709529.001]
  • [Cites] J Clin Microbiol. 2006 Feb;44(2):655-6 [16455939.001]
  • [Cites] J Clin Microbiol. 2006 Nov;44(11):4009-13 [17005748.001]
  • [Cites] JAMA. 2007 Oct 17;298(15):1763-71 [17940231.001]
  • [Cites] J Antimicrob Chemother. 2008 Feb;61(2):461-2 [18156605.001]
  • [Cites] Antimicrob Agents Chemother. 2008 Mar;52(3):1167-70 [18180351.001]
  • [Cites] Lancet. 2002 May 25;359(9320):1819-27 [12044378.001]
  • [Cites] Microbiology. 2003 Jan;149(Pt 1):67-75 [12576581.001]
  • [Cites] Clin Microbiol Infect. 2003 Dec;9(12):1179-86 [14686982.001]
  • [Cites] J Antimicrob Chemother. 2004 Apr;53(4):669-74 [14985278.001]
  • [Cites] Antimicrob Agents Chemother. 2004 Jun;48(6):2149-52 [15155214.001]
  • [Cites] Antimicrob Agents Chemother. 1989 Oct;33(10):1783-90 [2556079.001]
  • [Cites] Clin Microbiol Rev. 1997 Jan;10(1):125-59 [8993861.001]
  • [Cites] Chemotherapy. 1998 Jul-Aug;44(4):230-7 [9681199.001]
  • [Cites] J Antimicrob Chemother. 2005 Mar;55(3):283-8 [15705644.001]
  • [Cites] J Bacteriol. 2005 Jul;187(13):4671-82 [15968079.001]
  • [Cites] Clin Infect Dis. 2005 Aug 15;41(4):565-6 [16028170.001]
  • [Cites] Curr Opin Microbiol. 2005 Oct;8(5):510-7 [16098786.001]
  • [Cites] Antimicrob Agents Chemother. 2006 Jun;50(6):2137-45 [16723576.001]
  • (PMID = 19420177.001).
  • [ISSN] 1098-660X
  • [Journal-full-title] Journal of clinical microbiology
  • [ISO-abbreviation] J. Clin. Microbiol.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Anti-Bacterial Agents; NWQ5N31VKK / Daptomycin
  • [Other-IDs] NLM/ PMC2708472
  •  go-up   go-down


60. Sonneck K, Mannhalter C, Krauth MT, Sperr WR, Schwarzinger I, Fonatsch C, Haas O, Geissler K, Valent P: An unusual case of myelodysplastic syndrome with prolonged clonal stability, indolent clinical course over a decade, and spontaneous regression of AML in the terminal phase. Eur J Haematol; 2005 Jul;75(1):73-7
MedlinePlus Health Information. consumer health - Myelodysplastic Syndromes.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] An unusual case of myelodysplastic syndrome with prolonged clonal stability, indolent clinical course over a decade, and spontaneous regression of AML in the terminal phase.
  • An unusual case of secondary acute myeloid leukemia (AML) with indolent clinical course is described.
  • In 2001, transformation to secondary AML with an increase in bone marrow blasts (>20%) and thrombocytopenia, was found.
  • However, the bone marrow still showed AML with >20% blasts.
  • [MeSH-major] Leukemia, Myeloid, Acute / physiopathology. Myelodysplastic Syndromes / complications

  • Genetic Alliance. consumer health - Myelodysplastic syndromes.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) Blackwell Munksgaard 2005.
  • (PMID = 15946315.001).
  • [ISSN] 0902-4441
  • [Journal-full-title] European journal of haematology
  • [ISO-abbreviation] Eur. J. Haematol.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Denmark
  • [Chemical-registry-number] 0 / Receptors, Androgen
  •  go-up   go-down


61. NAKAMURA S, TAKEICHI T, YAMANAKA C, SHICHIJO K, TAKAHASHI K, HIASA Y, MATSUSHITA T, HORIUCHI N, TAMAKI Y, KIMURA S, FUJIMOTO H, MASUDA K, SHINOMIYA S: Multiple hepatocellular carcinomas developed 15 months after commencement of chemotherapy for elderly acute myelogenous leukemia. Rinsho Ketsueki; 2009 Nov;50(11):1616-20
Hazardous Substances Data Bank. CYTARABINE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Multiple hepatocellular carcinomas developed 15 months after commencement of chemotherapy for elderly acute myelogenous leukemia.
  • In May 2006, a 72-year-old man with acute myelogenous leukemia (M4Eo) was admitted to our hospital.
  • He received chemotherapy according to the JALSG GML200 protocol, which led to complete remission; however, in January 2007, his leukemia recurred.
  • He eventually died because of aggressive enlargement of liver tumors during the following month accompanied by the simultaneous recurrence of leukemia and unsuccessful embolization of the hepatic artery.
  • Autopsy specimens showed fibrosis and considerable iron deposition in the liver, suggested secondary hemochromatosis due to transfusion.
  • Secondary hemochromatosis, androgen imbalance, and humoral factors from leukemic cells were believed to be the causes of the rapid onset and development of HCCs.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Carcinoma, Hepatocellular. Leukemia, Myeloid, Acute / drug therapy. Liver Neoplasms. Neoplasms, Second Primary

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • MedlinePlus Health Information. consumer health - Liver Cancer.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20009436.001).
  • [ISSN] 0485-1439
  • [Journal-full-title] [Rinshō ketsueki] The Japanese journal of clinical hematology
  • [ISO-abbreviation] Rinsho Ketsueki
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] Japan
  • [Chemical-registry-number] 0 / Androgen Antagonists; 04079A1RDZ / Cytarabine; 143011-72-7 / Granulocyte Colony-Stimulating Factor; 74KXF8I502 / Aclarubicin; CAG protocol
  •  go-up   go-down


62. Bryant BJ, Alperin JB, Elghetany MT: Paraplegia as the presenting manifestation of extramedullary megakaryoblastic transformation of previously undiagnosed chronic myelogenous leukemia. Am J Hematol; 2007 Feb;82(2):150-4
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Paraplegia as the presenting manifestation of extramedullary megakaryoblastic transformation of previously undiagnosed chronic myelogenous leukemia.
  • Extramedullary tumors, also known as granulocytic sarcomas (GS), occur most frequently in acute myelogenous leukemia (AML).
  • They may signal the onset of the accelerated phase of chronic myelogenous leukemia (CML) or the blastic transformation of a myeloproliferative disorder.
  • Occasionally, a GS may be the presenting sign of undiagnosed AML, and rarely the presenting sign of undiagnosed CML or aleukemic leukemia.
  • Paraplegia due to a spinal cord GS is an extremely rare presentation of undiagnosed leukemia.
  • Further immunohistochemical studies of the tumor were consistent with extramedullary acute megakaryoblastic blast transformation of CML.
  • The combination of acute paraplegia and megakaryoblastic transformation in a previously undiagnosed patient with CML is extremely rare and may pose a diagnostic dilemma.
  • [MeSH-major] Leukemia, Megakaryoblastic, Acute / pathology. Leukemia, Myelogenous, Chronic, BCR-ABL Positive / pathology. Lymphocyte Activation. Paraplegia / pathology. Spinal Cord Compression / pathology. Spinal Cord Neoplasms / pathology
  • [MeSH-minor] Combined Modality Therapy. Female. Humans. Middle Aged. Splenic Neoplasms / diagnosis. Splenic Neoplasms / pathology. Splenic Neoplasms / secondary. Splenic Neoplasms / therapy

  • Genetic Alliance. consumer health - Paraplegia.
  • MedlinePlus Health Information. consumer health - Chronic Myeloid Leukemia.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2006 Wiley-Liss, Inc.
  • (PMID = 17019692.001).
  • [ISSN] 0361-8609
  • [Journal-full-title] American journal of hematology
  • [ISO-abbreviation] Am. J. Hematol.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


63. Monreal MB, Pardo ML, Pavlovsky MA, Fernandez I, Corrado CS, Giere I, Sapia S, Pavlovsky S: Increased immature hematopoietic progenitor cells CD34+/CD38dim in myelodysplasia. Cytometry B Clin Cytom; 2006 Mar;70(2):63-70
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • METHODS: We analyzed the expression of CD38 and HLA-DR on CD34+ cells by flow cytometry in 36 patients with MDS, as well as in healthy donors (n = 12) and patients with other hematological disorders: non-Hodgkin lymphomas and multiple myeloma, both in complete remission (CR) (n = 32); acute lymphoblastic leukemia in CR (n = 17); de novo acute myeloblastic leukemia (AML) at diagnosis (n = 22) and in CR (n = 37); and AML secondary to MDS at diagnosis (n = 19).
  • RESULTS: Compared to normal BM, the fraction of immature HPC, characterized as CD34+bright, intermediate FSC/SSC, and CD38dim, was significantly increased in high risk MDS and secondary AML, but not in low risk MDS, (P < or = 0.001, P = 0.03, and P = 0.7).
  • De novo AML showed decreased immature HPC.
  • Increased immature HPC in high risk MDS and secondary AML may reflect blocked differentiation of CD34+ cells in these diseases.
  • [MeSH-minor] Adult. Aged. Aged, 80 and over. Cell Differentiation. Disease Progression. Female. Flow Cytometry. HLA-DR Antigens / immunology. Humans. Leukemia, Myeloid, Acute / diagnosis. Leukemia, Myeloid, Acute / immunology. Lymphoma, Non-Hodgkin / diagnosis. Lymphoma, Non-Hodgkin / immunology. Male. Middle Aged. Multiple Myeloma / diagnosis. Multiple Myeloma / immunology. Observer Variation. Phenotype. Precursor Cell Lymphoblastic Leukemia-Lymphoma / diagnosis. Precursor Cell Lymphoblastic Leukemia-Lymphoma / immunology. Prognosis. Reproducibility of Results. Risk Factors

  • MedlinePlus Health Information. consumer health - Myelodysplastic Syndromes.
  • MedlinePlus Health Information. consumer health - Stem Cells.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright 2005 International Society for Analytical Cytology.
  • (PMID = 16470534.001).
  • [ISSN] 1552-4949
  • [Journal-full-title] Cytometry. Part B, Clinical cytometry
  • [ISO-abbreviation] Cytometry B Clin Cytom
  • [Language] eng
  • [Publication-type] Evaluation Studies; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antigens, CD34; 0 / HLA-DR Antigens; EC 3.2.2.5 / Antigens, CD38
  •  go-up   go-down


64. Pyatt DW, Aylward LL, Hays SM: Is age an independent risk factor for chemically induced acute myelogenous leukemia in children? J Toxicol Environ Health B Crit Rev; 2007 Sep-Oct;10(5):379-400
MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Is age an independent risk factor for chemically induced acute myelogenous leukemia in children?
  • Secondary or therapy-related acute myelogenous leukemia (t-AML) is a rare but unfortunate consequence of treatment with certain classes of cytotoxic chemotherapeutic agents or chronic exposure to high concentrations of benzene.
  • Drugs known to produce AML following chemotherapy of primary malignancy are usually alkylating agents or topoisomerase II inhibitors.
  • Both children and adults develop AML following treatment with these classes of antineoplastic drugs.
  • In this review, the effect of age at treatment on a child's susceptibility to developing therapy related AML was investigated.
  • As demonstrated in the published literature, the risk of developing AML following chemotherapy is not reliably correlated with the age of the pediatric patient.
  • The age dependency of treatment-related malignancies (all types) in children appears to vary considerably with the type of secondary neoplasm in question.
  • For example, secondary solid tumors such as breast, central nervous system (CNS), bone, and thyroid cancer are highly dependent on the age of the patient at time of diagnosis and treatment; in contrast, an age dependency for t-AML risk was not observed in these same patient populations.
  • Predictably, the induction of t-AML in children follows a rational dose-response relationship, with increasing doses of chemotherapy resulting in greater risk. Recent U.S.
  • Available scientific and medical literature does not support the hypothesis that children necessarily possess an increased risk of developing AML following leukemogenic chemical exposure.
  • [MeSH-major] Antineoplastic Agents, Alkylating / adverse effects. Leukemia, Myeloid, Acute / chemically induced. Leukemia, Myeloid, Acute / epidemiology. Neoplasms, Second Primary / epidemiology

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17687725.001).
  • [ISSN] 1521-6950
  • [Journal-full-title] Journal of toxicology and environmental health. Part B, Critical reviews
  • [ISO-abbreviation] J Toxicol Environ Health B Crit Rev
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents, Alkylating; 0 / Topoisomerase II Inhibitors
  • [Number-of-references] 92
  •  go-up   go-down


65. Preiss BS, Bergmann OJ, Friis LS, Sørensen AG, Frederiksen M, Gadeberg OV, Mourits-Andersen T, Oestergaard B, Kerndrup GB, AML Study Group of Southern Denmark: Cytogenetic findings in adult secondary acute myeloid leukemia (AML): frequency of favorable and adverse chromosomal aberrations do not differ from adult de novo AML. Cancer Genet Cytogenet; 2010 Oct 15;202(2):108-22
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Cytogenetic findings in adult secondary acute myeloid leukemia (AML): frequency of favorable and adverse chromosomal aberrations do not differ from adult de novo AML.
  • During a 15-year period, 161 adult patients were diagnosed with secondary acute myeloid leukemia (s-AML) in the region of Southern Denmark.
  • In 73 patients, the AML diagnosis was preceded by myelodysplastic syndrome (MDS-AML), in 31 patients by an antecedent hematologic disease, and in 57 patients by treatment with chemotherapy and/or irradiation (t-AML).
  • MDS-AML correlated to a normal karyotype (P < 0.001).
  • t-AML correlated to abnormal clones with numerical and structural aberrations (P = 0.03), five or more unrelated aberrations (P = 0.03), marker chromosomes (P = 0.006), abnormal mitoses only (P = 0.01), female sex (P < 0.001), and -7 (P = 0.006).
  • The frequencies of aberrations in s-AML patients were compared with an age-matched group of de novo AML patients diagnosed in the same area and period.
  • In this comparison, s-AML only correlated to -7 (P = 0.02).
  • In 42 patients, we found that MDS patients with an abnormal karyotype were more likely to show cytogenetic evolution during progression to AML than MDS patients with a normal karyotype (P = 0.01).
  • We conclude that population-based cytogenetic studies of adult s-AML and age- and sex-matched de novo AML show comparable distributions of chromosome abnormalities.
  • [MeSH-major] Chromosome Aberrations. Cytogenetic Analysis. Leukemia, Myeloid, Acute / genetics. Neoplasms, Second Primary / genetics


66. Then Bergh F, Niklas A, Strauss A, von Ahsen N, Niederwieser D, Schwarz J, Wagner A, Al-Ali HK: Rapid progression of Myelodysplastic syndrome to acute myeloid leukemia on sequential azathioprine, IFN-beta and copolymer-1 in a patient with multiple sclerosis. Acta Haematol; 2006;116(3):207-10
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Rapid progression of Myelodysplastic syndrome to acute myeloid leukemia on sequential azathioprine, IFN-beta and copolymer-1 in a patient with multiple sclerosis.
  • Within several months, unusually rapid for this subtype, MDS progressed to secondary acute myeloid leukemia.
  • [MeSH-major] Azathioprine / adverse effects. Interferon-beta / adverse effects. Leukemia, Myeloid / chemically induced. Multiple Sclerosis / complications. Multiple Sclerosis / drug therapy. Myelodysplastic Syndromes / complications. Peptides / adverse effects
  • [MeSH-minor] Acute Disease. Disease Progression. Fatal Outcome. Female. Glatiramer Acetate. Humans. Middle Aged


67. Aguilera SB, Zarraga M, Rosen L: Leukemia cutis in a patient with acute myelogenous leukemia: a case report and review of the literature. Cutis; 2010 Jan;85(1):31-6
MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Leukemia cutis in a patient with acute myelogenous leukemia: a case report and review of the literature.
  • Leukemia cutis is an infiltration of malignant neoplastic leukocytes or their precursors into the epidermis, dermis, or subcutis.
  • Acute myelogenous leukemia (AML) is the second most common cause of leukemia cutis and the most common leukemia among adults.
  • In the elderly population, AML presents a challenge to the medical community because of the number of preexisting comorbid conditions and the safety profile of useful chemotherapeutic agents.
  • [MeSH-major] Leukemia, Myeloid, Acute / pathology. Leukemic Infiltration. Skin / pathology
  • [MeSH-minor] Aged. Humans. Male. Remission Induction / methods. Secondary Prevention

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20184209.001).
  • [ISSN] 0011-4162
  • [Journal-full-title] Cutis
  • [ISO-abbreviation] Cutis
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  •  go-up   go-down


68. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Massé A, Kosmider O, Le Couedic JP, Robert F, Alberdi A, Lécluse Y, Plo I, Dreyfus FJ, Marzac C, Casadevall N, Lacombe C, Romana SP, Dessen P, Soulier J, Viguié F, Fontenay M, Vainchenker W, Bernard OA: Mutation in TET2 in myeloid cancers. N Engl J Med; 2009 May 28;360(22):2289-301
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Mutation in TET2 in myeloid cancers.
  • BACKGROUND: The myelodysplastic syndromes and myeloproliferative disorders are associated with deregulated production of myeloid cells.
  • METHODS: We conducted a combination of molecular, cytogenetic, comparative-genomic-hybridization, and single-nucleotide-polymorphism analyses to identify a candidate tumor-suppressor gene common to patients with myelodysplastic syndromes, myeloproliferative disorders, and acute myeloid leukemia (AML).
  • RESULTS: We initially identified deletions or mutations in TET2 in three patients with myelodysplastic syndromes, in three of five patients with myeloproliferative disorders, in two patients with primary AML, and in one patient with secondary AML.
  • We selected the six patients with myelodysplastic syndromes or AML because they carried acquired rearrangements on chromosome 4q24; we selected the five patients with myeloproliferative disorders because they carried a dominant clone in hematopoietic progenitor cells that was positive for the V617F mutation in the Janus kinase 2 (JAK2) gene.
  • TET2 defects were observed in 15 of 81 patients with myelodysplastic syndromes (19%), in 24 of 198 patients with myeloproliferative disorders (12%) (with or without the JAK2 V617F mutation), in 5 of 21 patients with secondary AML (24%), and in 2 of 9 patients with chronic myelomonocytic leukemia (22%).
  • CONCLUSIONS: Somatic mutations in TET2 occur in about 15% of patients with various myeloid cancers.
  • [MeSH-major] DNA-Binding Proteins / genetics. Leukemia, Myeloid, Acute / genetics. Mutation. Myelodysplastic Syndromes / genetics. Myeloproliferative Disorders / genetics. Proto-Oncogene Proteins / genetics


69. Barresi V, Palumbo GA, Musso N, Consoli C, Capizzi C, Meli CR, Romano A, Di Raimondo F, Condorelli DF: Clonal selection of 11q CN-LOH and CBL gene mutation in a serially studied patient during MDS progression to AML. Leuk Res; 2010 Nov;34(11):1539-42
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Clonal selection of 11q CN-LOH and CBL gene mutation in a serially studied patient during MDS progression to AML.
  • By conventional metaphase and SNP array cytogenetics we serially studied a patient affected by high-risk myelodysplastic syndrome (MDS), documenting the conversion from partial trisomy 8q to trisomy 8 and partial tetrasomy 8q during progression to acute myeloid leukemia (AML).
  • Moreover, the serial application of high resolution genomic array analysis at different disease stages allowed the description of cryptic abnormalities and the demonstration of their enrichment in the AML phase.
  • In particular the detection and quantification of a copy-neutral loss of heterozygosity region located in chromosome 11q guided the search for point mutations in the CBL gene, thus allowing the escription of the novel missense mutation K382E and the demonstration of its selection during progression to secondary AML.
  • [MeSH-major] Chromosomes, Human, Pair 11. Leukemia, Myeloid, Acute / genetics. Loss of Heterozygosity. Myelodysplastic Syndromes / genetics. Proto-Oncogene Proteins c-cbl / genetics

  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • MedlinePlus Health Information. consumer health - Myelodysplastic Syndromes.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2010 Elsevier Ltd. All rights reserved.
  • (PMID = 20674974.001).
  • [ISSN] 1873-5835
  • [Journal-full-title] Leukemia research
  • [ISO-abbreviation] Leuk. Res.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] EC 6.3.2.- / CBL protein, human; EC 6.3.2.- / Proto-Oncogene Proteins c-cbl
  •  go-up   go-down


70. D'Andrea AD: Targeting DNA repair pathways in AML. Best Pract Res Clin Haematol; 2010 Dec;23(4):469-73
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Targeting DNA repair pathways in AML.
  • DNA repair inhibitors, such as poly-ADP-ribose polymerase (PARP) inhibitors, may be useful in a small subset of acute myeloid leukemia (AML) patients, especially those who have complex karyotypes or those with secondary AML.
  • [MeSH-major] Antineoplastic Agents / therapeutic use. DNA Repair / drug effects. Enzyme Inhibitors / therapeutic use. Leukemia, Myeloid, Acute / drug therapy. Leukemia, Myeloid, Acute / metabolism

  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • MedlinePlus Health Information. consumer health - Cancer Chemotherapy.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2010 Elsevier Ltd. All rights reserved.
  • (PMID = 21130409.001).
  • [ISSN] 1532-1924
  • [Journal-full-title] Best practice & research. Clinical haematology
  • [ISO-abbreviation] Best Pract Res Clin Haematol
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Biomarkers, Tumor; 0 / Enzyme Inhibitors; 0 / Poly(ADP-ribose) Polymerase Inhibitors; EC 2.4.2.30 / Poly(ADP-ribose) Polymerases
  •  go-up   go-down


71. Tam CS, Seymour JF, Prince HM, Kenealy M, Wolf M, Januszewicz EH, Westerman D: Treatment-related myelodysplasia following fludarabine combination chemotherapy. Haematologica; 2006 Nov;91(11):1546-50
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Although myelodysplasia (MDS) and secondary acute myeloid leukemia (sAML) are rare following fludarabine monotherapy, the risk of these diseases may potentially be increased when fludarabine is combined with cyclophosphamide or mitoxantrone due to synergistic effects on the inhibition of DNA repair.

  • MedlinePlus Health Information. consumer health - Myelodysplastic Syndromes.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. FLUDARABINE .
  • Hazardous Substances Data Bank. VIDARABINE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17082012.001).
  • [ISSN] 1592-8721
  • [Journal-full-title] Haematologica
  • [ISO-abbreviation] Haematologica
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Italy
  • [Chemical-registry-number] FA2DM6879K / Vidarabine; P2K93U8740 / fludarabine
  •  go-up   go-down


72. Nakai K, Kanda Y, Fukuhara S, Sakamaki H, Okamoto S, Kodera Y, Tanosaki R, Takahashi S, Matsushima T, Atsuta Y, Hamajima N, Kasai M, Kato S: Value of chemotherapy before allogeneic hematopoietic stem cell transplantation from an HLA-identical sibling donor for myelodysplastic syndrome. Leukemia; 2005 Mar;19(3):396-401
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The cumulative incidence of grade II-IV acute GVHD was 33%.
  • OS at 5 years was 57% for patients who underwent allo-SCT as a primary treatment for refractory anemia with excess blasts in transformation (RAEB-t) or secondary acute myeloid leukemia (AML) and 54% for those who underwent allo-SCT in remission after induction chemotherapy (P=0.81).
  • Although only a randomized controlled trial will be able to establish a definite conclusion, these results do not support the administration of induction chemotherapy for patients with RAEB-t or secondary AML before allo-SCT.


73. Usuki K, Nakasone H, Taoka K, Kida M, Iki S, Urabe A: [Transient chromosomal abnormalities following autologous peripheral blood stem cell transplantation for acute myelogenous leukemia]. Rinsho Ketsueki; 2007 Aug;48(8):618-23
MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Transient chromosomal abnormalities following autologous peripheral blood stem cell transplantation for acute myelogenous leukemia].
  • Twenty-three patients with acute myelogenous leukemia (AML) have received autologous hematopoietic stem cell transplantation (autoHSCT) in our institute from 1997 to 2005.
  • In these 4 patients with AML1/MTG8 or CBFbeta/MYH11 AML, RT-PCR findings using bone marrow cells were all negative when a cytogenetic abnormality was detected.
  • We present our finding together with a review of the literature on post-autoHSCT cytogenetic abnormalities not related to relapse or secondary leukemia/myelodysplastic syndrome.
  • [MeSH-major] Chromosome Aberrations. Leukemia, Myeloid, Acute / therapy. Peripheral Blood Stem Cell Transplantation / adverse effects

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • Genetic Alliance. consumer health - Transplantation.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17867297.001).
  • [ISSN] 0485-1439
  • [Journal-full-title] [Rinshō ketsueki] The Japanese journal of clinical hematology
  • [ISO-abbreviation] Rinsho Ketsueki
  • [Language] jpn
  • [Publication-type] English Abstract; Journal Article; Review
  • [Publication-country] Japan
  • [Number-of-references] 16
  •  go-up   go-down


74. Creutzig U, Diekamp S, Zimmermann M, Reinhardt D: Longitudinal evaluation of early and late anthracycline cardiotoxicity in children with AML. Pediatr Blood Cancer; 2007 Jun 15;48(7):651-62
MedlinePlus Health Information. consumer health - Heart Diseases.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Longitudinal evaluation of early and late anthracycline cardiotoxicity in children with AML.
  • BACKGROUND: Anthracyclines are effective antineoplastic drugs in acute myelogenous leukemia (AML).
  • PROCEDURE: To evaluate anthracycline-associated cardiomyopathy in pediatric AML-patients, the incidence of early and late (>1 year after intensive AML chemotherapy) clinical and subclinical cardiotoxicity was analyzed out of a total of 1,207 patients <18 years treated between 1993 and 2003 in trials AML-BFM93/98: 1,010 protocol patients with de novo AML, 121 with Down syndrome (DS)-AML, and 76 with secondary AML.
  • RESULTS: Thirty-eight patients (4.3%), including 3 DS-AML and 1 secondary AML, suffered from early cardiomyopathy.
  • After 5 years, four patients showed temporarily or persistently a reduced shortening fraction, which led to death in one DS-AML patient.
  • Late clinical cardiomyopathy mainly affected patients with a second anthracycline therapy (secondary malignancy) and those with early cardiotoxicity.
  • CONCLUSION: In spite of a highly intensive and effective treatment, the frequency of anthracycline-associated cardiomyopathy was low in the AML-BFM studies.
  • [MeSH-major] Anthracyclines / adverse effects. Heart / drug effects. Heart Diseases / chemically induced. Leukemia, Myeloid / drug therapy
  • [MeSH-minor] Acute Disease. Adolescent. Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Child. Child, Preschool. Dose-Response Relationship, Drug. Drug-Related Side Effects and Adverse Reactions. Echocardiography / methods. Female. Follow-Up Studies. Humans. Infant. Longitudinal Studies. Male. Pilot Projects. Risk Factors. Survivors. Time. Treatment Outcome

  • MedlinePlus Health Information. consumer health - Heart Disease in Women.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] (c) 2006 Wiley-Liss, Inc.
  • [CommentIn] Pediatr Blood Cancer. 2007 Jun 15;48(7):649-50 [17318875.001]
  • (PMID = 17183582.001).
  • [ISSN] 1545-5009
  • [Journal-full-title] Pediatric blood & cancer
  • [ISO-abbreviation] Pediatr Blood Cancer
  • [Language] eng
  • [Publication-type] Clinical Trial; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Anthracyclines
  •  go-up   go-down


75. Makishima H, Cazzolli H, Szpurka H, Dunbar A, Tiu R, Huh J, Muramatsu H, O'Keefe C, Hsi E, Paquette RL, Kojima S, List AF, Sekeres MA, McDevitt MA, Maciejewski JP: Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J Clin Oncol; 2009 Dec 20;27(36):6109-16
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies.
  • PURPOSE: Acquired somatic uniparental disomy (UPD) is commonly observed in myelodysplastic syndromes (MDS), myelodysplastic/myeloproliferative neoplasms (MDS/MPN), or secondary acute myelogenous leukemia (sAML) and may point toward genes harboring mutations.
  • METHODS: We applied high-density SNP-A karyotyping to identify loss of heterozygosity of 11q in 442 patients with MDS, MDS/MPN, MPN, sAML evolved from these conditions, and primary AML.
  • RESULTS: We identified c-Cbl mutations in 5% and 9% of patients with chronic myelomonocytic leukemia (CMML) and sAML, and also in CML blast crisis and juvenile myelomonocytic leukemia (JMML).
  • CONCLUSION: Mutations in the Cbl family RING finger domain or linker sequence constitute important pathogenic lesions associated with not only preleukemic CMML, JMML, and other MPN, but also progression to AML, suggesting that impairment of degradation of activated tyrosine kinases constitutes an important cancer mechanism.

  • COS Scholar Universe. author profiles.
  • Faculty of 1000. commentaries/discussion - See the articles recommended by F1000Prime's Faculty of more than 8,000 leading experts in Biology and Medicine. (subscription/membership/fee required).
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Leukemia. 2009 Mar;23(3):610-4 [18818701.001]
  • [Cites] Haematologica. 2008 Oct;93(10):1595-7 [18698078.001]
  • [Cites] Nat Genet. 2004 Sep;36(9):949-51 [15286789.001]
  • [Cites] Oncogene. 1991 Apr;6(4):653-7 [2030914.001]
  • [Cites] Mol Cell Biol. 1998 Aug;18(8):4872-82 [9671496.001]
  • [Cites] Lancet. 2005 Mar 19-25;365(9464):1054-61 [15781101.001]
  • [Cites] Cancer Cell. 2005 Apr;7(4):387-97 [15837627.001]
  • [Cites] N Engl J Med. 2005 Apr 28;352(17):1779-90 [15858187.001]
  • [Cites] Nat Rev Mol Cell Biol. 2005 Dec;6(12):907-18 [16227975.001]
  • [Cites] Blood. 2006 Feb 1;107(3):1242-3 [16434499.001]
  • [Cites] PLoS Genet. 2005 Dec;1(6):e49 [16444292.001]
  • [Cites] Blood. 2006 Mar 1;107(5):1791-9 [16254134.001]
  • [Cites] J Cell Physiol. 2006 Oct;209(1):21-43 [16741904.001]
  • [Cites] Blood. 2006 Oct 1;108(7):2173-81 [16741247.001]
  • [Cites] PLoS Med. 2006 Jul;3(7):e270 [16834459.001]
  • [Cites] Am J Surg Pathol. 2007 Feb;31(2):233-9 [17255768.001]
  • [Cites] Blood. 2007 Aug 1;110(3):1004-12 [17446348.001]
  • [Cites] Blood. 2007 Aug 1;110(3):1022-4 [17475912.001]
  • [Cites] Leukemia. 2007 Sep;21(9):2058-61 [17525728.001]
  • [Cites] Blood. 2007 Nov 1;110(9):3365-73 [17634407.001]
  • [Cites] PLoS One. 2007;2(11):e1225 [18030353.001]
  • [Cites] Blood. 2008 Feb 1;111(3):1534-42 [17954704.001]
  • [Cites] N Engl J Med. 2008 May 1;358(18):1909-18 [18450602.001]
  • [Cites] Blood. 2008 Aug 15;112(4):965-74 [18505780.001]
  • [Cites] Semin Oncol. 2008 Aug;35(4):365-77 [18692687.001]
  • [Cites] Leukemia. 2008 Aug;22(8):1539-41 [18528419.001]
  • [Cites] Cancer Res. 2008 Dec 15;68(24):10349-57 [19074904.001]
  • [Cites] Blood. 2008 Sep 1;112(5):2017-9 [18566322.001]
  • [Cites] Curr Opin Hematol. 2001 Jul;8(4):189-91 [11561153.001]
  • (PMID = 19901108.001).
  • [ISSN] 1527-7755
  • [Journal-full-title] Journal of clinical oncology : official journal of the American Society of Clinical Oncology
  • [ISO-abbreviation] J. Clin. Oncol.
  • [Language] ENG
  • [Grant] United States / NHLBI NIH HHS / HL / K24 HL077522; United States / NHLBI NIH HHS / HL / R01 HL082983; United States / NCRR NIH HHS / RR / U54 RR019391; United States / NHLBI NIH HHS / HL / K24 HL-077522; United States / NHLBI NIH HHS / HL / R01HL-082983; United States / NCRR NIH HHS / RR / S10 RR019391
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] EC 6.3.2.- / Proto-Oncogene Proteins c-cbl
  • [Other-IDs] NLM/ PMC3040009
  •  go-up   go-down


76. Bhally HS, Lema C, Romagnoli M, Borek A, Wakefield T, Carroll KC: Leptotrichia buccalis bacteremia in two patients with acute myelogenous leukemia. Anaerobe; 2005 Dec;11(6):350-3
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Leptotrichia buccalis bacteremia in two patients with acute myelogenous leukemia.
  • We report two patients with clinically significant L. buccalis bacteremia which developed during the neutropenia secondary to chemotherapy.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16701598.001).
  • [ISSN] 1075-9964
  • [Journal-full-title] Anaerobe
  • [ISO-abbreviation] Anaerobe
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


77. Nevill TJ, Shepherd JD, Sutherland HJ, Abou Mourad YR, Lavoie JC, Barnett MJ, Nantel SH, Toze CL, Hogge DE, Forrest DL, Song KW, Power MM, Nitta JY, Dai Y, Smith CA: IPSS poor-risk karyotype as a predictor of outcome for patients with myelodysplastic syndrome following myeloablative stem cell transplantation. Biol Blood Marrow Transplant; 2009 Feb;15(2):205-13
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • A retrospective review was performed of 156 patients who underwent SCT (114 BM, 42 BSC) for MDS or secondary acute myelogenous leukemia (sAML) at our institution.
  • Multivariate analysis showed IPSS poor-risk cytogenetics (P< .001), time from diagnosis to SCT (P< .001), FAB subgroup (P= .001), recipients not in complete remission (CR1) at SCT (P= .005), and the development of acute graft-versus-host disease (aGVHD) (P= .04) were all predictive of an inferior EFS.
  • The FAB subgroup (P= .002), poor-risk karyotype (P= .004), and non-CR1 status also correlated with ROR in multivariate analysis.


78. Rison RA: Ascending sensory motor polyradiculoneuropathy with cranial nerve involvement following administration of intrathecal methotrexate and intravenous cytarabine in a patient with acute myelogenous leukemia: a case report*. Cases J; 2008;1(1):255

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Ascending sensory motor polyradiculoneuropathy with cranial nerve involvement following administration of intrathecal methotrexate and intravenous cytarabine in a patient with acute myelogenous leukemia: a case report*.
  • BACKGROUND: Acute inflammatory polyradiculoneuropathy secondary to chemotherapy for leukemia has been described in the pediatric literature.
  • However, the reports are rare and have been mainly from intrathecal methotrexate in pediatric acute lymphoblastic leukemia patients who developed demyelinating polyradiculoneuropathy.
  • CASE PRESENTATION: A case report is presented of an unfortunate 53 year old Hispanic woman with acute myelogenous leukemia who developed profound weakness with cranial nerve palsies following both intravenous and intrathecal chemotherapy.
  • CONCLUSION: This is an interesting and unusual case of predominantly axonal ascending sensory motor polyradiculoneuropathy with cranial nerve involvement in an adult patient with acute myelogenous leukemia following intravenous Cytosine arabinoside and intrathecal methotrexate.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Klin Padiatr. 2006 Nov-Dec;218(6):350-4 [17080338.001]
  • [Cites] J Infect Chemother. 2006 Jun;12(3):148-51 [16826348.001]
  • [Cites] J Clin Oncol. 1999 Oct;17(10):3110-6 [10506606.001]
  • [Cites] Cancer. 1996 Nov 1;78(9):1899-905 [8909309.001]
  • [Cites] Muscle Nerve. 1995 Jun;18(6):636-48 [7753127.001]
  • [Cites] Bone Marrow Transplant. 1987 Aug;2(2):203-7 [3332167.001]
  • [Cites] Muscle Nerve. 2002 Jan;25(1):106-10 [11754193.001]
  • [Cites] Arch Phys Med Rehabil. 1988 Dec;69(12):1054-6 [3214264.001]
  • [Cites] Ann Neurol. 1990;27 Suppl:S7-12 [2194431.001]
  • [Cites] Cancer. 1982 Jul 1;50(1):42-7 [6177392.001]
  • [Cites] Cancer. 1976 Apr;37(4):1663-8 [946593.001]
  • [Cites] Med Princ Pract. 2003 Oct-Dec;12(4):272-5 [12966204.001]
  • [Cites] Neurol Clin. 2003 Feb;21(1):279-318, x [12690653.001]
  • [Cites] Cancer. 1986 Aug 15;58(4):852-4 [3013396.001]
  • (PMID = 18937872.001).
  • [ISSN] 1757-1626
  • [Journal-full-title] Cases journal
  • [ISO-abbreviation] Cases J
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Other-IDs] NLM/ PMC2577643
  •  go-up   go-down


79. Pidala J, Kim J, Anasetti C, Kharfan-Dabaja MA, Nishihori T, Field T, Perkins J, Perez L, Fernandez HF: Pharmacokinetic targeting of intravenous busulfan reduces conditioning regimen related toxicity following allogeneic hematopoietic cell transplantation for acute myelogenous leukemia. J Hematol Oncol; 2010;3:36
Hazardous Substances Data Bank. VIDARABINE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Pharmacokinetic targeting of intravenous busulfan reduces conditioning regimen related toxicity following allogeneic hematopoietic cell transplantation for acute myelogenous leukemia.
  • Optimal conditioning therapy for hematopoietic cell transplantation (HCT) in acute myelogenous leukemia (AML) remains undefined.
  • We retrospectively compared outcomes of a consecutive series of 51 AML patients treated with oral busulfan (1 mg/kg every 6 hours for 4 days) and cyclophosphamide (60 mg/kg IV × 2 days) - (Bu/Cy) with 100 consecutive AML patients treated with pharmacokinetic targeted IV busulfan (AUC < 6000 μM/L*min per day × 4 days) and fludarabine (40 mg/m2 × 4 days) - (t-IV Bu/Flu).
  • The Bu/Cy and t-IV Bu/Flu groups significantly differed according to donor relation, stem cell source, aGVHD prophylaxis, remission status, primary vs. secondary disease, median age, and % blasts prior to HCT (p < 0.01 for each).
  • However, multivariable analysis did not demonstrate significant differences in overall survival (p = 0.78) or non-relapse mortality (p = 0.6) according to conditioning regimen delivered.
  • [MeSH-major] Busulfan / pharmacokinetics. Hematopoietic Stem Cell Transplantation. Leukemia, Myeloid, Acute / therapy. Transplantation Conditioning

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • Genetic Alliance. consumer health - Transplantation.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. FLUDARABINE .
  • Hazardous Substances Data Bank. CYCLOPHOSPHAMIDE .
  • Hazardous Substances Data Bank. BUSULFAN .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Biol Blood Marrow Transplant. 2002;8(9):468-76 [12374451.001]
  • [Cites] Expert Opin Drug Metab Toxicol. 2009 Aug;5(8):957-69 [19611402.001]
  • [Cites] Bone Marrow Transplant. 2003 Jun;31(12):1089-95 [12796788.001]
  • [Cites] Blood. 2003 Aug 1;102(3):820-6 [12676781.001]
  • [Cites] Blood. 2004 Aug 1;104(3):857-64 [15073038.001]
  • [Cites] Ann Intern Med. 1993 Feb 15;118(4):255-67 [8420443.001]
  • [Cites] Bone Marrow Transplant. 1995 Jun;15(6):825-8 [7581076.001]
  • [Cites] Bone Marrow Transplant. 1996 Feb;17(2):225-30 [8640171.001]
  • [Cites] Blood. 1998 Nov 15;92(10):3599-604 [9808553.001]
  • [Cites] J Clin Oncol. 2005 Aug 20;23(24):5728-38 [16009946.001]
  • [Cites] J Clin Oncol. 2005 Aug 20;23(24):5675-87 [16110027.001]
  • [Cites] Cancer. 2005 Nov 1;104(9):1931-8 [16178004.001]
  • [Cites] Biol Blood Marrow Transplant. 2005 Dec;11(12):945-56 [16338616.001]
  • [Cites] J Clin Oncol. 2005 Dec 20;23(36):9387-93 [16314618.001]
  • [Cites] Leukemia. 2006 Feb;20(2):322-8 [16307018.001]
  • [Cites] Blood. 2006 Aug 1;108(3):1092-9 [16551971.001]
  • [Cites] Bone Marrow Transplant. 2007 Sep;40(6):541-7 [17637692.001]
  • [Cites] J Clin Oncol. 2008 Feb 1;26(4):577-84 [18086801.001]
  • [Cites] Bone Marrow Transplant. 2008 Apr;41(8):721-7 [18176613.001]
  • [Cites] Biol Blood Marrow Transplant. 2008 Jun;14(6):672-84 [18489993.001]
  • [Cites] Biol Blood Marrow Transplant. 2008 Sep;14(9):993-1003 [18721762.001]
  • [Cites] Blood. 2003 Mar 1;101(5):2043-8 [12406916.001]
  • (PMID = 20925957.001).
  • [ISSN] 1756-8722
  • [Journal-full-title] Journal of hematology & oncology
  • [ISO-abbreviation] J Hematol Oncol
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 8N3DW7272P / Cyclophosphamide; FA2DM6879K / Vidarabine; G1LN9045DK / Busulfan; P2K93U8740 / fludarabine
  • [Other-IDs] NLM/ PMC2958877
  •  go-up   go-down


80. Brakensiek K, Länger F, Schlegelberger B, Kreipe H, Lehmann U: Hypermethylation of the suppressor of cytokine signalling-1 (SOCS-1) in myelodysplastic syndrome. Br J Haematol; 2005 Jul;130(2):209-17
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • In contrast to acute myeloid leukaemia (AML), comparably little is known about aberrant methylation in myelodysplastic syndrome (MDS), a heterogeneous clonal stem cell disorder with a risk of transformation into secondary AML of up to 30%.
  • Demethylation experiments provided direct evidence that aberrant methylation of SOCS-1 induces transcriptional silencing in myeloid cells.
  • [MeSH-minor] Acute Disease. Cell Differentiation. DNA Methylation. Down-Regulation. Granulocytes / metabolism. Humans. Leukemia, Myeloid / genetics. Leukemia, Myeloid / metabolism. Neoplasm Proteins / metabolism. Polymerase Chain Reaction / methods. Protein-Tyrosine Kinases / metabolism. Signal Transduction. Suppressor of Cytokine Signaling Proteins. Tumor Cells, Cultured

  • Genetic Alliance. consumer health - Myelodysplastic syndromes.
  • MedlinePlus Health Information. consumer health - Myelodysplastic Syndromes.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16029449.001).
  • [ISSN] 0007-1048
  • [Journal-full-title] British journal of haematology
  • [ISO-abbreviation] Br. J. Haematol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Intracellular Signaling Peptides and Proteins; 0 / Neoplasm Proteins; 0 / Repressor Proteins; 0 / SOCS1 protein, human; 0 / Suppressor of Cytokine Signaling Proteins; EC 2.7.10.1 / Protein-Tyrosine Kinases
  •  go-up   go-down


81. Grundy M, Seedhouse C, Shang S, Richardson J, Russell N, Pallis M: The FLT3 internal tandem duplication mutation is a secondary target of the aurora B kinase inhibitor AZD1152-HQPA in acute myelogenous leukemia cells. Mol Cancer Ther; 2010 Mar;9(3):661-72
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The FLT3 internal tandem duplication mutation is a secondary target of the aurora B kinase inhibitor AZD1152-HQPA in acute myelogenous leukemia cells.
  • In this study, we report the effects of AZD1152-HQPA, a highly selective inhibitor of aurora-B kinase, in acute myeloid leukemia (AML) cell lines and primary samples.
  • We show that AZD1152-HQPA inhibits the phosphorylation of Histone H3 (pHH3) on serine 10 resulting in polyploid cells, apoptosis, and loss of viability in a panel of AML cell lines.
  • Internal tandem duplications (ITD) within the FLT3 tyrosine kinase receptor are found in approximately 25% of AML patients and are associated with a poor prognosis.
  • We show pHH3 expression in primary AML blasts and its inhibition by AZD1152-HQPA at low doses in all of our primary samples tested.
  • AZD1152-HQPA inhibits the clonogenic potential of primary AML samples, with FLT3-ITD samples being the most sensitive (P = 0.029).
  • We conclude that mutant FLT3 is a secondary target of AZD1152-HQPA and that FLT3-ITD primary samples are particularly sensitive to the drug.
  • [MeSH-major] Leukemia, Myeloid, Acute / drug therapy. Leukemia, Myeloid, Acute / genetics. Quinazolines / administration & dosage. Quinazolines / pharmacology. fms-Like Tyrosine Kinase 3 / genetics

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 20159992.001).
  • [ISSN] 1538-8514
  • [Journal-full-title] Molecular cancer therapeutics
  • [ISO-abbreviation] Mol. Cancer Ther.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / AZD 1152-HQPA; 0 / Antineoplastic Agents; 0 / Histones; 0 / Protein Kinase Inhibitors; 0 / Quinazolines; EC 2.7.10.1 / FLT3 protein, human; EC 2.7.10.1 / fms-Like Tyrosine Kinase 3; EC 2.7.11.1 / AURKB protein, human; EC 2.7.11.1 / Aurora Kinase B; EC 2.7.11.1 / Aurora Kinases; EC 2.7.11.1 / Protein-Serine-Threonine Kinases
  •  go-up   go-down


82. Récher C, Beyne-Rauzy O, Demur C, Chicanne G, Dos Santos C, Mas VM, Benzaquen D, Laurent G, Huguet F, Payrastre B: Antileukemic activity of rapamycin in acute myeloid leukemia. Blood; 2005 Mar 15;105(6):2527-34
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Antileukemic activity of rapamycin in acute myeloid leukemia.
  • In this study, we show that mTOR inhibition by rapamycin strongly inhibits the growth of the most immature acute myeloid leukemia (AML) cell lines through blockade in G0/G1 phase of the cell cycle.
  • Accordingly, 2 downstream effectors of mTOR, 4E-BP1 and p70S6K, are phosphorylated in a rapamycin-sensitive manner in a series of 23 AML cases.
  • Interestingly, the mTOR inhibitor markedly impairs the clonogenic properties of fresh AML cells while sparing normal hematopoietic progenitors.
  • Moreover, rapamycin induces significant clinical responses in 4 of 9 patients with either refractory/relapsed de novo AML or secondary AML.
  • Overall, our data strongly suggest that mTOR is aberrantly regulated in most AML cells and that rapamycin and analogs, by targeting the clonogenic compartment of the leukemic clone, may be used as new compounds in AML therapy.
  • [MeSH-major] Antibiotics, Antineoplastic / pharmacology. G0 Phase / drug effects. G1 Phase / drug effects. Leukemia, Myeloid, Acute / metabolism. Protein Kinases / metabolism. Sirolimus / pharmacology

  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • COS Scholar Universe. author profiles.
  • ClinicalTrials.gov. clinical trials - ClinicalTrials.gov .
  • Hazardous Substances Data Bank. SIROLIMUS .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15550488.001).
  • [ISSN] 0006-4971
  • [Journal-full-title] Blood
  • [ISO-abbreviation] Blood
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Adaptor Proteins, Signal Transducing; 0 / Antibiotics, Antineoplastic; 0 / EIF4EBP1 protein, human; 0 / Phosphoproteins; EC 2.7.- / Protein Kinases; EC 2.7.1.1 / MTOR protein, human; EC 2.7.1.1 / TOR Serine-Threonine Kinases; EC 2.7.11.1 / Ribosomal Protein S6 Kinases, 70-kDa; W36ZG6FT64 / Sirolimus
  •  go-up   go-down


83. Reiter A, Walz C, Watmore A, Schoch C, Blau I, Schlegelberger B, Berger U, Telford N, Aruliah S, Yin JA, Vanstraelen D, Barker HF, Taylor PC, O'Driscoll A, Benedetti F, Rudolph C, Kolb HJ, Hochhaus A, Hehlmann R, Chase A, Cross NC: The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res; 2005 Apr 1;65(7):2662-7
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2.
  • We have identified a t(8;9)(p21-23;p23-24) in seven male patients (mean age 50, range 32-74) with diverse hematologic malignancies and clinical outcomes: atypical chronic myeloid leukemia/chronic eosinophilic leukemia (n = 5), secondary acute myeloid leukemia (n = 1), and pre-B-cell acute lymphoblastic leukemia (n = 1).
  • [MeSH-major] Cell Cycle Proteins / genetics. Chromosomes, Human, Pair 8 / genetics. Chromosomes, Human, Pair 9 / genetics. Leukemia, Myelogenous, Chronic, BCR-ABL Positive / genetics. Leukemia, Myeloid / genetics. Oncogene Proteins, Fusion / genetics. Protein-Tyrosine Kinases / genetics. Proto-Oncogene Proteins / genetics. Translocation, Genetic
  • [MeSH-minor] Acute Disease. Adult. Aged. Amino Acid Sequence. Autoantigens. Base Sequence. Humans. Janus Kinase 2. Male. Middle Aged. Molecular Sequence Data. Reverse Transcriptase Polymerase Chain Reaction

  • MedlinePlus Health Information. consumer health - Chronic Myeloid Leukemia.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15805263.001).
  • [ISSN] 0008-5472
  • [Journal-full-title] Cancer research
  • [ISO-abbreviation] Cancer Res.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Autoantigens; 0 / Cell Cycle Proteins; 0 / Oncogene Proteins, Fusion; 0 / PCM1 protein, human; 0 / PCM1-JAK2 fusion protein, human; 0 / Proto-Oncogene Proteins; EC 2.7.10.1 / Protein-Tyrosine Kinases; EC 2.7.10.2 / JAK2 protein, human; EC 2.7.10.2 / Janus Kinase 2
  •  go-up   go-down


84. Seedhouse CH, Grundy M, White P, Li Y, Fisher J, Yakunina D, Moorman AV, Hoy T, Russell N, Burnett A, Pallis M, National Cancer Research Network: Sequential influences of leukemia-specific and genetic factors on p-glycoprotein expression in blasts from 817 patients entered into the National Cancer Research Network acute myeloid leukemia 14 and 15 trials. Clin Cancer Res; 2007 Dec 1;13(23):7059-66
ClinicalTrials.gov. clinical trials - ClinicalTrials.gov .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Sequential influences of leukemia-specific and genetic factors on p-glycoprotein expression in blasts from 817 patients entered into the National Cancer Research Network acute myeloid leukemia 14 and 15 trials.
  • PURPOSE: P-glycoprotein (Pgp) is a major prognostic factor for chemotherapy failure in acute myeloid leukemia (AML).
  • This study compared the influence of genetic and leukemia-specific factors on Pgp.
  • RESULTS: Age, low WBC count, high bcl-2, secondary AML and myelodysplastic syndrome, and adverse cytogenetics all correlated strongly with high Pgp (MRK16) protein expression.
  • Moreover, leukemia-specific factors, such as low WBC count and poor risk cytogenetics, have a much greater effect than genetic polymorphisms on Pgp expression in AML blasts.
  • [MeSH-major] Leukemia, Myeloid, Acute / metabolism. Leukemia, Myeloid, Acute / pathology. P-Glycoprotein / biosynthesis

  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 18056183.001).
  • [ISSN] 1078-0432
  • [Journal-full-title] Clinical cancer research : an official journal of the American Association for Cancer Research
  • [ISO-abbreviation] Clin. Cancer Res.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / ABCB1 protein, human; 0 / P-Glycoprotein; 0 / P-Glycoproteins; 0 / Proto-Oncogene Proteins c-bcl-2
  •  go-up   go-down


85. Natelson EA: Benzene-induced acute myeloid leukemia: a clinician's perspective. Am J Hematol; 2007 Sep;82(9):826-30
Hazardous Substances Data Bank. BENZENE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Benzene-induced acute myeloid leukemia: a clinician's perspective.
  • Benzene-induced acute myeloid leukemia (AML) is considered a secondary form of AML, based both in theory and on limited cohort observations.
  • Its latency, cytogenetic aberrations, and clinical features are thought similar to, or identical with, AML resulting from the use of modern day cytotoxic agents for chemotherapy and immunotherapy.
  • Although distinction between secondary AML and the far more common de novo AML is difficult to establish with certainty in any given case, latency from toxic therapeutic and environmental exposure and certain clinical and pathological features generally separate these two entities.
  • AML is the only human neoplasm proven to be potentially caused by benzene, which actually is an obsolete form of chemotherapy.
  • A review of benzene-induced AML suggests that, in developed countries, this entity should no longer merit serious consideration among workers in the modern petrochemical industry and related fields.
  • [MeSH-major] Attitude of Health Personnel. Benzene / adverse effects. Developed Countries. Drug-Related Side Effects and Adverse Reactions. Leukemia, Myeloid / etiology
  • [MeSH-minor] Acute Disease. Chromosome Aberrations / chemically induced. Chromosome Inversion. Chromosomes, Human, Pair 15. Chromosomes, Human, Pair 16. Chromosomes, Human, Pair 17. Chromosomes, Human, Pair 21. Chromosomes, Human, Pair 8. Humans. Occupational Diseases / chemically induced. Occupational Diseases / epidemiology. Occupational Exposure / adverse effects. Occupational Exposure / analysis. Petroleum / adverse effects. Translocation, Genetic

  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • MedlinePlus Health Information. consumer health - Drug Reactions.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] 2007 Wiley-Liss, Inc
  • (PMID = 17506065.001).
  • [ISSN] 0361-8609
  • [Journal-full-title] American journal of hematology
  • [ISO-abbreviation] Am. J. Hematol.
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Petroleum; J64922108F / Benzene
  • [Number-of-references] 79
  •  go-up   go-down


86. Eguchi M, Eguchi-Ishimae M, Knight D, Kearney L, Slany R, Greaves M: MLL chimeric protein activation renders cells vulnerable to chromosomal damage: an explanation for the very short latency of infant leukemia. Genes Chromosomes Cancer; 2006 Aug;45(8):754-60
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] MLL chimeric protein activation renders cells vulnerable to chromosomal damage: an explanation for the very short latency of infant leukemia.
  • MLL fusion genes are a predominant feature of acute leukemias in infants and in secondary acute myeloid leukemia (AML) associated with prior chemotherapy with topo-II poisons.
  • [MeSH-major] Chromosome Aberrations. DNA Damage. Leukemia / genetics. Myeloid-Lymphoid Leukemia Protein / metabolism. Oncogene Proteins, Fusion / metabolism

  • MedlinePlus Health Information. consumer health - Leukemia.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. TAMOXIFEN .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16688745.001).
  • [ISSN] 1045-2257
  • [Journal-full-title] Genes, chromosomes & cancer
  • [ISO-abbreviation] Genes Chromosomes Cancer
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Estrogen Antagonists; 0 / MLL-ENL oncoprotein, human; 0 / Oncogene Proteins, Fusion; 094ZI81Y45 / Tamoxifen; 149025-06-9 / Myeloid-Lymphoid Leukemia Protein; 17197F0KYM / afimoxifene
  •  go-up   go-down


87. Grudeva-Popova J, Yaneva M, Zisov K, Ananoshtev N: Therapy-related acute promyelocytic leukemia after treatment with radioiodine for thyroid cancer: case report with literature review. J BUON; 2007 Jan-Mar;12(1):129-32
MedlinePlus Health Information. consumer health - Thyroid Cancer.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Therapy-related acute promyelocytic leukemia after treatment with radioiodine for thyroid cancer: case report with literature review.
  • Therapy-related acute promyelocytic leukemia (t-APL) is a rare but known complication of chemotherapy and/or radiation therapy.
  • The patient's excellent response to treatment supports the data of the relevant literature that t-APL is associated with a better therapeutic result than the other subtypes of secondary acute myeloid leukemia (AML).
  • [MeSH-major] Iodine Radioisotopes / adverse effects. Leukemia, Promyelocytic, Acute / etiology. Neoplasms, Radiation-Induced / etiology. Thyroid Neoplasms / radiotherapy

  • Genetic Alliance. consumer health - Acute Promyelocytic Leukemia.
  • Genetic Alliance. consumer health - Thyroid Cancer.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17436415.001).
  • [ISSN] 1107-0625
  • [Journal-full-title] Journal of B.U.ON. : official journal of the Balkan Union of Oncology
  • [ISO-abbreviation] J BUON
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article; Review
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / Iodine Radioisotopes
  • [Number-of-references] 19
  •  go-up   go-down


88. Dale DC: Advances in the treatment of neutropenia. Curr Opin Support Palliat Care; 2009 Sep;3(3):207-12
COS Scholar Universe. author profiles.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Current guidelines recommend the prophylactic use of the myeloid growth factors for the first cycle of chemotherapy for patients with more than a 20% risk of febrile neutropenia.
  • Meta analysis from randomized trials shows that granulocyte colony-stimulating factor prophylaxis is associated with patients receiving more intensive chemotherapy, having better survival, but also having a higher risk of secondary acute myeloid leukemia.
  • SUMMARY: The myeloid growth factor granulocyte colony-stimulating factor has radically changed our approach to the prevention of febrile neutropenia.

  • MedlinePlus Health Information. consumer health - Cancer Chemotherapy.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Crit Rev Oncol Hematol. 2008 Jun;66(3):237-47 [18243010.001]
  • [Cites] Niger J Med. 2008 Jan-Mar;17(1):57-60 [18390135.001]
  • [Cites] Ann Oncol. 2008 May;19 Suppl 2:ii116-8 [18456747.001]
  • [Cites] J Support Oncol. 2008 May-Jun;6(5):199-208 [18551855.001]
  • [Cites] Infection. 2008 Jun;36(3):250-5 [18458815.001]
  • [Cites] Am J Med. 2008 Aug;121(8):709-14 [18691485.001]
  • [Cites] Scand J Infect Dis. 2008;40(4):301-7 [17918015.001]
  • [Cites] Drugs. 2008;68(14):1941-62 [18778118.001]
  • [Cites] Clin Infect Dis. 2008 Nov 1;47(9):1176-84 [18808352.001]
  • [Cites] J Clin Pharm Ther. 2008 Oct;33(5):459-64 [18834359.001]
  • [Cites] Eur J Clin Microbiol Infect Dis. 2008 Oct;27(10):969-76 [18449581.001]
  • [Cites] Cochrane Database Syst Rev. 2008;(4):CD003189 [18843642.001]
  • [Cites] Am J Clin Oncol. 2008 Aug;31(4):369-74 [18845996.001]
  • [Cites] Pediatr Blood Cancer. 2008 Dec;51(6):778-83 [18726920.001]
  • [Cites] Br J Haematol. 2008 Oct;143(2):222-9 [18713253.001]
  • [Cites] Int J Antimicrob Agents. 2008 Nov;32 Suppl 2:S119-23 [19013335.001]
  • [Cites] Blood. 2008 Dec 1;112(12):4445-51 [18799726.001]
  • [Cites] Bone Marrow Transplant. 2008 Nov;42(10):679-84 [18695660.001]
  • [Cites] Lancet Oncol. 2008 Dec;9(12):1157-65 [19038762.001]
  • [Cites] Curr Opin Hematol. 2009 Jan;16(1):1-2 [19057197.001]
  • [Cites] N Engl J Med. 2009 Jan 1;360(1):3-5 [19118300.001]
  • [Cites] J Natl Compr Canc Netw. 2009 Jan;7(1):92-8 [19176209.001]
  • [Cites] J Natl Compr Canc Netw. 2009 Jan;7(1):99-108 [19176210.001]
  • [Cites] Br J Haematol. 2009 Feb;144(4):459-67 [19120359.001]
  • [Cites] Br J Haematol. 2009 Mar;144(5):677-85 [19055662.001]
  • [Cites] Support Care Cancer. 2009 Jun;17(6):735-44 [19096882.001]
  • [Cites] Am J Hematol. 2009 Jul;84(7):414-7 [19415727.001]
  • [Cites] Value Health. 2009 Mar-Apr;12(2):217-25 [18673353.001]
  • [Cites] Blood. 1996 Jul 1;88(1):335-40 [8704192.001]
  • [Cites] Am J Hematol. 1998 Jan;57(1):7-15 [9423810.001]
  • [Cites] J Clin Oncol. 2006 Jul 1;24(19):3187-205 [16682719.001]
  • [Cites] J Natl Compr Canc Netw. 2007 Feb;5(2):188-202 [17335688.001]
  • [Cites] Pharmacoeconomics. 2007;25(4):343-51 [17402806.001]
  • [Cites] Ann Intern Med. 2007 May 1;146(9):657-65 [17470834.001]
  • [Cites] Curr Opin Hematol. 2008 Jan;15(1):15-21 [18043241.001]
  • [Cites] Support Care Cancer. 2008 Jan;16(1):47-56 [17619911.001]
  • [Cites] Vox Sang. 2007 Nov;93(4):363-9 [18070282.001]
  • [Cites] Ann Hematol. 2008 Feb;87(2):139-45 [17938926.001]
  • [Cites] Br J Haematol. 2008 Jan;140(2):210-3 [18028488.001]
  • [Cites] Eur J Cancer Care (Engl). 2008 Jan;17(1):19-25 [18181887.001]
  • [Cites] J Clin Oncol. 2008 Jan 10;26(2):290-6 [18182670.001]
  • [Cites] Support Care Cancer. 2008 Feb;16(2):181-91 [17943327.001]
  • [Cites] J Natl Compr Canc Netw. 2008 Feb;6(2):109-18 [18319047.001]
  • [Cites] Value Health. 2008 Mar-Apr;11(2):172-9 [18380630.001]
  • [Cites] Eur J Oncol Nurs. 2008 Feb;12(1):14-25 [18291720.001]
  • (PMID = 19550332.001).
  • [ISSN] 1751-4266
  • [Journal-full-title] Current opinion in supportive and palliative care
  • [ISO-abbreviation] Curr Opin Support Palliat Care
  • [Language] eng
  • [Grant] United States / NIAID NIH HHS / AI / R24 AI049393; United States / NIAID NIH HHS / AI / R24 AI049393-09
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Recombinant Proteins; 143011-72-7 / Granulocyte Colony-Stimulating Factor
  • [Number-of-references] 48
  • [Other-IDs] NLM/ NIHMS202938; NLM/ PMC3390973
  •  go-up   go-down


89. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A: Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature; 2010 Dec 9;468(7325):839-43
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2.
  • The gene encoding TET2 resides at chromosome 4q24, in a region showing recurrent microdeletions and copy-neutral loss of heterozygosity (CN-LOH) in patients with diverse myeloid malignancies.
  • Somatic TET2 mutations are frequently observed in myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), MDS/MPN overlap syndromes including chronic myelomonocytic leukaemia (CMML), acute myeloid leukaemias (AML) and secondary AML (sAML).
  • We show here that TET2 mutations associated with myeloid malignancies compromise catalytic activity.
  • Our results demonstrate that Tet2 is important for normal myelopoiesis, and suggest that disruption of TET2 enzymatic activity favours myeloid tumorigenesis.
  • Measurement of 5hmC levels in myeloid malignancies may prove valuable as a diagnostic and prognostic tool, to tailor therapies and assess responses to anticancer drugs.


90. Ayala RM, Martínez-López J, Albízua E, Diez A, Gilsanz F: Clinical significance of Gata-1, Gata-2, EKLF, and c-MPL expression in acute myeloid leukemia. Am J Hematol; 2009 Feb;84(2):79-86
MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Clinical significance of Gata-1, Gata-2, EKLF, and c-MPL expression in acute myeloid leukemia.
  • The aim of this study was to evaluate the biological correlation and prognostic impact of Gata-1, Gata-2, EKLF, and c-MPL transcript level in a group of 41 acute myeloid leukemia (AML) patients.
  • Expression of c-MPL was associated with CD34+ AML and M2 FAB AML subtype.
  • A higher expression of EKLF was found in secondary AML versus primary AML.
  • Our study has identified expression of EKLF as a factor with a favorable impact on prognosis in AML.
  • [MeSH-major] GATA1 Transcription Factor / physiology. GATA2 Transcription Factor / physiology. Gene Expression Regulation, Neoplastic. Kruppel-Like Transcription Factors / physiology. Leukemia, Myeloid, Acute / genetics. Neoplasm Proteins / physiology. Receptors, Thrombopoietin / physiology

  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 19097174.001).
  • [ISSN] 1096-8652
  • [Journal-full-title] American journal of hematology
  • [ISO-abbreviation] Am. J. Hematol.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / GATA1 Transcription Factor; 0 / GATA1 protein, human; 0 / GATA2 Transcription Factor; 0 / GATA2 protein, human; 0 / Kruppel-Like Transcription Factors; 0 / Neoplasm Proteins; 0 / Receptors, Thrombopoietin; 0 / erythroid Kruppel-like factor; 143641-95-6 / MPL protein, human
  •  go-up   go-down


91. Qian SX, Li JY, Tian T, Shen YF, Jiang YQ, Lu H, Wu HX, Zhang SJ, Xu W: Effect of low-dose cytarabine and aclarubicin in combination with granulocyte colony-stimulating factor priming (CAG regimen) on the outcome of elderly patients with acute myeloid leukemia. Leuk Res; 2007 Oct;31(10):1383-8
Hazardous Substances Data Bank. CYTARABINE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Effect of low-dose cytarabine and aclarubicin in combination with granulocyte colony-stimulating factor priming (CAG regimen) on the outcome of elderly patients with acute myeloid leukemia.
  • The aim of this study was to evaluate the efficacy and toxicity of low-dose cytarabine and aclarubicin in combination with granulocyte colony-stimulating factor (G-CSF) protocol in elderly patients with acute myeloid leukemia (AML).
  • The overall response rate was 72.0%, and 29 of 50 (58.0%) patients achieved complete remission, including 23 of 35 (65.8%) with previously untreated AML, 6 of 15 (40.0%) with refractory, relapsed or secondary AML, 4 of 8 (50.0%) aged over 70 years, 4 of 10 (40.0%) with unfavorable cytogenetic aberrations.
  • Thus CAG priming regimen as the induction therapy is well tolerated and effective in elderly patients with AML.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Leukemia, Myeloid / drug therapy
  • [MeSH-minor] Aclarubicin / therapeutic use. Acute Disease. Aged. Aged, 80 and over. Cytarabine / therapeutic use. Female. Granulocyte Colony-Stimulating Factor / therapeutic use. Humans. Kaplan-Meier Estimate. Male. Middle Aged. Treatment Outcome

  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17420048.001).
  • [ISSN] 0145-2126
  • [Journal-full-title] Leukemia research
  • [ISO-abbreviation] Leuk. Res.
  • [Language] eng
  • [Publication-type] Clinical Trial; Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 04079A1RDZ / Cytarabine; 143011-72-7 / Granulocyte Colony-Stimulating Factor; 74KXF8I502 / Aclarubicin; CAG protocol
  •  go-up   go-down


92. Rubio S, Martins C, Lacerda JF, Carmo JA, Lourenço F, Lacerda JM: Allogeneic stem cell transplantation in patients with myelodysplastic syndrome: outcome analysis according to the International Prognostic Scoring System. Acta Med Port; 2006 Sep-Oct;19(5):343-7
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • We determined the outcome of patients with myelodysplastic syndrome (MDS) and secondary acute myeloid leukemia (sAML) after allogeneic stem cell transplantation according to their international prognostic scoring system (IPSS) risk categories at diagnosis.
  • [MeSH-minor] Acute Disease. Adolescent. Adult. Female. Humans. Leukemia, Myeloid / surgery. Male. Middle Aged. Prognosis. Recurrence. Risk Assessment. Treatment Outcome


93. Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG, Sasaki M, Jin S, Schenkein DP, Su SM, Dang L, Fantin VR, Mak TW: Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med; 2010 Feb 15;207(2):339-44
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations.
  • Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2), are present in most gliomas and secondary glioblastomas, but are rare in other neoplasms.
  • Recently, IDH1 mutations were identified in 8% of acute myelogenous leukemia (AML) patients.
  • Genotyping of 145 AML biopsies identified 11 IDH1 R132 mutant samples.
  • The IDH1 R132C mutation commonly found in AML reduces the affinity for isocitrate, and increases the affinity for NADPH and alpha-KG.
  • IDH1/2 mutations confer an enzymatic gain of function that dramatically increases 2-HG in AML.


94. Stubbs MC, Kim YM, Krivtsov AV, Wright RD, Feng Z, Agarwal J, Kung AL, Armstrong SA: MLL-AF9 and FLT3 cooperation in acute myelogenous leukemia: development of a model for rapid therapeutic assessment. Leukemia; 2008 Jan;22(1):66-77
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] MLL-AF9 and FLT3 cooperation in acute myelogenous leukemia: development of a model for rapid therapeutic assessment.
  • Human leukemias harboring chromosomal translocations involving the mixed lineage leukemia (MLL, HRX, ALL-1) gene possess high-level expression, and frequent activating mutations of the receptor tyrosine kinase FLT3.
  • We demonstrate that MLL-AF9 expression induces acute myelogenous leukemia (AML) in approximately 70 days, whereas the combination of MLL-AF9 and FLT3-ITD does so in less than 30 days.
  • Secondary transplantation of splenic cells from diseased mice established that leukemia stem cells are present at a very high frequency of approximately 1:100 in both diseases.
  • Importantly, prospectively isolated granulocyte macrophage progenitors (GMPs) coinfected with MLL-AF9 and FLT3-ITD give rise to a similar AML, with shorter latency than from GMP transduced with MLL-AF9 alone.
  • These data show that activated FLT3 cooperates with MLL-AF9 to accelerate onset of an AML from whole bone marrow as well as a committed hematopoietic progenitor, and provide a new genetically defined model system that should prove useful for rapid assessment of potential therapeutics in vivo.

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Ann Hematol. 2004;83 Suppl 1:S75-6 [15124682.001]
  • [Cites] Semin Hematol. 2003 Oct;40(4):268-73 [14582077.001]
  • [Cites] Genes Dev. 2004 May 1;18(9):965-74 [15132992.001]
  • [Cites] Blood. 1993 May 1;81(9):2386-93 [8481519.001]
  • [Cites] Nature. 1994 Feb 17;367(6464):645-8 [7509044.001]
  • [Cites] Nature. 1994 Nov 10;372(6502):143-9 [7969446.001]
  • [Cites] Nucleic Acids Res. 1996 May 1;24(9):1787-8 [8650001.001]
  • [Cites] Blood. 1996 May 15;87(10):4025-39 [8639758.001]
  • [Cites] Cell. 1996 Jun 14;85(6):853-61 [8681380.001]
  • [Cites] Nat Med. 1997 Jul;3(7):730-7 [9212098.001]
  • [Cites] EMBO J. 1997 Jul 16;16(14):4226-37 [9250666.001]
  • [Cites] Science. 1997 Nov 7;278(5340):1059-64 [9353180.001]
  • [Cites] Annu Rev Genet. 1998;32:495-519 [9928489.001]
  • [Cites] EMBO J. 1999 Jul 1;18(13):3564-74 [10393173.001]
  • [Cites] Br J Haematol. 1999 Sep;106(3):614-26 [10468849.001]
  • [Cites] Curr Biol. 2004 Nov 23;14(22):2063-9 [15556871.001]
  • [Cites] Cancer Cell. 2004 Dec;6(6):587-96 [15607963.001]
  • [Cites] EMBO J. 2005 Jan 26;24(2):368-81 [15635450.001]
  • [Cites] J Clin Invest. 2005 Apr;115(4):919-29 [15761502.001]
  • [Cites] Blood. 2005 Jul 15;106(2):673-80 [15797998.001]
  • [Cites] Nature. 2006 Aug 17;442(7104):818-22 [16862118.001]
  • [Cites] Cancer Cell. 2006 Oct;10(4):257-68 [17045204.001]
  • [Cites] Blood. 2004 Feb 1;103(3):1085-8 [14504097.001]
  • [Cites] Blood. 2004 May 1;103(9):3544-6 [14670924.001]
  • [Cites] Genes Dev. 2003 Dec 15;17(24):3029-35 [14701873.001]
  • [Cites] Nature. 2000 Mar 9;404(6774):193-7 [10724173.001]
  • [Cites] N Engl J Med. 2001 Apr 5;344(14):1031-7 [11287972.001]
  • [Cites] Best Pract Res Clin Haematol. 2001 Mar;14(1):49-64 [11355923.001]
  • [Cites] Leukemia. 2001 Jun;15(6):987-9 [11417488.001]
  • [Cites] Science. 2001 Aug 3;293(5531):876-80 [11423618.001]
  • [Cites] Nat Genet. 2002 Jan;30(1):41-7 [11731795.001]
  • [Cites] Blood. 2002 Jan 1;99(1):310-8 [11756186.001]
  • [Cites] Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8283-8 [12060771.001]
  • [Cites] Cancer Cell. 2002 Mar;1(2):133-43 [12086872.001]
  • [Cites] Cancer Cell. 2002 Jun;1(5):433-43 [12124173.001]
  • [Cites] Blood. 2002 Sep 1;100(5):1532-42 [12176867.001]
  • [Cites] Annu Rev Genomics Hum Genet. 2002;3:179-98 [12194988.001]
  • [Cites] Cancer Cell. 2003 Feb;3(2):173-83 [12620411.001]
  • [Cites] Cancer Res. 2003 Aug 15;63(16):4882-7 [12941810.001]
  • [Cites] Nat Rev Cancer. 2003 Sep;3(9):639-49 [12951583.001]
  • [Cites] Nat Rev Cancer. 2003 Sep;3(9):650-65 [12951584.001]
  • [Cites] Blood. 2003 Sep 15;102(6):2198-204 [12791658.001]
  • (PMID = 17851551.001).
  • [ISSN] 1476-5551
  • [Journal-full-title] Leukemia
  • [ISO-abbreviation] Leukemia
  • [Language] ENG
  • [Grant] United States / NCI NIH HHS / CA / CA92551; United States / NCI NIH HHS / CA / CA092551-04; United States / NCI NIH HHS / CA / K08 CA092551; United States / NCI NIH HHS / CA / CA092551-05; United States / NCI NIH HHS / CA / K08 CA092551-05; United States / NCI NIH HHS / CA / K08 CA092551-04
  • [Publication-type] Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • [Publication-country] England
  • [Chemical-registry-number] 0 / MLL-AF9 fusion protein, human; 0 / Oncogene Proteins, Fusion; 149025-06-9 / Myeloid-Lymphoid Leukemia Protein; EC 1.13.12.- / Luciferases; EC 2.7.10.1 / FLT3 protein, human; EC 2.7.10.1 / fms-Like Tyrosine Kinase 3
  • [Other-IDs] NLM/ NIHMS230264; NLM/ PMC2936245
  •  go-up   go-down


95. Bielorai B, Meyer C, Trakhtenbrot L, Golan H, Rozner E, Amariglio N, Izraeli S, Marschalek R, Toren A: Therapy-related acute myeloid leukemia with t(2;11)(q37;q23) after treatment for osteosarcoma. Cancer Genet Cytogenet; 2010 Dec;203(2):288-91
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Therapy-related acute myeloid leukemia with t(2;11)(q37;q23) after treatment for osteosarcoma.
  • As the number of pediatric cancer survivors increases, there is a concern about the development of secondary malignant neoplasms.
  • Secondary acute myeloid leukemia (AML) has been rarely reported after treatment for OS.
  • We describe a 14-year-old boy with OS of the left ileum who developed secondary AML 15 months after completion of treatment.
  • Only the addition of the long-distance inverse polymerase chain reaction technique identified the SEPT2 as the MLL fusion partner resulting in t(2;11)(q37;q23) that was reported in a very few secondary AML cases.
  • Because long-distance inverse polymerase chain reaction is not available in most molecular laboratories, the true incidence of t(2;11)(q37;q23) and the involvement of SEPT2 as the MLL translocation partner could be more prevalent in secondary AML.
  • [MeSH-major] Bone Neoplasms / drug therapy. Bone Neoplasms / genetics. Chromosomes, Human, Pair 11. Chromosomes, Human, Pair 2. Leukemia, Myeloid, Acute / genetics. Osteosarcoma / drug therapy. Osteosarcoma / genetics. Translocation, Genetic


96. Mead AJ, Linch DC, Hills RK, Wheatley K, Burnett AK, Gale RE: FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood; 2007 Aug 15;110(4):1262-70
The Lens. Cited by Patents in .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia.
  • The prognostic impact of tyrosine kinase domain (TKD) mutations of the fms-like tyrosine kinase-3 (FLT3) gene in acute myeloid leukemia (AML) is currently uncertain.
  • To resolve this issue we screened 1107 young adult nonacute promyelocytic leukemia AML patients with known FLT3 internal tandem duplication (ITD) status for FLT3/TKDs; they were detected in 127 (11%) cases.
  • Mutations were associated with a high white cell count (P =.006) and patients with inv(16) (P = .005) but were infrequent in patients with adverse cytogenetics and secondary AML.
  • The novel finding that biologically distinct activating mutations of the same gene can be associated with markedly different clinical outcomes has implications for risk stratification and therapy and is significant to the understanding of chemoresistance in AML.
  • [MeSH-major] Gene Duplication. Leukemia, Myeloid / genetics. Mutation / genetics. Tandem Repeat Sequences / genetics. fms-Like Tyrosine Kinase 3 / genetics
  • [MeSH-minor] Acute Disease. Adolescent. Adult. Alleles. Amino Acid Substitution. Antimetabolites, Antineoplastic / therapeutic use. Cytarabine / therapeutic use. DNA Mutational Analysis. Female. Follow-Up Studies. Humans. In Situ Hybridization, Fluorescence. Male. Middle Aged. Prognosis. Survival Rate. Treatment Outcome

  • Genetic Alliance. consumer health - Leukemia, Myeloid.
  • COS Scholar Universe. author profiles.
  • Hazardous Substances Data Bank. CYTARABINE .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17456725.001).
  • [ISSN] 0006-4971
  • [Journal-full-title] Blood
  • [ISO-abbreviation] Blood
  • [Language] eng
  • [Grant] United Kingdom / Medical Research Council / / G0300133; United Kingdom / Medical Research Council / / G84/6443
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antimetabolites, Antineoplastic; 04079A1RDZ / Cytarabine; EC 2.7.10.1 / FLT3 protein, human; EC 2.7.10.1 / fms-Like Tyrosine Kinase 3
  •  go-up   go-down


97. Infante-Rivard C, Vermunt JK, Weinberg CR: Excess transmission of the NAD(P)H:quinone oxidoreductase 1 (NQO1) C609T polymorphism in families of children with acute lymphoblastic leukemia. Am J Epidemiol; 2007 Jun 1;165(11):1248-54
Hazardous Substances Data Bank. BENZENE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Excess transmission of the NAD(P)H:quinone oxidoreductase 1 (NQO1) C609T polymorphism in families of children with acute lymphoblastic leukemia.
  • Topoisomerase II is a DNA-processing enzyme, and secondary acute myeloid leukemia has been associated with exposure to drugs that inhibit its action.
  • Hence, prenatal exposure to chemicals that inhibit topoisomerase II could plausibly contribute to the incidence of childhood leukemia.
  • To assess its role in the etiology of childhood acute lymphoblastic leukemia, the authors studied transmission of the variant T allele in the families (parents and grandparents) of 657 affected children in Québec, Canada (1980-2000).
  • [MeSH-major] Family Health. Inheritance Patterns. NAD(P)H Dehydrogenase (Quinone) / genetics. Polymorphism, Genetic. Precursor Cell Lymphoblastic Leukemia-Lymphoma / epidemiology. Precursor Cell Lymphoblastic Leukemia-Lymphoma / genetics

  • Genetic Alliance. consumer health - Acute Lymphoblastic Leukemia.
  • COS Scholar Universe. author profiles.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Crit Rev Toxicol. 2002 May;32(3):155-210 [12071572.001]
  • [Cites] Blood. 2002 Dec 15;100(13):4590-3 [12393620.001]
  • [Cites] Am J Epidemiol. 2003 Jan 15;157(2):176-82 [12522025.001]
  • [Cites] Am J Hum Genet. 2003 Feb;72(2):438-47 [12533786.001]
  • [Cites] J Biol Chem. 2003 Mar 21;278(12):10368-73 [12529318.001]
  • [Cites] Int J Epidemiol. 2003 Feb;32(1):1-22 [12689998.001]
  • [Cites] Nat Rev Cancer. 2003 Sep;3(9):639-49 [12951583.001]
  • [Cites] Methods Enzymol. 2004;382:115-44 [15047100.001]
  • [Cites] Mutat Res. 2004 Mar;566(2):99-130 [15164977.001]
  • [Cites] Pediatr Blood Cancer. 2004 Oct;43(5):568-70 [15382274.001]
  • [Cites] Nature. 1993 May 27;363(6427):358-60 [8497319.001]
  • [Cites] Am J Hum Genet. 1993 Nov;53(5):1114-26 [8213835.001]
  • [Cites] Biotechniques. 1998 Feb;24(2):206-8, 210, 212 [9494715.001]
  • [Cites] Am J Hum Genet. 1998 Apr;62(4):969-78 [9529360.001]
  • [Cites] Am J Epidemiol. 1998 Nov 1;148(9):893-901 [9801020.001]
  • [Cites] Annu Rev Genet. 1998;32:495-519 [9928489.001]
  • [Cites] Am J Hum Genet. 1999 Apr;64(4):1186-93 [10090904.001]
  • [Cites] Pharmacogenetics. 1999 Feb;9(1):113-21 [10208650.001]
  • [Cites] Lancet. 1999 May 29;353(9167):1816-7 [10359403.001]
  • [Cites] Cancer Res. 1999 Aug 15;59(16):4095-9 [10463613.001]
  • [Cites] Epidemiology. 1999 Sep;10(5):481-7 [10468419.001]
  • [Cites] Haematologica. 2004 Dec;89(12):1492-7 [15590400.001]
  • [Cites] Eur J Hum Genet. 2005 Jan;13(1):79-85 [15470368.001]
  • [Cites] Leukemia. 2005 Feb;19(2):214-6 [15618957.001]
  • [Cites] Environ Health Perspect. 2005 Jun;113(6):787-92 [15929905.001]
  • [Cites] Chem Biol Interact. 2005 May 30;153-154:137-46 [15935810.001]
  • [Cites] Haematologica. 2005 Nov;90(11):1511-5 [16266898.001]
  • [Cites] J Biol Chem. 2006 Jul 21;281(29):19798-808 [16682409.001]
  • [Cites] Am J Hum Genet. 2000 Jan;66(1):251-61 [10631155.001]
  • [Cites] Am J Hum Genet. 2000 Jan;66(1):335-8 [10631165.001]
  • [Cites] Cancer Causes Control. 2000 Jul;11(6):547-53 [10880037.001]
  • [Cites] Am J Epidemiol. 2000 Sep 1;152(5):480-6 [10981463.001]
  • [Cites] Br J Cancer. 2000 Dec;83(11):1559-64 [11076669.001]
  • [Cites] Epidemiology. 2001 Jan;12(1):13-9 [11138808.001]
  • [Cites] Cancer Chemother Biol Response Modif. 2001;19:129-47 [11686011.001]
  • [Cites] Int J Cancer. 2002 Jan 10;97(2):230-6 [11774269.001]
  • [Cites] BMJ. 2002 Feb 2;324(7332):283-7 [11823363.001]
  • (PMID = 17332311.001).
  • [ISSN] 0002-9262
  • [Journal-full-title] American journal of epidemiology
  • [ISO-abbreviation] Am. J. Epidemiol.
  • [Language] eng
  • [Grant] United States / Intramural NIH HHS / / Z01 ES045005-11
  • [Publication-type] Journal Article; Research Support, N.I.H., Intramural; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  • [Chemical-registry-number] EC 1.6.5.2 / NAD(P)H Dehydrogenase (Quinone); EC 1.6.5.2 / NQO1 protein, human; J64922108F / Benzene
  • [Other-IDs] NLM/ NIHMS33454; NLM/ PMC2080583
  •  go-up   go-down


98. Olivieri A, Capelli D, Troiani E, Poloni A, Montanari M, Offidani M, Discepoli G, Leoni P: A new intensive induction schedule, including high-dose Idarubicin, high-dose Aracytin and Amifostine, in older AML patients: feasibility and long-term results in 42 patients. Exp Hematol; 2007 Jul;35(7):1074-82
Hazardous Substances Data Bank. AMIFOSTINE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] A new intensive induction schedule, including high-dose Idarubicin, high-dose Aracytin and Amifostine, in older AML patients: feasibility and long-term results in 42 patients.
  • OBJECTIVE: We evaluated the feasibility of a new regimen in elderly patients with acute myeloid leukemia (AML).
  • The main end points were overall response rate (ORR) and toxicity; secondary end points were feasibility of peripheral blood stem cells (PBSC) collection, leukemia-free survival, and overall survival (OS).
  • Patients with unfavorable cytogenetic and those with secondary AML had poorer OS; about 40% of patients could mobilize a sufficient amount of PBSC for autologous stem cell transplantation.
  • [MeSH-major] Antineoplastic Combined Chemotherapy Protocols / therapeutic use. Leukemia, Myeloid, Acute / drug therapy

  • MedlinePlus Health Information. consumer health - Acute Myeloid Leukemia.
  • Hazardous Substances Data Bank. CYTARABINE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 17588476.001).
  • [ISSN] 0301-472X
  • [Journal-full-title] Experimental hematology
  • [ISO-abbreviation] Exp. Hematol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 04079A1RDZ / Cytarabine; M487QF2F4V / Amifostine; ZRP63D75JW / Idarubicin
  •  go-up   go-down


99. Moser AM, Manor E, Narkis G, Kapelushnik J: Imatinib resistant chronic myelogenous leukemia, BCR-ABL positive by chromosome and FISH analyses but negative by PCR, in a child progressing to acute basophilic leukemia: cytogenetic follow-up. Cancer Genet Cytogenet; 2006 Oct 1;170(1):54-7
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Imatinib resistant chronic myelogenous leukemia, BCR-ABL positive by chromosome and FISH analyses but negative by PCR, in a child progressing to acute basophilic leukemia: cytogenetic follow-up.
  • The case of an 11-year-old child with adult-type chronic myeloid leukemia, Philadelphia (BCR-ABL) positive, reverse transcription-polymerase chain reaction negative for the major, minor, and micro breakpoints is presented.
  • In the course of 3 years, the child failed to respond to treatment with hydroxyurea, refused all therapy for 6 months, was intolerant to alpha-interferon and progressed, while on imatinib, to acute basophilic leukemia.
  • A secondary cytogenetic clonal evolution, i(17q), developed during hydroxyurea treatment and a tertiary clonal evolution, +8, was detected during imatinib treatment.
  • [MeSH-major] Antineoplastic Agents / therapeutic use. Genes, abl. Leukemia, Basophilic, Acute / surgery. Leukemia, Myelogenous, Chronic, BCR-ABL Positive / drug therapy. Leukemia, Myelogenous, Chronic, BCR-ABL Positive / genetics. Piperazines / therapeutic use. Pyrimidines / therapeutic use

  • Genetic Alliance. consumer health - Acute Myeloid Leukemia, Adult.
  • MedlinePlus Health Information. consumer health - Cancer Chemotherapy.
  • MedlinePlus Health Information. consumer health - Chronic Myeloid Leukemia.
  • Hazardous Substances Data Bank. IMATINIB MESYLATE .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 16965955.001).
  • [ISSN] 0165-4608
  • [Journal-full-title] Cancer genetics and cytogenetics
  • [ISO-abbreviation] Cancer Genet. Cytogenet.
  • [Language] eng
  • [Publication-type] Case Reports; Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Benzamides; 0 / Piperazines; 0 / Pyrimidines; 8A1O1M485B / Imatinib Mesylate
  •  go-up   go-down


100. Snyder DS, Stein AS, O'Donnell MR, Gaal K, Slovak ML, Forman SJ: Philadelphia chromosome-positive acute lymphoblastic leukemia secondary to chemoradiotherapy for Ewing sarcoma. Report of two cases and concise review of the literature. Am J Hematol; 2005 Jan;78(1):74-8
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Philadelphia chromosome-positive acute lymphoblastic leukemia secondary to chemoradiotherapy for Ewing sarcoma. Report of two cases and concise review of the literature.
  • Survivors of childhood solid tumors including Ewing sarcoma (ES) have an increased risk of secondary malignant neoplasms (SMNs) as a consequence of exposure to chemotherapy and/or radiation (see: Bhatia S, Sklar C.
  • The most common hematologic SMNs are myelodysplasia (MDS) and acute myelogenous leukemia (AML).
  • Acute lymphoblastic leukemia (ALL) is uncommon in this patient population, and Philadelphia chromosome positive (Ph+) ALL in particular, is rare.
  • [MeSH-major] Antineoplastic Agents / adverse effects. Bone Neoplasms / drug therapy. Bone Neoplasms / radiotherapy. Precursor Cell Lymphoblastic Leukemia-Lymphoma / etiology. Radiation Injuries / complications. Sarcoma, Ewing / drug therapy. Sarcoma, Ewing / radiotherapy

  • Genetic Alliance. consumer health - Acute Lymphoblastic Leukemia.
  • Genetic Alliance. consumer health - Ewing's Sarcoma.
  • MedlinePlus Health Information. consumer health - Bone Cancer.
  • COS Scholar Universe. author profiles.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 15609284.001).
  • [ISSN] 0361-8609
  • [Journal-full-title] American journal of hematology
  • [ISO-abbreviation] Am. J. Hematol.
  • [Language] eng
  • [Grant] United States / NCI NIH HHS / CA / CA 30206; United States / NCI NIH HHS / CA / CA 33572
  • [Publication-type] Case Reports; Journal Article; Research Support, U.S. Gov't, P.H.S.; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents
  • [Number-of-references] 29
  •  go-up   go-down






Advertisement